Охрана труда
Основные принципы и направления государственной политики в области охраны труда. Воздействие шума, вибрации и других колебаний на организм человека. Факторы, влияющие на степень поражения человека электрическим током. Первичные средства тушения пожара.
Рубрика | Безопасность жизнедеятельности и охрана труда |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 21.12.2014 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Б.
Для защиты от бороводородов (диборан, пентаборан, этилпентаборан, диэтилдекарборан, декарборан) и их аэрозолей
ФОС
Для защиты от паро-и газообразных фторпроизводных непредельных углеводородов, фреонов и их смесей, фтор- и хлормономеров
ГФ
Для защиты от газообразного гексафторида урана, фтора, фтористого водорода, радиоактивных аэрозолей
УМ
Для защиты от паров и аэрозолей гептила, амила, сами-на, нитромеланжа, амидола
П-2У
Для защиты от паров карбонилов никеля и железа, оксида углерода и сопутствующих аэрозолей
С
Для защиты от оксидов азота и сернистого ангидрида
В зависимости от содержания вредных веществ в воздухе, его температуры, влажности, скорости потока время защитного действия противогазов различно и колеблется от 30 мин до 100 ч.
Запрещается использовать фильтрующие противогазы для проведения работ в емкостях, колодцах, коллекторах и других замкнутых объемах. Для таких работ необходимо использовать изолирующие шланговые противогазы.
Респираторы фильтрующие представляют собой облегченные средства защиты органов дыхания от вредных газов, паров и аэрозолей, за исключением высокотоксичных и неустойчивых в воздухе веществ. Респираторы обеспечивают более комфортные условия работы, чем противогазы, имеют меньшее сопротивление дыханию, оказывают меньшее механическое давление на голову. Однако защитные свойства их значительно ниже. Респираторы используют при концентрации свободного кислорода в воздухе не менее 18% и концентрации паро- и газообразных вредных веществ, не превышающих ПДК более чем в 10-100 раз, а аэрозолей - в 50-1000 раз.
По назначению фильтрующие респираторы подразделяются на противопылевые, противогазовые и универсальные.
Средства защиты органов дыхания выбирают в зависимости от вредных веществ (табл. 2.15).
Изолирующие средства защиты органов дыхания полностью изолируют человека от окружающей среды и, следовательно, обеспечивают нормальное дыхание практически независимо от содержания в воздухе кислорода и вредных веществ. Их можно использовать при недостаточном содержании кислорода, неограниченном содержании вредных веществ, а также в тех случаях, когда неизвестен состав вредных веществ в воздухе. Изолирующие средства защиты обеспечивают подачу дыхательной смеси к органам дыхания из индивидуальных источников или пригодного для дыхания воздуха из чистой зоны.
Изолирующие средства защиты по конструкции подразделяются на шланговые и автономные. Последние, в свою очередь, в зависимости от источника дыхательной смеси выпускаются двух видов - с резервуаром под давлением и с химической регенерацией кислорода.
Таблица 2.15
Рекомендуемые типы и марки фильтрующих противогазов и респираторов для защиты от смесей вредных веществ
Смесь |
Средства защиты |
|
Пары органических веществ |
Противогазы с коробками марки А. Респираторы РПГ-67, РУ-60М с патронами марки А. Облегченный противогаз ПФПМ с коробкой марки А |
|
Пары органических веществ и кислые газы |
Противогазы с коробками марок В, Е, БКФ. Респираторы РПГ-67 и РУ-60М с патронами марки В. Облегченный противогаз ПФПМ с коробкой марки В |
|
Хлороформ, хлор, хлористый водород |
Противогазы с коробками марок В с/ф, Е с/ф, БКФ |
|
Бромистый метил и синильная кислота |
Противогаз с коробкой марки В б/ф |
|
Пары органических веществ и аммиак |
Противогаз с коробкой марки КД. Респираторы РПГ-67 и РУ-60М с патронами марки КД. Облегченный противогаз ПФПМ с коробкой марки КД |
|
Пары органических веществ и сероводород |
Противогазы с коробками марок В и КД. Респираторы РПГ-67 и РУ-60М с патронами марок В и КД. Облегченный противогаз ПФПМ с коробкой марки КД |
|
Пары органических веществ и пары ртути |
Противогаз с коробкой марки Г. Респираторы РПГ-67 и РУ-60М с патронами марки Г |
|
Пары органических веществ, мышьяковистый водород, фосфористый водород, кислые газы |
Противогазы с коробками марок БКФ и Е |
|
Оксид углерода, кислые газы |
Противогазы с коробками марок СО и М |
|
Оксид углерода, кислые газы, аммиак |
Противогаз с коробкой марки М |
|
Оксид углерода в присутствии небольших количеств кислых газов (кроме хлора), мышьяковистого и фосфористого водорода, паров ртути, аммиака и смеси сероводорода с аммиаком |
Противогаз с коробкой марки М |
|
Пары ртути, хлор |
Противогаз с коробкой марки Г с/ф |
Примечание. Условные обозначения: с/ф - с фильтром, б/ф -без фильтра.
Рис. 2.24 Принципиальное устройство шлангового противогаза ПШ-1
Наиболее широко в хозяйственной деятельности применяются шланговые противогазы (рис. 2.24).
Они состоят из одной или двух шлем-масок 1 с гофрированными трубками 2, которые присоединяются к воздухоподающему шлангу 5. В состав противогаза входят сигнальная веревка 3 и спасательный пояс 4. Воздухоподающий шланг оснащается металлическим штырем 6 Для его закрепления и фильтром для очистки воздуха 7. Кроме того, некоторые типы противогазов снабжаются воздуходувками с ручным или электрическим приводом и фильтрами для очистки подаваемого воздуха (табл. 2.16).
Шланговые противогазы рекомендуется использовать для работы внутри емкостей, цистерн, колодцев производственной канализации и других замкнутых объемов, в атмосфере которых могут присутствовать неизвестные вредные вещества, либо концентрация их может быть достаточно высокой, а также при недостатке свободного кислорода для дыхания. При проведении работ внутри емкости у работающего в шланговом противогазе должен быть дублер, который находится снаружи и держит сигнальную спасательную веревку. Дублер обязан следить за состоянием работающего в емкости, и если тот почувствует себя плохо или потеряет сознание, извлечь его из емкости и оказать помощь.
Принцип работы шлангового противогаза основан на том, что работающий дышит через шлем-маску воздухом, который поступает по армированному резинотканевому шлангу, один конец которого вынесен в зону чистого воздуха на расстояние не более 40 м.
Таблица 2.16
Технические характеристики шланговых противогазов
Марка противогаза |
Подача воздуха |
Число работающих |
Длина шланга, м |
Масса, кг |
|
ПШ-1Б |
Самовсасыванием |
1 |
10 (на барабане) |
17 |
|
ПИТ-1С |
То же |
1 |
10 (в сумке) |
9,2 |
|
ШП-1Б-20 |
>>» |
1 |
20 (на барабане) |
- |
|
ПШ-20РВ |
Воздуходувка ручная |
1 |
20 |
30 |
|
ПШ-40РВ |
Тоже |
1 |
40 |
40 |
|
ПШ-20РВ-2 |
Воздуходувка ручная и электрическая |
2 |
2x20 |
41 |
|
ПШ-20ЭРВ |
Тоже |
1 |
20 |
28 |
|
ПШ-40ЭРВ |
» » |
1 |
40 |
42 |
|
ПШ-20ЭРВ-2 |
»» |
2 |
20x20 |
42 |
|
ПШ-20С |
Самовсасыванием |
1 |
20 |
16,2 |
При использовании противогазов марок ПШ-1Б, ПШ-1С и ШН-20С воздух всасывается непосредственно самим работающим через клапан шлем-маски и шланг из чистой зоны. При этом максимальная длина шланга составляет 20 м. Остальные марки противогазов (см. табл. 2.16) снабжаются воздуходувками с ручным или ручным и электроприводом.
К изолирующим средствам защиты органов дыхания относятся кислородно-изолирующие противогазы (КИП-7, КИП-8), которые в отличие от других приборов полностью изолируют органы дыхания человека от окружающей среды (рис. 2.25). Их можно использовать при недостатке свободного кислорода, больших концентрациях вредных веществ и неизвестном их составе в воздухе.
В кислородно-изолирующих противогазах выдыхаемый человеком диоксид углерода поглощается активной массой регенеративного патрона, а вдыхаемый воздух обогащается кислородом из баллона с редуктором. Эти приборы рассчитаны на работу в течение 2 ч. Масса изолирующего противогаза - 8-10 кг.
Рис. 2.25 Устройство противогаза КИП-8: / - маска; 2 - клапанная коробка; 3 - дыхательный мешок; 4 -- регенеративный патрон; 5 - кислородный баллон с вентилем; 6 - блок легочного автомата и редуктора; 7 - звуковое устройство; 8 - предохранительный клапан дыхательного мешка; 9 - манометр выносной; 10 - гофрированные трубки; 11 - корпус с крышкой и ремнями
К работе в изолирующих противогазах допускаются лица, признанные медицинской комиссией пригодными и прошедшие курс теоретического и практического обучения.
Изолирующий противогаз ИП-5 предназначен для использования в качестве аварийно-спасательного средства в любой атмосфере. Время защитного действия в состоянии покоя составляет 120 мин.
В настоящее время для улучшения условий труда работников с дефектами бинокулярного зрения в средствах индивидуальной защиты (очки, маски, противогазы, щитки и др.) предусмотрены эластичные линзы Френеля многократного использования, корригирующие близорукость или дальнозоркость. Линзы устанавливаются на внутреннюю увлажненную поверхность очкового стекла средства защиты.
Кроме того, для защиты человека в аварийных ситуациях используются самоспасатели различных конструкций (ШС-20М, СПИ-20, ШСС-Т, КЗА-1, ПДА и др.). Например, самоспасатель ШС-20М является изолирующим средством одноразового действия и предназначен для защиты органов дыхания и зрения работающих при объемной доле кислорода в воздухе менее 18% и суммарной объемной доле паро- и газообразных вредных веществ более 0,5%. Он состоит из регенеративного патрона, пускового устройства, дыхательного мешка с клапаном избыточного давления, гофрированной трубки с загубником, носового зажима и герметичных очков с незапотевающи-ми пленками. Регенеративный патрон поглощает из выдыхаемого воздуха диоксид углерода и влагу с одновременным выделением кислорода. Самоспасатель выпускается готовым к немедленному использованию и не требует никакой подгонки. Время защитного действия составляет до 140 мин.
Самоспасатель СПИ-20 является средством защиты органов дыхания и зрения при авариях, пожарах, эвакуации людей и т.д. Он оснащен оригинальной безразмерной лицевой частью типа колпака, что обеспечивает ему преимущество перед другими защитными средствами аналогичного назначения. Время защитного действия составляет от 20 до 40 мин.
Для защиты головы от механических травм, а также от поражения электрическим током применяют различного рода каски с амортизаторами (текстолитовые, пластмассовые, винипластовые, стеклопластиковые и др.). Качество касок определяется максимальной ударной прочностью и минимальной массой, которая лежит в пределах 0,390 -0,470 кг. Каски выдерживают вертикальную ударную нагрузку энергией от 45 до 80 Дж. Кроме касок могут использоваться войлочные шляпы, шляпы из прорезиненной ткани, косынки, береты и т. п.
2.6 Защита работающих от источников электростатического поля и производственных излучений
2.6.1 Статическое электричество и защита от его воздействия
Широкое использование во всех областях хозяйственной деятельности диэлектрических материалов и органических соединений (полимеров, бумаги, твердых и жидких углеводородов, нефтепродуктов и т.п.) неизбежно сопровождается образованием зарядов статического электричества, которые не только осложняют проведение технологических процессов, но и зачастую становятся причиной пожаров и взрывов, приносящих большой материальный ущерб. Нередко это приводит к гибели людей.
Статическое электричество -- это совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности, или в объеме диэлектриков, или на изолированных проводниках (ГОСТ 12.1.018). Образование и накопление зарядов на перерабатываемом материале связано с двумя следующими условиями:
.¦ наличие контакта поверхностей, в результате чего создается двойной электрический слой, возникновение которого связано с переходом электронов в элементарных донорско-акцепторных актах на поверхности контакта. Знак заряда определяет неодинаковое сродство материала поверхностей к электрону;
¦ хотя бы одна из контактирующих поверхностей должна быть из диэлектрического материала.
Заряды будут оставаться на поверхностях после прекращения контакта только в том случае, если время разрушения контакта меньше времени релаксации зарядов. Последнее в значительной степени определяет величину зарядов на разделенных поверхностях.
Основная величина, характеризующая способность к электризации, - это удельное электрическое сопротивление (р) поверхностей контактирующих материалов. Если они имеют низкое сопротивление, то при разделении заряды с них стекают, и эти поверхности несут незначительный заряд. Если же сопротивление материалов высокое или скорость отрыва поверхностей велика, то заряды будут сохраняться. Способность веществ электризоваться также характеризуется удельной электропроводимостью у, или удельным объемным сопротивлением pv,
Условно принято, что при удельном электрическом сопротивлении материалов менее 105 Ом- м заряды не сохраняются и материалы не электризуются.
В отдельных случаях склонность к электризации плоских полимерных материалов целесообразно оценивать по величине удельного поверхностного электрического сопротивления ps, Ом. Большинство полимерных пленок и материалов не электризуется, если ps<1011 Ом.
В соответствии с Правилами защиты от статического электричества в производствах химической, нефтехимической и нефтеперерабатывающей промышленности все вещества и материалы в зависимости от удельного объемного сопротивления подразделяются на диэлектрические (Рv>108 Омм), антистатические (рv>105-108 Ом*м) и электропроводящие (Рv<105 Ом*м).
Основными факторами, влияющими на электризацию веществ, являются их электрофизические свойства и скорость разделения поверхностей. Экспериментально установлено, что чем интенсивнее осуществляется процесс, т.е. чем выше скорость отрыва, тем больший заряд остается на поверхности.
Известны следующие пути заряжения объектов: непосредственное контактирование с наэлектризованными материалами, индуктивное и смешанное заряжение.
К чисто контактному заряжению поверхностей относится, например, электризация при перекачивании углеводородного топлива, растворителей по трубопроводам. Известно, что трубопроводы из прозрачного диэлектрического материала при перекачивании жидкостей даже светятся.
Наряду с контактным часто происходит индуктивное заряжение проводящих объектов и обслуживающего персонала в электрическом поле движущегося плоского наэлектризованного материала.
Рис. 2.26 Принципиальная схема электризации твердых материалов при их разделении: v - скорость разделения поверхностей; /0 - ток, обусловленный омической проводимостью разделяющих поверхностей; 1и - ток ионизации в зазоре между разделяющимися поверхностями
Смешанное заряжение наблюдается тогда, когда наэлектризованный материал поступает в какие-либо емкости, изолированные от земли. Этот вид заряжения наиболее часто встречается при заливке горючих жидкостей в емкости, при подаче резиновых клеев, тканей, пленок в передвижные емкости, тележки и т.д. Образование зарядов статического электричества при контакте жидкого тела с твердым или одного твердого тела с другим во многом зависит от плотности соприкосновения трущихся поверхностей, их физического состояния, скорости и коэффициента трения, давления в зоне контакта, микроклимата окружающей среды, наличия внешних электрических полей и т.д.
На рис. 2.26 показана принципиальная схема электризации твердых материалов при их разделении.
Заряды статического электричества могут накапливаться и на теле человека (при работе или контакте с наэлектризованными материалами и изделиями). Высокое поверхностное сопротивление тканей человека затрудняет стекание зарядов, и человек может длительное время находиться под большим потенциалом.
Основной опасностью при электризации различных материалов является возможность возникновения искрового разряда как с диэлектрической наэлектризованной поверхности, так и с изолированного проводящего объекта.
Разряд статического электричества возникает, если напряженность электростатического поля над поверхностью диэлектрика или проводника, обусловленная накоплением на них зарядов, достигает критической (пробойной) величины. Для воздуха эта величина составляет примерно 30 кВ/м.
Воспламенение горючих смесей искровыми разрядами статического электричества может произойти в том случае, если выделяющаяся в разряде энергия будет выше минимальной энергии зажигания горючей смеси.
Наряду с пожарной опасностью статическое электричество представляет опасность и для работающих.
Легкие «уколы» при работе с сильно наэлектризованными материалами вредно влияют на психику работающих и в определенных ситуациях могут способствовать травмам на технологическом оборудовании. Сильные искровые разряды, возникающие, например, при затаривании гранулированных материалов, могут приводить к болевым ощущениям. Неприятные ощущения, вызываемые статическим электричеством, могут явиться причинами развития неврастении, головной боли, плохого сна, раздражительности, покалываний в области сердца и т.д. Кроме того, при постоянном прохождении через тело человека малых токов электризации возможны неблагоприятные физиологические изменения в организме, приводящие к профессиональным заболеваниям. Систематическое воздействие электростатического поля повышенной напряженности может вызывать функциональные изменения центральной нервной, сердечно-сосудистой и других систем организма.
Использование для одежды искусственных или синтетических тканей приводит также к накоплению зарядов статического электричества на человеке. В ГОСТ 29191 (МЭК 801-2-91) приводятся сведения о том, что синтетические ткани могут заряжаться до потенциала, равного 15 кВ. Поэтому ток, протекающий через тело человека, одетого в костюм или халат из синтетической ткани, может достигать 3 мкА. Прикосновение к заземленным участкам рабочего места или к незаряженному телу вызывает искровой разряд с силой тока до 30 А.
Статическое электричество сильно влияет также на ход технологических процессов получения и переработки материалов и качество продукции. При больших плотностях заряда может возникать электрический пробой тонких полимерных пленок электро- и радиотехнического назначения, что приводит к браку выпускаемой продукции. Особенно большой ущерб наносит вызванное электростатическим притяжением налипание пыли на полимерные пленки.
Электризация затрудняет такие процессы, как просеивание, сушку, пневмотранспорт, печатание, транспортировку полимеров, диэлектрических жидкостей, формование синтетических волокон, пленок и т.п., автоматическое дозирование мелкодисперсных материалов, поскольку они прилипают к стенкам технологического оборудования и слипаются между собой.
Допустимые уровни напряженности электростатических полей устанавливаются ГОСТ 12.1.045 и СанПиН 11-16-94.
Предельно допустимые уровни напряженности электростатического поля устанавливаются в зависимости от времени пребывания персонала на рабочих местах и не должны превышать:
при воздействии до 1 ч - 60 кВ/м;
при воздействии от 1 до 9 ч - ПДУ определяется по
При напряженности электростатического поля менее 20 кВ/м время пребывания в электростатическом поле не регламентируется.
Обобщенная схема методов защиты от воздействия статического электричества приведена на рис. 2.27.
Средства защиты от статического электричества должны применяться во всех взрыво- и пожароопасных помещениях и зонах открытых установок, отнесенных по классификации ПУЭ к классам B-I, B-Ia, B-I6, В-1г, В-П, В-Па, П-I, П-П.
При организации производства следует избегать процессов, сопровождающихся интенсивной генерацией зарядов статического электричества. Для этого необходимо правильно подбирать поверхности трения и скорости движения веществ, материалов, устройств, избегать процессов разбрызгивания, дробления, распыления, очищать горючие газы и жидкости от примесей и т.д.
Эффективным методом снижения интенсивности генерации статического электричества является метод контактных пар. Большинство конструкционных материалов по диэлектрической проницаемости расположены в трибоэлектрические ряды в такой последовательности, что любой из них приобретает отрицательный заряд при соприкосновении с последующим в ряду материалом и положительный - с предыдущим. При этом с увеличением расстояния в ряду между двумя материалами абсолютная величина заряда, возникающего между ними, возрастает.
Рис. 2.27 Основные методы и средства защиты от статического электричества
Безопасные скорости транспортировки жидких и пылевидных веществ в зависимости от удельного объемного электрического сопротивления нормируются Правилами защиты от статического электричества в производствах химической, нефтехимической и нефтеперерабатывающей промышленности. Так, жидкости с pv<105 Ом*м можно перекачивать со скоростью до 10 м/с, с рv<109 Ом*м -- до 5 м/с, а при рv >=109 Ом*м допустимая скорость транспортировки не должна превышать 1,2 м/с.
Наиболее опасны по диэлектрическим и другим свойствам этиловый эфир, сероуглерод, бензол, бензин, этиловый и метиловый спирты.
Во взрывоопасных помещениях, где могут накапливаться заряды статического электричества, технологическое оборудование и коммуникации изготавливают из материалов, имеющих рv не выше 105 Ом*м.
Для предупреждения возможности накопления статического электричества на поверхностях оборудования, перерабатываемых материалов, а также на теле работающих выше минимальной энергии зажигания горючих смесей необходимо, с учетом особенностей производства, обеспечить стекание возникающих зарядов с заряженных объектов.
В соответствии с ГОСТ 12.4.124 это достигается использованием средств коллективной и индивидуальной защиты.
Средства коллективной защиты от статического электричества по принципу действия делятся на следующие виды: заземляющие устройства, нейтрализаторы, увлажняющие устройства, антиэлектростатические вещества, экранирующие устройства.
Заземление относится к основным методам защиты от статического электричества и представляет собой преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей, которые могут оказаться под напряжением. Оно является наиболее простым, но необходимым средством защиты в связи с тем, что энергия искрового разряда с проводящих неза-земленных элементов технологического оборудования во много раз выше энергии разряда с диэлектриков.
ГОСТ 12.4.124 предписывает, что заземление должно применяться на всех электропроводных элементах технологического оборудования и других объектов, на которых возможно возникновение или накопление электростатических зарядов независимо от использования других средств защиты от статического электричества. Необходимо также заземлять металлические вентиляционные короба и кожухи теплоизоляции аппаратов и трубопроводов, расположенных в цехах, наружных установках, эстакадах, каналах. Причем указанные технологические линии должны представлять собой на всем протяжении непрерывную электрическую цепь, которая присоединяется к контуру заземления не менее чем в двух точках.
Величина сопротивления заземляющего устройства, предназначенного исключительно для защиты от статического электричества, должна быть не выше 100 Ом.
Особое внимание необходимо уделять заземлению передвижных объектов или вращающихся элементов оборудования, не имеющих постоянного контакта с землей. Например, передвижные емкости, в которые насыпают или наливают электризующиеся материалы, должны быть перед заполнением установлены на заземленные основания или присоединены к заземлителю специальным проводником до того, как будет открыт люк.
Нейтрализация зарядов статического электричества производится в тех случаях, когда не представляется возможным снизить интенсивность его образования технологическими и иными способами. Для этой цели используют нейтрализаторы различных типов:
¦ коронного разряда (индукционные и высоковольт
ные);
радиоизотопные с а- и B- излучающими источниками;
комбинированные, объединяющие в одной конструкции коронные и радиоизотопные нейтрализаторы;
создающие поток ионизированного воздуха.
Наиболее простыми по исполнению являются индукционные нейтрализаторы. В большинстве случаев они представляют собой корпус или стержень с закрепленными на них заземленными разрядниками, представляющими собой иглы, струны, щеточки. В этих нейтрализаторах используется электрическое поле, создаваемое самим наэлектризованным материалом. Под действием этого поля вблизи разрядника возникает большой градиент электрического потенциала, достаточного для образования и поддержания ионизационных процессов в воздухе, что в конечном счете приводит к повышению его проводимости.
Образующиеся ионы, одноименные по знаку с зарядом материала, отводятся на заземленные части оборудования или корпус нейтрализатора, а ионы противоположного заряда под действием электрического поля обрабатываемого материала создают ток разряда на его поверхности, тем самым нейтрализуя образующиеся заряды.
Для снижения интенсивности электризации жидкостей используют струнные или игольчатые нейтрализаторы, которые за счет увеличения проводимости среды способствуют стеканию образующихся зарядов на заземленные стенки трубопроводов (оборудования) или корпус нейтрализатора.
Индукционные нейтрализаторы неэффективны при небольших потенциалах на материале (до 2,5 кВ), что характерно, как правило, для обработки твердых материалов. Кроме того, эти нейтрализаторы необходимо устанавливать на расстоянии от обрабатываемого материала не более 10-15 мм.
В высоковольтных нейтрализаторах коронного и скользящего разрядов в отличие от индукционных используется высокое напряжение до 5 кВ, подаваемое на разрядник от внешнего источника питания. Они характеризуются высокой эффективностью практически при любых скоростях обработки материалов и могут быть уста-, новлены на значительном расстоянии от наэлектризованного материала, так как сила ионизационного тока в них может достигать 2,510-4А на 1 м длины разрядника и выше. Однако необходимость использования высокого напряжения не позволяет применять их во взрывоопасных помещениях и производствах.
Во взрывоопасных помещениях всех классов рекомендуется использовать радиоизотопные нейтрализаторы на основе а-излучающих (плутоний-238, -239) типа HP и B-излучающих (тритий) типа НТСЭ источников. Эти нейтрализаторы малогабаритны, просты по устройству и в обслуживании, имеют большой срок эксплуатации и радиа-ционно безопасны. Использование их в промышленности не требует согласования с органами санитарного надзора.
Конструктивно радиоизотопные нейтрализаторы представляют собой металлический плоский или цилиндрический контейнер, в котором помещены поворачивающиеся или выдвигающиеся держатели источников излучения. В контейнере имеется окно, обращенное к электризующемуся материалу, а сам он жестко закреплен на технологическом оборудовании. Контейнер снабжается блокирующим механизмом, исключающим снятие его с оборудования, если не закрыта заслонка, экранирующая излучатель.
Основным недостатком радиоизотопных нейтрализаторов является их ограниченный ионизационный ток (3-7,5*10-6А/м).
В случаях, когда материал (пленка, ткань, лента, лист и т.п.) электризуется с высокой интенсивностью либо движется с большой скоростью и применение радиоизотопных нейтрализаторов не обеспечивает нейтрализацию статического электричества, устанавливают комбинированные индукционно-радиоизотопные нейтрализаторы типа НРИ. Они представляют собой сочетание радиоизотопного и индукционного (игольчатого) нейтрализаторов либо взрывозащищенных индукционных, высоковольтных (постоянного и переменного тока), высокочастотных нейтрализаторов. Сила ионизационного тока таких нейтрализаторов не превышает 5*10-5 А/м.
Весьма перспективными являются пневмоэлектриче-ские нейтрализаторы марок ВЭН-0,5 и ВЭН-1,0 и пнев-морадиоизотопные марок ПРИН, в которых ионизированный воздух или какой-либо газ направляется в сторону наэлектризованного материала. Такие нейтрализаторы не только имеют повышенный радиус действия (до 1 м), но и обеспечивают нейтрализацию объемных зарядов в пнев-мотранспортных системах, аппаратах кипящего слоя, в бункерах, а также нейтрализацию статического электричества на поверхностях изделий сложной формы. Устройства для подачи ионизированного воздуха в данном случае во взрывоопасные помещения должны иметь на всем своем протяжении заземленный металлический экран.
В некоторых случаях эффективно использование лучевых нейтрализаторов статического электричества, которые обеспечивают ионизацию материала или среды под воздействием ультрафиолетового, лазерного, теплового, электромагнитного и других видов излучения.
Отвод зарядов статического электричества путем снижения удельного и поверхностного электрического сопротивления используют в тех случаях, когда заземление оборудования не предотвращает накопления зарядов до безопасной величины.
Для уменьшения удельного поверхностного электрического сопротивления диэлектриков можно повысить относительную влажность воздуха до 65--70%, если это допустимо по условиям производства. Для этой цели применяют общее или местное увлажнение воздуха в помещении при постоянном контроле его относительной влажности. При этом на поверхности твердых материалов образуется электропроводящая пленка воды, по которой отводятся заряды статического электричества на заземленное технологическое оборудование.
Однако этот метод не эффективен, если электризующийся материал гидрофобен или его температура выше температуры окружающей среды. В таких случаях можно дополнительно применять обработку полимерных материалов и химических волокон поверхностно-активными веществами.
Для снижения удельного объемного электрического сопротивления в диэлектрические жидкости и растворы полимеров (клеев) вводят различные растворимые в них антиэлектростатические присадки (антистатики), в частности, соли металлов переменной валентности высших карбоновых, нафтеновые и синтетические жирные кислоты. К таким присадкам относятся «Сигбол», АСП-1, АСП-2, а также присадки на основе олеатов хрома, кобальта, меди, нафтенатов этих металлов, солей хрома и СЖК и т.д. За рубежом наибольшее применение нашли присадки, разработанные фирмами «Экко» и «Шелл» (присадка ASA-3).
Антиэлектростатические вещества должны обеспечивать снижение удельного объемного электрического сопротивления материала до величины 107 Омм, а удельного поверхностного - до величины 109 Омм.
Электрическое сопротивление твердых полимерных материалов (пластмасс, резин, пластиков и пр.) можно снизить, вводя в их состав различные электропроводящие материалы (технический углерод, порошки и т.д.).
Во взрывоопасных производствах для предотвращения опасных искровых разрядов статического электричества, возникающих на теле человека при контактном или индуктивном заряжении наэлектризованными материалами или элементами одежды, необходимо обеспечить стекание этих зарядов в землю. Для этого используют электропроводящие полы из материалов, у которых удельное объемное электрическое сопротивление не должно быть выше
106 Омм. К непроводящим покрытиям относятся ас
фальт, резина, линолеум и др. Проводящими покрытиями
являются бетон, пенобетон, ксилолит и т.д. Заземленные
помосты и рабочие площадки, ручки дверей, поручни
лестниц, рукоятки приборов, машин, механизмов, аппа
ратов являются дополнительными средствами отвода за
рядов с тела человека.
К индивидуальным средствам защиты от статического электричества относятся специальные электростатические обувь и одежда. Для изготовления такой одежды должны применяться материалы с удельным поверхностным электрическим сопротивлением не более 107 Омм, а электрическое сопротивление между токопроводящим элементом антиэлектростатической одежды и землей должно быть от 106 до 108 Ом. Электрическое сопротивление между подпятником и ходовой стороной подошвы обуви должно быть от 106 до 108 Ом.
В некоторых случаях непрерывный отвод зарядов статического электричества с рук человека может осуществляться с помощью специальных заземленных браслетов и колец. При этом они должны обеспечивать электрическое сопротивление в цепи человек - земля от 106 до 107 Ом и свободу перемещения рук.
2.6.2 Характеристика электромагнитного излучения и методы защиты
В настоящее время практически во всех отраслях промышленности и в быту широко используется электромагнитная энергия. По своему происхождению электромагнитное излучение (ЭМИ) и электромагнитный фон, создаваемый им, могут быть природными или техногенными.
К природным электромагнитным полям (ЭМП) относятся квазистатические электрические и магнитные поля Земли, радиоизлучения Солнца и галактик, атмосферные разряды.
Техногенное ЭМИ может быть как производственным, так и бытовым. Известно, что мировые энергоресурсы удваиваются каждые 10 лет, а доля ЭМП в электроэнергетике за это время возрастает в три раза.
Производственными источниками ЭМП являются линии электропередачи (ЛЭП), печи, применяемые в промышленности для индукционного нагрева металлов и полупроводников, электросварка, а также устройства диэлектрического нагрева, используемые для сварки синтетических материалов, прессования синтетических порошков и т.д. Мощными источниками ЭМП диапазона радиочастот являются телевизионные и радиолокационные станции, антенны радиосвязи и др.
Биологически значимыми являются электрические поля частотой 50 Гц, создаваемые воздушными линиями электропередачи и подстанциями. Напряженность магнитных полей промышленной частоты в местах размещения ЛЭП и подстанций сверхвысокого напряжения на 1-3 порядка превышает естественные уровни магнитного поля Земли. Высокие уровни ЭМИ наблюдаются на территориях и за пределами территорий размещения передающих радиоцентров низкой, средней и высокой частоты.
Бытовой электромагнитный фон обусловлен работой бытовых электроприборов, радио- и телеприемников, микроволновых печей, радиотелефонов, компьютеров и т.д.
Оценка опасности воздействия ЭМИ на человека производится по величине электромагнитной энергии, поглощенной телом человека. Реакция организма человека на составляющие ЭМП не является одинаковой, поэтому при оценке условий работы необходимо учитывать электрическую и магнитную напряженность поля. Неблагоприятные воздействия токов промышленной частоты проявляются только при напряженности магнитного поля порядка 160-300 А/м. Практически при обслуживании даже мощных электроустановок высокого напряжения магнитная напряженность поля не превышает 20-25 А/м. Поэтому оценку потенциальной опасности воздействия ЭМП достаточно производить по величине электрической напряженности поля.
Спектр ЭМИ природного и техногенного происхождения, оказывающий влияние на организм человека, имеет диапазон волн от тысячи километров (переменный ток) до триллионной части миллиметра (космические энергетические лучи). В настоящее время наибольшее распространение как в науке, так и в промышленности получили ЭМИ с частотами, шкала которых представлена на рис. 2.28.
Рис. 2.28 Шкала электромагнитных волн
В производственных условиях на работающих оказывает воздействие ЭМИ широкого спектра. В зависимости от диапазона волн различают:
ЭМИ радиочастот (107-10-4 м);
инфракрасное излучение (< 10-4-7,510-7 м);
видимую область (7,5 *10-7-4 * 10-4 м);
ультрафиолетовое излучение (<4 * 10-4-10-9 м);
рентгеновское (гамма-) излучение (<10-9 м). Существует и электротехническая шкала источников ЭМИ:
низкочастотные - НЧ (0-60 Гц);
среднечастотные - СЧ (60 Гц-10 кГц);
высокочастотные - ВЧ (10 кГц-300 МГц);
сверхвысокочастотные - СВЧ (300 МГц-300 ГГц). По виду воздействия различают изолированное (от одного источника), сочетанное (от двух и более источников одного частотного диапазона), смешанное (от двух и более источников различных частотных диапазонов) и комбинированное (в случае одновременного действия какого-либо другого неблагоприятного фактора) ЭМИ.
По времени воздействия в общем случае для единичного источника ЭМИ можно выделить два основных варианта облучения: непрерывное стационарное и прерывистое.
Отношение облучаемого лица к источнику облучения ЭМИ может быть профессиональным, т.е. обусловленным выполнением производственных операций, и непрофессиональным.
В радиационной гигиене различают общее (воздействию ЭМИ подвергается все тело) и локальное (местное) облучение.
Влияние ЭМП на организм зависит от таких физических параметров, как длина волны, интенсивность излучения, режим облучения - непрерывный и прерывистый, а также от продолжительности воздействия на организм, сочетанности воздействий с другими производственными факторами (повышенная температура воздуха, наличие рентгеновского излучения, повышенного уровня шума и вибрации и др.)- Наиболее биологически активен диапазон СВЧ, менее - УВЧ, затем диапазон ВЧ (длинные и средние волны), т.е. с уменьшением длины волны биологическая активность ЭМИ всегда возрастает.
ЭМИ, оказывая воздействие на физико-химические процессы в биосистемах, создает напряжение на субмолекулярном и молекулярном уровнях. Установлено, что воздействие ЭМП радиотелефона на область головы пользователя способствует развитию умеренно выраженной бради-кардии и повышает электрокинетическую активность ядер клеток эпителия кожи. Возникновение брадикардии при воздействии низких уровней СВЧ-излучения обусловлено в основном нарушениями центральных и периферических иннервационных механизмов регуляции деятельности сердца.
В Республике Беларусь для контроля безопасности воздействия ЭМП на человека используются следующие документы: ГОСТ 12.1.006; СанПиН 2.2.4/2.1.8.9.-36-2002; СанПиН 2.2.4.11-25-2003; СанПиН 9-84-98; СанПиН 9-85-98; СанПиН 9-98-98.
Нормируемыми параметрами переменного магнитного поля являются напряженность поля и магнитная индукция.
Напряженность электрического поля в данной точке представляет собой физическую величину, численно равную силе, действующей на единичный положительный заряд, помещенный в эту точку поля. Напряженность электрического поля измеряется в вольтах на метр (В/м) или в ньютонах на кулон (Н/К).
Электрическое поле, в котором напряженность одинакова во всех точках, называется однородным.
Магнитная индукция (плотность магнитного потока) -это физическая величина, численно равная силе, с которой магнитное поле действует на проводник единичной длины, расположенный перпендикулярно к силовым линиям магнитного поля (МП), при токе в проводнике, равном единице силы тока. Единицей магнитной индукции является Тэсла (Тл), т.е. индукция такого поля, в котором на каждый метр длины проводника с током в 1 А, расположенного перпендикулярно к полю, действует сила в 1 Н (1 Тл = 1 Н/А*м).
Кроме индукции магнитное поле характеризуется напряженностью (А/м) и магнитным потоком, который представляет собой число силовых линий, проходящих через перпендикулярно расположенную к ним площадку. Единицей магнитного потока является Вебер (Вб) - это поток индукции в 1 Тл через площадку площадью 1 м2.
По ГОСТ 12.1.006 допустимые уровни воздействия ЭМП радиочастот оцениваются показателями интенсивности поля и создаваемой им энергетической нагрузкой.
В диапазоне частот 60 кГц-300 МГц интенсивность ЭМП характеризуется напряженностью электрического Е и магнитного Н полей, энергетическая нагрузка (ЭН) представляет собой произведение квадрата напряженности поля на время его воздействия. Энергетическая нагрузка, создаваемая соответственно электрическим и магнитным полем, равна
В диапазоне частот 300 МГц-300 ГГц интенсивность ЭМП характеризуется поверхностной плотностью потока энергии ППЭ, поэтому энергетическая нагрузка будет представлять собой
Предельно допустимые значения Е и Н в диапазоне частот 60 кГц-300 МГц на рабочих местах персонала определяются исходя из допустимой энергетической нагрузки и времени воздействия по формулам
где ЕПД и НПД - предельно допустимые значения напряженности электрического, В/м, и магнитного, А/м, полей; Т - время воздействия, ч; ЭНЕПД и ЭННПД - предельно допустимые значения энергетической нагрузки в течение рабочего дня, (В/м)2ч и (А/м)2ч.
Одновременное воздействие электрического и магнитного полей в диапазоне частот от 0,06 до 3 МГц допустимо при условии
где ЭНЕ и ЭНН - энергетические нагрузки, характеризующие воздействия электрического и магнитного полей.
Предельно допустимые значения ППЭ ЭМП в диапазоне частот 300 МГц-300 ГГц определяются исходя из допустимой энергетической нагрузки и времени воздействия по формуле
где ППЭПД - предельно допустимое значение плотности потока энергии, Вт/м2 (мВт/см2, мкВт/см2); ЭНППЭпд -предельно допустимая величина энергетической нагрузки, равная 2 Втч/м2 (200 мкВтч/см2); К -- коэффициент ослабления биологической эффективности, равный: 1 -- для всех случаев воздействия, исключая облучение от вращающихся и сканирующих антенн; 10 - для случаев облучения от вращающихся и сканирующих антенн с частотой вращения или сканирования не более 1 Гц и скважностью не менее 50; Т - время пребывания в зоне облучения за рабочую смену, ч.
Во всех случаях максимальное значение ППЭцц не должно превышать 10 Вт/м2 (1000 мкВт/см2).
Предельно допустимые уровни напряженности и магнитной индукции постоянного магнитного поля нормируются СанПиН 9-85-98 (табл. 2.17).
Нормируются также уровни напряженности и магнитной индукции переменного магнитного поля при импульсном (прерывном) действии магнитного поля (СанПиН 2.2.4.11-25-2003).
Таблица 2.17
Предельно допустимые уровни напряженности и магнитной индукции постоянного магнитного поля при непрерывном действии
Время воздействия за рабочий день, ч |
Общее воздействие (все тело) |
Локальное воздействие (конечности) |
|||
Напряженность, А/м |
Магнитная индукция, мкТл |
Напряженность, А/м |
Магнитная индукция, мкТл |
||
8 |
80,0 |
100,0 |
800,0 |
1000,0 |
|
1 |
400,0 |
500,0 |
1600,0 |
2000,0 |
Длина волны ЭМП, формируемой источником, позволяет выбрать соответствующий прибор контроля электромагнитного излучения. Для низкочастотных источников ЭМП (НЧ, ВЧ, УВЧ-диапазоны) необходимо использовать приборы, измеряющие электрическую и магнитную составляющие ЭМП; для СВЧ-диапазона - приборы, позволяющие измерять плотность потока энергии.
Основными техническими параметрами приборов являются: диапазон частот, на который рассчитан измеритель, оснащенный антеннами; пределы измерений энергетических параметров ЭМП; основная погрешность измерений, обычно выражаемая в децибелах.
В зависимости от условий воздействия ЭМП, характера и местонахождения источника излучения могут использоваться следующие методы и средства защиты:
защита временем;
защита расстоянием;
снижение интенсивности излучения непосредственно в источнике;
экранирование источника;
защита рабочего места от излучения;
применение средств индивидуальной защиты.
Защиту временем используют в тех случаях, когда отсутствует реальная возможность снизить напряженность ЭМП до предельно допустимого уровня. Допустимое время облучения х можно найти из выражения
где ППМ - плотность потока мощности электромагнитной волны, Вт/см2; th (0,05 т)1,2 - гиперболический тангенс.
Защита расстоянием используется в тех случаях, когда невозможно снизить интенсивность излучения другими методами и сокращением времени облучения.
Для диапазона длинных, средних, коротких и ультракоротких волн расстояние можно определить по формуле
где Р - средняя выходная мощность, Вт; G - коэффициент направленности антенны; Едоп ~ допустимая напряженность электрического поля.
Для волн СВЧ-диапазона R, соответствующее ППМдоп, находят из выражения
Этот метод является наиболее эффективным, так как может использоваться для защиты работающих в производственных условиях и населения в селитебной зоне.
Снижение интенсивности излучения непосредственно в источнике является универсальным методом и достигается прежде всего заменой источника на менее мощный, а также регулировкой генератора. Кроме того, можно использовать специальные устройства - аттенюаторы (ослабители), которые поглощают, отражают или ослабляют передаваемую энергию на пути от генератора к потребителю и т.д.
При использовании метода экранирования источника учитывают характер и мощность источника излучения, его рабочую частоту, особенности технологического процесса. Для разработки экранов используют такие явления, как поглощение ЭМИ и его отражение от материала экранов. Поглощение ЭМИ обусловливается тепловыми потерями в толще материала и зависит от его электромагнитных свойств (электрической проводимости, магнитной проницаемости и т.п.). Отражение связано с различием электромагнитных свойств воздуха (или другой среды, в которой распространяется ЭМП) и материала экрана.
Для изготовления экранов применяют либо тонкие металлические (сталь, алюминий, медь, сплавы) листы, либо металлические сетки. При этом экраны должны тщательно заземляться.
Металлические экраны практически непроницаемы для ЭМИ радиочастотного диапазона за счет их отражающей и поглощающей способности.
Экраны с низким коэффициентом отражения являются поглощающими.
Резиновые коврики типа ВКФ, В2Ф и другие представляют собой прессованные листы резины специального состава с коническими, сплошными или полыми шинами.
Поглощающие экраны должны обладать минимальной величиной отражения ЭМИ в широком диапазоне частот, большой величиной затухания проникающего в материал ЭМИ и не должны менять поляризацию отраженных колебаний.
Защита рабочего места от излучения достигается локализацией ЭМП в помещении. Для этого используют электрогерметичные помещения, аппаратные и кабины, представляющие собой замкнутые электромагнитные экраны. В таких помещениях экранируются стены, потолок, пол, оконные и дверные проемы и вентиляционные системы.
Помещения, в которых предполагается проводить настройку, регулирование и испытание установок, генерирующих высокоинтенсивные ЭМП, необходимо обустраивать так, чтобы при включении последних на полную мощность, их излучение практически не проходило через стены, перекрытия, оконные проемы и двери в смежные помещения.
Кроме того, для ослабления ЭМИ необходимо подбирать и соответствующие материалы (табл. 2.18).
При защите помещений от внешних ЭМИ применяются оклеивание стен специальными металлизированными обоями, сетка на окнах, специальные металлизированные шторы и т.п.
В качестве экранирующего материала для световых проемов, приборных панелей, смотровых окон используют оптически прозрачное стекло, покрытое полупроводниковым диоксидом олова. Световые проемы или смотровые окна на более низких частотах могут также экранироваться металлической сеткой.
Согласно СанПиН 9-85-98 источники магнитного поля, расположенные в общих производственных помещениях, должны выделяться в отдельные участки на расстоянии 1,5-2,0 м друг от друга. Пульты управления источниками магнитного поля должны быть вынесены за пределы зоны поля с напряженностью более 8,0 кА/м (10 мТл).
Таблица 2.1
Ослабление ЭМИ строительными конструкциями
Основными видами средств коллективной защиты работающих от воздействия электрического поля токов промышленной частоты являются экранирующие устройства. Они могут быть стационарными и переносными.
Стационарные экранирующие устройства представляют собой составную часть электроустановки и предназначены для защиты персонала в открытых распределительных устройствах и воздушных линиях электропередач. Конструктивно они изготавливаются в виде козырьков, навесов или перегородок из металлических канатов, прутков,сеток.
В высокочастотных установках индукционного нагрева применяется либо общее экранирование установок, либо экранирование отдельных блоков.
Экран плавильного или закалочного индуктора выполняется в виде подвижной металлической камеры, опускающейся во время нагрева и поднимающейся после его окончания, или в виде неподвижной камеры с открывающейся дверью.
В установках диэлектрического нагрева экранированию подлежат пластины рабочего конденсатора и фидеры, подводящие к ним высокочастотную энергию. Экран может выполняться в виде металлической камеры, шкафа, короба и т.п.
Переносные экранирующие устройства -- это переносимые или перевозимые изделия в виде замкнутых конструкций из металлических сеток.
Наряду со стационарными и переносными экранирующими устройствами используются и индивидуальные экранирующие комплекты, в которые входят спецодежда, спецобувь, средства защиты головы, рук и лица. Они предназначены для защиты персонала от воздействия электрического поля, напряженность которого не превышает 60 кВ/м, создаваемого электроустановками напряжением 400, 500 и 750 В и частотой 50 Гц.
Средства индивидуальной защиты от воздействия ЭМИ должны использоваться только в аварийных режимах либо при проведении кратковременных работ.
В качестве таких средств используются очки и специальная одежда, выполненная из металлизированной ткани. Для защиты тела применяют комбинезоны, халаты и капюшоны. Их обычно изготавливают из трех слоев ткани. Внутренний и наружный слои делают из хлопчатобумажной ткани (диагональ, ситец), а средний, защитный слой - из радиотехнической ткани, имеющей проводящую сетку.
Радиозащитные очки изготавливают из стекла, покрытого полупроводниковым диоксидом олова.
К организационным мероприятиям относятся: выполнение требований к персоналу (возраст, пол, медицинское освидетельствование, обучение, проверка знаний, инструктаж и т.п.); рациональное размещение источников ЭМИ; рациональные режимы работы оборудования и персонала; применение средств предупреждающей сигнализации (световой, звуковой, знаковой и др.).
Для предупреждения профессиональных заболеваний лиц, работающих в условиях ЭМИ, применяются такие меры, как предварительный (для поступающих на работу) и периодический (не реже одного раза в год) медицинские осмотры, а также ряд мер, способствующих повышению устойчивости организма человека к действию ЭМИ.
К мероприятиям, способствующим повышению резистентности организма к ЭМП, могут быть отнесены регулярные физические упражнения, рационализация времени труда и отдыха, а также использование лекарственных препаратов и общеукрепляющих витаминных комплексов.
2.6.3 Нормирование и защита работающих от ультрафиолетового излучения
...Подобные документы
Контроль за состоянием охраны труда на предприятии. Виды инструктажа, порядок и сроки проведения. Меры защиты от поражения электрическим током. Мероприятия по защите от шума и вибрации. Применяемые средства тушения пожаров. Чрезвычайные ситуации.
шпаргалка [1,7 M], добавлен 08.06.2009Индивидуальные средства защиты органов слуха от вибрации и шума. Классификация помещений по характеру окружающей среды и опасности поражения электрическим током. Правила безопасности обслуживания электрических установок в производственных помещениях.
реферат [380,3 K], добавлен 05.05.2015Опасность поражения человека электрическим током. Влияние электрического тока на организм человека, основных параметров электротока на степень поражения человека. Условия поражения электрическим током. Опасность при замыкании тоководов на землю.
реферат [1,0 M], добавлен 24.03.2009Основные понятия гигиены и экологии труда. Сущность шума и вибраций, влияние шума на организм человека. Допустимые уровни шума для населения, методы и средства защиты. Действие производственной вибрации на организм человека, методы и средства защиты.
реферат [31,2 K], добавлен 12.11.2010Виды поражений электрическим током, электрическое сопротивление тела человека, основные факторы, влияющие на исход поражения током. Виды защиты от опасности поражения электрическим током и принцип их действия, мероприятия по электробезопасности.
контрольная работа [37,6 K], добавлен 01.09.2009Величина тока и его действие на организм, электрическое сопротивление тела человека. Степени электрических ударов, их характеристика. Причины смерти от электрического тока. Правила электробезопасности и методы защиты от поражения электрическим током.
реферат [19,8 K], добавлен 16.09.2012Правовые и организационные вопросы охраны труда. Микроклимат в производственных помещениях. Система вентиляции и кондиционирования воздуха. Вредное воздействие шума и вибрации на организм человека. Рациональное освещение производственных помещений.
контрольная работа [18,6 K], добавлен 31.03.2011Виды поражения электрическим током. Задачи и функции защитного заземления и зануления. Первая помощь человеку, пораженному электрическим током, виды защитных средств. Воздействие на организм человека вредных веществ, содержащихся в воздухе рабочей зоны.
контрольная работа [30,8 K], добавлен 28.02.2011Виды поражения электрическим током. Основные факторы, влияющие на исход поражения током. Основные меры защиты от поражения. Классификация помещений по опасности поражения током. Защитное заземление. Зануление. Защитные средства. Первая помощь человеку.
доклад [8,7 K], добавлен 09.04.2005Техника безопасности и охрана труда. Виды воздействия электрического тока на организм человека. Виды инструктажей, порядок их проведения. Первая доврачебная помощь при термических, химических, электрических ожогах. Горение; пожаровзрывоопасные вещества.
контрольная работа [23,9 K], добавлен 27.12.2008Планирование работы по охране труда, финансирование мероприятий по улучшению условий труда. Характеристики, нормирование и воздействие на организм человека производственного шума. Электрозащитные средства и безопасность при обслуживании электроустановок.
контрольная работа [30,6 K], добавлен 15.10.2010Понятие и особенности электротравм. Действие электрического тока на человека. Факторы окружающей среды, электрического и неэлектрического характера, влияющие на опасность поражения человека током. Методы безопасной эксплуатации электроустановок.
реферат [54,0 K], добавлен 22.02.2011Виды поражения организма человека электрическим током. Факторы, определяющие исход воздействия электричества. Основные способы обеспечения электробезопасности. Оказание помощи пострадавшему от электрического тока. Безопасное напряжение, его значения.
презентация [2,1 M], добавлен 17.09.2013Основные направления государственной политики в области охраны труда. Служба охраны труда в организации, ее задачи и функции. Меры борьбы с производственными шумом и вибрацией. Расчет зон при взрывах газовоздушных (ГВС) и топливовоздушных смесей (ТВС).
курсовая работа [92,8 K], добавлен 06.08.2013Сущность и значение электробезопасности, законодательные требования к ее обеспечению. Особенности действия электрического тока на организм человека. Анализ факторов, влияющих на исход поражения электрическим током. Способы защиты от этого вида поражения.
контрольная работа [34,7 K], добавлен 21.12.2010Основные факторы производственной среды, особенности их воздействия на человека. Физические, биологические и химические факторы. Борьба с шумом на производстве. Электромагнитные и ионизирующие излучения. Действие на организм человека звуковых колебаний.
презентация [1,4 M], добавлен 24.05.2014Виды поражений электрическим током. Электрическое сопротивление тела человека. Основные факторы, влияющие на исход поражения током. Критерии безопасности для электрического тока. Организационные меры по обеспечению электробезопасности на производстве.
реферат [29,1 K], добавлен 20.04.2011Вредные и опасные производственные факторы, их виды. Правовые, социально-экономические, лечебно-профилактические мероприятия по обеспечению охраны труда. Основные принципы государственной политики в области охраны труда, методы агитационной пропаганды.
контрольная работа [23,8 K], добавлен 17.12.2014Особенности негативного воздействия шума на организм человека, его работоспособность. Принципы защиты от вибрации и шума, используемые устройства и приспособления. Устройство и работа защитного заземления. Отопление помещений и кабин мобильных машин.
курсовая работа [569,4 K], добавлен 03.01.2014Основные законодательные акты Республики Беларусь по охране труда. Виды производственного освещения. Защита от шума и вибрации. Классификация вредных веществ по их функциональному воздействию. Основные положения санитарии и охраны труда на производстве.
шпаргалка [87,1 K], добавлен 05.10.2009