Динамика вязких циркуляционных течений в трубах и поверхностных воронках

Повышение эффективности устройств и надежности сооружений, работающих в условиях пропуска циркуляционных течений, путем разработки усовершенствованных методов их гидравлического расчета. Математическая модель вязких циркуляционных течений в трубах.

Рубрика Геология, гидрология и геодезия
Вид автореферат
Язык русский
Дата добавления 30.01.2018
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

7. Анализ вихревой структуры вязкого циркуляционно-продольного течения в цилиндрической трубе позволяет сделать вывод, что поток во всей области движения является вихревым и, таким образом, не является потенциальным, не является он и винтовым, ибо не соответствует условию . Завихренность, генерируемая в приосевой зоне и имеющая на входе в проточный канал максимальное значение, распространяется с продвижением потока по аксиальной координате на все более обширную область, но подавляется, и периферийных слоев ближе к стенкам трубы или слоев на значительном удалении от входа достигает значительно ослабленной; генерирование вихрей в ламинарном течении происходит также вблизи твердых поверхностей, однако пристенные вихри на порядок менее значимы, чем внутренние.

8. Установлено, что концентрация значительных касательных и нормальных напряжений в циркуляционно-продольном течении имеет место на начальном участке трубы в приосевой зоне потока, здесь наблюдаются максимальные радиальные и аксиальные градиенты всех компонент скорости, здесь поток теряет наиболее существенную часть своей энергии.

9. На основе метода Рэлея и теории переноса звихренности Тейлора получен критерий локальной устойчивости циркуляционно-продольного течения к случайным возмущениям (критерий Рэлея), согласно которому устойчивость течения в его произвольной локальной области определяется знаком частной производной по радиусу произведения циркуляции на аксиальную компоненту вихря (): при положительном значении критерия центробежные силы стремятся подавить случайные возмущения, и циркуляционное течение в исследуемой области будет устойчивым, при отрицательном знаке - случайные возмущения нарастают и течение теряет устойчивость. Критерий Рэлея позволяет выделить в циркуляционно-продольном течении зоны генерации случайных возмущений и зоны их подавления; критическое значение числа Рэлея при ламинарно-турбулентном переходе соответствует .

10. Критерием устойчивости циркуляционно-продольного течения к смене формы движения от осесимметричной к асимметричной спиралевидной является число Ричардсона, равное частному от деления числа Рэлея на квадратичный инвариант тензора скоростей деформации (). В ламинарном течении можно выделить три области с различной степенью устойчивости: первая пролегает вдоль стенок трубы и характеризуется слабой неустойчивостью (), ниже по глубине в кольцевом сечении расположена область устойчивого () течения с подавлением случайных возмущений (вторая область), наиболее неустойчивой () является третья область - центральное вихревое ядро; в вихревом ядре, в свою очередь, выделяются три зоны: зона слабой неустойчивости в начале водовода, плавно переходящая в зону дестабилизации течения с нарастающей по мере стягивания к оси и продвижения вдоль трубы неустойчивостью, и зону потери устойчивости - тонкий вихревой шнур; потеря устойчивости вихревым шнуром влечет нарастание возмущений и в результате дестабилизацию течения в целом, проявляющуюся в смене осесимметричного течения спиралевидным. В турбулентном циркуляционно-продольном течении следует выделить две области: примыкающую к стенкам трубы периферийную область устойчивого () течения, сокращающуюся по мере продвижения по аксиальной координате, и концентрично расширяющуюся по той же координате область неустойчивого () внутреннего вихревого ядра закрученного потока, в свою очередь содержащего три зоны, аналогичные зонам вихревого ядра ламинарного течения с теми же свойствами, при неустойчивость распространяется на все сечение турбулентного потока; смена формы движения циркуляционно-продольного течения от осесимметричного к спиралевидному соответствует в области вихревого шнура.

11. Другим «классическим» циркуляционным течением, рассмотренным в диссертационном исследовании, является поверхностная вихревая воронка. Разработанная аналитическая модель такого течения позволяет рассчитать распределения всех компонент скорости (, , ) в поверхностной вихревой воронке, а также функции тока и потенциала , построить гидродинамическую сетку течения в радиальной проекции и профиль свободной поверхности воронки . Структурные характеристики в поверхностной вихревой воронке описываются суммами рядов Фурье-Бесселя и интегральными показательными функциями, а распределение окружных скоростей подчиняется экспоненциальному закону, близкому к «свободно-вынужден-ному вихрю Бюргерса», когда вблизи оси () жидкость вращается как «твердое тело», а на периферии распределение тангенциальных скоростей соответствует «свободному вихрю»; при этом течение в поверхностной воронке не является ни потенциальным, ибо , ни винтовым, т.к. .

12. Установлено, что профиль свободной поверхности вихревой воронки и ее глубина на оси вращения определяются интенсивностью генерирующей воронку циркуляции и значениями чисел Рейнольдса и Фруда . При этом условие, определяющее предотвращение прорыва воздушного жгута вихревой воронки через устье глубинного водоприемного отверстия в напорный водовод, выражается неравенством

.

13. При физическом моделировании по определяющему критерию Фруда глубину воронки, полученную на модели, необходимо пересчитывать на натуру с масштабным коэффициентом , где - линейный масштаб модели, либо для получения глубины воронки на модели, соответствующей линейному масштабному пересчету на натуру, идти на форсирование скорости в раз по отношению к ее значению по правилу Фруда.

14. Изложенные в диссертационной работе математические модели циркуляционно-продольного течения в трубе и в поверхностной вихревой воронке прошли верификационную проверку по эмпирическим данным, полученным разными авторами. Верификационная проверка показала возможность применения этих моделей в инженерной практике и подтвердила универсальность полученных решений, позволяющую использовать их при оптимизации структуры циркуляционно-продольных течений в соответствии с технологическими требованиями, или оптимизации параметров устройств и сооружений в любых областях техники, где целесообразно применение закрученных потоков жидкости, а также при прогнозировании прорыва воронок в напорные водоводы гидротехнических сооружений.

15. В диссертации рассмотрена одна из фундаментальных проблем гидравлики, заключающаяся в целенаправленной интенсификации или подавлении турбулентности движущейся в поле центробежных сил среды. Основой управления турбулентностью среды является формирование циркуляционного течения определенной структуры, где ключевым параметром выступает турбулентная вязкость , которая не является свойством жидкости, а является свойством потока; целенаправленно формируя структуру течения, можно управлять турбулентной вязкостью; турбулентная вязкость нарастает в циркуляционном течении пропорционально радиальному градиенту угловой скорости , повышением этого градиента достигается эффект нарастания турбулентных напряжений, понижением его - эффект подавления турбулентности. Способность целенаправленно моделировать структуру течения достигается с помощью локального осевого лопастного завихрителя, ибо его направляющие лопасти могут быть спрофилированы вдоль радиуса любым необходимым образом.

16. Выполненные с использованием лазерных доплеровских измерителей скорости и термоанемометрической аппаратуры исследования турбулентной структуры сдвигового течения при взаимодействии спутных коаксиальных потоков со встречной циркуляцией позволили составить физическое описание картины течения, которое сводится к следующему: в месте объединения коаксиальных противоположно закрученных потоков наблюдается высокий градиент угловых скоростей вдоль текущего радиуса, практически стремящийся к бесконечности в сдвиговом слое на границе макровихрей; это приводит к появлению здесь вторичных вихрей, которые, в свою очередь, генерируют вихри следующего порядка малости и т.д.; таким образом, механическая энергия переходит от начального течения коаксиальных закрученных потоков к вихрям все более мелкого масштаба, пока в результате работы, совершаемой против сил вязкого трения, не преобразуется в тепловую; процесс передачи энергии к меньшим масштабам, называемый энергетическим вихревым каскадом, характеризуется исключительно высокой интенсивностью; генерирование вторичных и последующих вихрей с орбитальными скоростями, равными окружным скоростям входящих во взаимодействие противоположно закрученных потоков, определяет скорость радиального массо- и энергопереноса.

17. Показано, что степень турбулентности циркуляционного течения определяется соотношением в нем «свободного» и «вынужденного» вихрей; чем более поток соответствует течению с вращением по «твердому телу», тем ниже степень его турбулентности, на этом эффекте основана технология подавления турбулентности в циркуляционном потоке (технология «Око тайфуна»); показано, что технология подавления турбулентности весьма эффективна при гидроциклонной сепарации из воды мелкодисперсных примесей.

18. В результате выполненных исследований разработаны методы гидравлического расчета устройств с интенсификацией и подавлением турбулентности. Эти исследования показали значительные перспективы, открывающиеся с решением проблемы управления турбулентностью движущейся среды; считая это направление приоритетным, полагаю необходимым в дальнейшем сосредоточить внимание на глубоком экспериментальном изучении структурного моделирования свойств турбулентных течений и внедрении новых технологий.

Основное содержание диссертации опубликовано в следующих печатных работах автора

Водосбросное устройство. Авт. свид. СССР №812877. 1981 (соавт. Кривченко Г.И., Квятковская Е.В., Мордасов А.П., Волшаник В.В.).

Высоконапорная водосбросная система с контрвихревым гасителем энергии потока // Гидротехническое строительство, 1981, 10, 29-31 (соавт. Кривченко Г.И., Квятковская Е.В., Мордасов А.П., Волшаник В.В.).

Способ гашения энергии потока. Авт. свид. СССР №812876. 1981 (соавт. Кривченко Г.И., Квятковская Е.В., Мордасов А.П., Волшаник В.В.).

Гаситель энергии потока. Авт.свид. СССР №874853. 1981 (соавт. Кривченко Г.И., Квятковская Е.В., Мордасов А.П., Волшаник В.В., Куперман В.Л.).

Устройство для аэрации воды в рыбоводных водоемах. Авт. свид. СССР №856415. 1981 (соавт. Мордасов А.П., Волшаник В.В.).

Водосбросное устройство. Авт. свид. СССР №920099. 1982 (соавт. Кривченко Г.И., Квятковская Е.В., Мордасов А.П., Волшаник В.В.).

Водосбросное устройство и его вариант. Авт. свид. СССР №924233. 1982 (соавт. Мордасов А.П., Волшаник В.В.).

Градирня. Авт. свид. СССР №1188498. 1982 (соавт. Мордасов А.П., Волшаник В.В.).

Двухкомпонентная форсунка. Авт. свид. СССР №963362. 1982 (соавт. Мордасов А.П., Волшаник В.В.).

Проекты использования закрученных потоков в высоконапорных водосбросах // Гидротехника и мелиорация, София, 1983, 8, 3-7 (соавт. Волшаник В.В., Мордасов А.П.).

Исследования водосбросной системы с тангенциальным подводом потоков // Сб. тр. МИСИ, М., 1983, 187, 98-106 (соавт. Кривченко Г.И., Квятковская Е.В., Мордасов А.П., Волшаник В.В.).

Шахтный вихревой водосброс с контрвихревым гасителем для высоконапорных гидроузлов // Сб. тр. МИСИ, М., 1983, 187, 151-157 (соавт. Кривченко Г.И., Квятковская Е.В., Мордасов А.П., Волшаник В.В.).

Способ гашения энергии потока воды. Авт. свид. СССР №1010184. 1983 (соавт. Чепайкин Г.А., Редченко И.С.).

Energy dissipators for high-pressure water discharge structures, based on interaction coaxial swirled flows // Proc. 20 IAHR Congr., Moscow, 1983, 7, 464-467 (соавт. Krivchenko G.I., Mordasov A.P., Kviatkovskaya E.V., Volshanik V.V., Levanov A.V.).

Использование взаимодействующих закрученных потоков в решении проблем защиты окружающей среды // Известия ВУЗов. Строительство и архитектура, 1984, 8, 97-101 (соавт. Волшаник В.В., Мордасов А.П., Леванов А.В.).

Глушитель шума газового потока. Авт. свид. СССР №1073489. 1984 (соавт. Мордасов А.П., Волшаник В.В., Леванов А.В.).

Реактивный двигатель. Авт. свид. СССР №1083684. 1984 (соавт. Мордасов А.П., Волшаник В.В., Леванов А.В.).

Исследование модели высоконапорного глубинного водосброса со взаимодействием концентрических закрученных потоков // Гидротехническое строительство, 1986, 12, 29-33 (соавт. Чепайкин Г.А.).

Гаситель энергии потока глубинного водосброса. Авт. свид. СССР №1233548. 1986 (соавт. Кривченко Г.И., Квятковская Е.В., Мордасов А.П., Волшаник В.В., Леванов А.В., Слисский С.М., Правдивец Ю.П.).

Swirled flows used for cavitation prevention in high-pressure water discharge systems // Proc. IAHR Symp. on Cavitation, Sendai, 1986, 287-291 (соавт. Karelin V.Y., Krivchenko G.I., Volshanik V.V., Mordasov A.P.).

Решение практических задач экологии с использованием закрученных потоков жидкости и энергии волн. Сб. Высш. образов. в СССР. М., 1987, 100-109 (соавт. Кривченко Г.И., Мордасов А.П., Волшаник В.В., Орехов Г.В.).

Гидравлический расчет вихревых безнапорных водосбросов // Гидротехническое строительство, 1988, 11, 25-28 (соавт. Чепайкин Г.А.).

Градирня. Авт. свид. СССР №1467350. 1988 (соавт. Мордасов А.П., Волшаник В.В., Леванов А.В., Ходанков Н.А.).

Аналитический метод гидравлического расчета вихревых шахтных водосбросов // Гидротехническое строительство, 1989, 4, 38-42 (соавт. Волшаник В.В., Мордасов А.П.).

Применение контрвихревых устройств для гашения энергии высокоскоростных потоков воды и аэрации жидкости // Тр. 10 научной конф. ВТШ, Брно, 1989, 16, 90-94 (соавт. Волшаник В.В., Мордасов А.П.).

Установившееся плавно изменяющееся движение закрученного кольцевого потока вязкой несжимаемой жидкости в цилиндрической трубе // Сб. тр. МИСИ, 1989, 42-47 (соавт. Леванов А.В.).

Закрученные потоки в гидротехнических сооружениях. М., Энергоатомиздат, 1990, 280 с. (соавт. Волшаник В.В., Мордасов А.П.).

Численный метод расчета взаимодействия закрученных потоков в камере смешения контрвихревого аэратора // Тр. 2-го Международного симпозиума по газообмену через водные поверхности. Ун-т штата Миннесота, США, 1990 (соавт. Карелин В.Я., Ахметов В.К., Мордасов А.П., Волшаник В.В.).

Numerical methods of studying experimental characteristics of fluid swirling flow structure // Proc. IAHR Symp., Belgrad, 1990, 11-14 (соавт. Karelin V.Y., Mordasov A.P., Volshanik V.V.).

Гидравлический расчет гидротехнических сооружений с закруткой потока. Учебное пособие. М., МИСИ, 1992 (соавт. Волшаник В.В., Мордасов А.П., Данек М., Рыбникар И.).

Руководство по проектированию и конструкторская документация вихревых аэраторов на донных водовыпусках плотин / Роскомвод, Росгипроводхоз, МИСИ. М., 1992 (соавт. Мордасов А.П., Орехов Г.В., Волшаник В.В., Ахметов В.К., Иванова Т.А., Арискин Н.Н., Лебедева О.Э., Притчин В.П., Крымов А.Н.).

Научное обоснование и техническое использование эффекта взаимодействия закрученных потоков // Вестник Отд. строит. наук Российской академии архитектуры и строительных наук, 2000, 3, 37-44 (соавт. Карелин В.Я., Волшаник В.В.).

Инженерная гидравлика закрученных потоков жидкости // Гидротехническое строительство, 2000, 11, 23-26 (соавт. Карелин В.Я., Волшаник В.В., Орехов Г.В.).

Гидроциклон. П-т РФ №2206408. 2001(соавт. Волшаник В.В.,Скаткин М.Г.).

Универсальный смеситель. П-т РФ №2206378. 2001 (соавт. Волшаник В.В., Скаткин М.Г.).

Аналитическое исследование структуры потока вязкой несжимаемой жидкости в цилиндрической трубе. М., МГСУ, 2001 (соавт. Волшаник В.В.).

Вихревые аэраторы - принцип действия и конструкции // Сб. МГСУ, М., 2001, 95-101 (соавт. Карелин В.Я., Волшаник В.В., Орехов Г.В.).

Использование вихревых аэраторов для интенсификации процессов очистки природных вод // Инженерная защита окружающей среды. Очистка вод. Утилизация отходов, М., АСВ, 2002, 97-106 (соавт. Волшаник В.В., Орехов Г.В., Скаткин М.Г., Свитайло В.Д.).

Влияние турбулентной диффузии на процесс сепарации нефтесодержащих примесей в цилиндрическом гидроциклоне // Сб. тр. МГСУ и СПб ГТУ, М., 2002, 52-62 (соавт. Волшаник В.В., Орехов Г.В., Евстигнеев Н.М.).

Математическая модель течения в вихревой воронке со свободной поверхностью // Cб. н. тр. каф. использования водной энергии МГСУ. М., АСВ, 2004, 131-147 (соавт. Прудовский А.М., Родионов В.Б.).

Подавление турбулентности в прямоточных гидроциклонах // Вестник МГСУ. М., 2008, 4, 181-185.

Повышение турбулентности циркуляционных течений // Вестник МГСУ. М., 2009, 2, 80-85.

Расчет параметров жгута закрученного потока в горизонтальном водоводе // Вестник МГСУ. М., 2009, 2, 86-89.

Профили тангенциальных скоростей в циркуляционном течении в трубе // Вестник МГСУ. М., 2009, 3, 195-199.

Распределение продольных скоростей в циркуляционном течении в трубе // Вестник МГСУ. М., 2009, 3, 200-204.

Особенности физического моделирования поверхностных вихревых воронок // Гидротехническое строительство, 2009, 11, 36-41.

Гидравлический расчет проточной части контрвихревых аэраторов // Водоснабжение и санитарная техника, 2009, 12, 50-56 (соавт. Волшаник В.В., Орехов Г.В.).

Устойчивость циркуляционно-продольного течения // Известия ВУЗов. Строительство, 2009, 11-12, 77-86.

Функция тока и зона рециркуляции в ламинарном течении с закруткой // Вестник МГСУ. М., 2009, Спецвыпуск 2, 91-95.

Вихревая структура и тензор напряжений в ламинарном течении с закруткой // Вестник МГСУ. М., 2009, Спецвыпуск 2, 95-99.

Размещено на Allbest.ru

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.