Свойства технических материалов

Изучение закономерностей формирования структуры и свойств материалов методами их упрочнения для эффективного использования в технике. Вклад российских ученых в развитие материаловедения. Содержание элементов в Земной коре. Схема кристаллической решетки.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 10.12.2012
Размер файла 873,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

материал техника кристаллический решетка элемент

Материаловедение - научная дисциплина о структуре, свойствах и назначении материалов.

Свойства технических материалов формируются в процессе их изготовления. При одинаковом химическом составе, но разной технологии изготовления, образуется разная структура, и вследствие, свойства.

Цель настоящей дисциплины - изучение закономерностей формирования структуры и свойств материалов методами их упрочнения для эффективного использования в технике.

Основная задача дисциплины - установить зависимость между составом, строением и свойствами, изучить термическую, химико-термическую обработку и другие способы упрочнения, сформировать знания о свойствах основных разновидностей материалов.

Большой вклад в развитие науки о материалах внесли российские ученые.

Ломоносов М.В. (1711-1765). Он заложил в России основы металлургии, геологии, методологии.

Бадаев С.И. (1778-1848), русский металлург. Создал оригинальный способ получения стали, названный по его имени «бадаевской». За свое изобретение крепостной Бадаев был выкуплен правительством у его владельца.

Аносов П.П. (1799-1851), русский металлург широчайшего кругозора. Аносов, разрабатывая технологию производства клинков (литьё, ковку и термическую обработку стали), впервые в 1831 г. применил для исследования структуры булатной стали микроскоп, установил зависимость между структурой и свойствами стали, и тем самым заложил научные основы макро- и микроскопических методов исследования материалов.

Обухов П.М. (1820-1869), русский металлург, основатель крупнейшего производства литой стали и стальных пушек России.

Калакуцкий Н.В. (1831-1889), русский металлург. Впервые объяснил механизм образования внутренних напряжений в стали и чугуне.

Лавров А.С. (1838-1904), русский инженер-металлург. В 1866 году выдвинул теорию, по которой сталь представляет собой твердый раствор углерода в железе. В 1891 году впервые в мире применил алюминий для раскисления стали.

Чернов Д.К. (1839-1921), русский инженер. Им установлена зависимость строения стали от условий отливки, ковки, термической обработки и указано на связь структуры со свойствами стали.

Курнаков Н.С. (1860-1941), русский ученый. Им установлена общая закономерность изменения свойств в зависимости от структуры и состава сплавов и выразил её в диаграммах.

Грум-Гржимайло В.Е. (1864-1924), автор русского бессемерования. Он первый в 1908 году применил законы физической химии к объяснению процессов, происходящих в бессемеров-ском конвертере и в стальной ванне мартеновской печи.

Байков А.А. (1870-1946), русский металлург и металловед. Он впервые экспериментально доказал реальность существова-ния аустенита.

Штейнберг С.С. (1872-1940), Минкевич Н.А. (1883-1942) - основатели теории и технологии термической обработки стали.

Конобеевский С.Т., Курдюмов Г.В., Садовский В.Д., Бочвар А.А., Тишкин С.Т., Агеев Н.В., Гуляев А.П. - крупнейшие ученые, работы которых посвящены исследованию механизма и кинетики фазовых превращений в металлических сплавах.

Большое значение в разработке инструментальных материалов имеют работы крупнейшего ученого Геллера Ю.А. (1902-1976) и его учеников.

Бутлеров А.М. (1828-1886), крупнейший химик, создал теорию химического строения органических соединений, подготовив научную основу для разработки синтетических полимерных материалов.

Лебедев С.В. На основе его работ впервые в мире было создано промышленное производство синтетического каучука.

Достойный вклад в развитие материаловедения внесли ученые Алтайского края и Алтайского государственного технического университета. Профессора университета Салманов Н.С., Околович Г.А., Евтушенко А.Т., Бутыгин В.Б. разработали ряд сталей для режущего и штампового инструмента, а также новые технологии упрочнения сталей. Профессор Маркин В.Б. работает в области получения новых композиционных материалов. Профессор Чепрасов Д.П., доцент Ясногородский В.Н., заведующий ЦЗЛ завода «Трансмаш» Щедрин Е.И. разработали теоретические основы легирования сталей бейнитного класса для нефтехимического оборудования, маломагнитных сплавов для специальной техники, а также физические основы термической обработки деталей машин в электролитах. Профессор Огневой В.Я. изучил механизм изменения структуры и свойств поверхностного слоя при трении.

Разработки алтайских ученых нашли широкое практическое применение не только на предприятиях края, Российской Федерации, но и в странах ближнего и дальнего зарубежья. Научная и техническая новизна разработок защищена патентами с приоритетом Российской Федерации, а результаты исследований широко опубликованы в академических и технических изданиях России, Англии, США, Германии, Югославии, Чили и в других странах мира.

1. Классификация материалов

Назначение материала определяется требованиями конструкции (конструкционные критерии -прочность, долговечность, коррозийные свойства и т.п.) и возможностью переработки в изделие (технологические критерии - коэффициент обрабатываемости резанием, сварки и обработки давлением и т.п.). Выбор материала с использованием классификации осуществляется по двум основным критериям. В общем случае классификация материалов включат в себя три основных разновидности материалов: металлические материалы, неметаллические материалы, композиционные материалы. По геометрическим признакам материалы и вещества принято классифицировать по виду полуфабрикатов: листы, профили, гранулы, порошки , волокна и т.п.. Поскольку материал того или иного полуфабриката изготавливается по разной технологии, применяют разделение по структуре.

Металлические материалы принято классифицировать по основному компоненту. Различают черную и цветную металлургию. К материалам черной металлургии принадлежат стали, чугуны, ферросплавы и сплавы на основе железа, легированные цветными металлами в количестве превосходящим стали. К материалам цветной металлурги принадлежат важнейшие цветные металлы - алюминий, медь, цинк, свинец, никель, олово и сплавы на их основе. К металлическим материалам относятся и материалы порошковой металлургии. Неметаллические материалы различают по основным классам: резина, керамика, стекло, пластические массы, ситаллы. Композиционными материалы - сложные или составные материалы, состоящие из двух разнородных материалов (например: стекла и пластмассы - стеклопластики) принято классифицировать по типу структуры, материалу матрицы, назначению и способу изготовления.

Технические материалы принято классифицировать по назначению: материалы приборостроения, машиностроительные материалы, и более подробно, например стали для судостроения или мостостроения. В научном аспекте материалы разделяют по типу структуры: аморфные, кристаллические, гетерофазные. При выборе материала для той или иной детали или конструкции учитывают экономическую целесообразность его применения. Стоимость технического материала связана с затратами на его производство и уровнем запасов его в промышленном и государственном резервах, с содержанием в Земной коре веществ и элементов, необходимых для его производства. Поэтому так важно знание инженера о содержании элементов и веществ в земной коре. В последние годы в классификации машиностроительных материалов применяют параметры удельной прочности и энергрозатрат производства материалов. Они показывают, что наилучшими сочетаниями свойств для машин обладают титан и алюминий. Классификация известных материалов находит свое отражение в Государственных Стандартах (ГОСТ).

Содержание элементов в Земной коре

Исторически для техники наиболее важными были металлы и сплавы, в первую очередь стали и чугуны, медь.

Содержание металлов и элементов в Земной коре следующие:

Медь Сu = 0.01 %, Серебро =4*10-6 %, Олово =6*10-4%, Титан =0.58 %, Магний =1.94 %,

Золото =5*10-7%, Бериллий = 5*10-4%, Цинк = 2*10-2 %, Железо =4.7 %, Алюминий =7.5 %,

Кремний =25.7 %, Свинец =8*10-4 %, Хром =3.3*10-2 %, Никель = 1.8*10-2 %.

Анализ приведенных данных показывает, что наиболее перспективным элементом для использования в технике является Алюминий, это совпадает с общемировой тенденцией машиностроения. Усилия разработчиков новых материалов направлены на создание материалов на основе тугоплавких соединений: нитридов и боридов в кристаллической и аморфной формах, пригодных для применения. Наибольшее распространение в авиационной, космической и специальной технике приобретает нитрид кремния (SiN).

Так как материальные ресурсы Земли ограничены, это находит свое отражение в формировании цен, перед машиностроением всегда стоит задача расширения сырьевой базы и сокращения затрат материалов на единицу техники.

Мировой объем производства основных материалов

Элементы, преимущественно металлические, находятся в Земной коре в виде окислов, нитридов, гидридов и гидратов, хлоридов и т.п., для превращения минерального сырья в полуфабрикакты необходимы значительные затраты энергии и дополнительных видов минералов и веществ. Наименьшими потерями среди технических материалов обладает производство стали и чугуна, что положительно сказывается на их относительной стоимости. Мировой объем производства основных материалов следующий: стали = 700 мл. тон, конструкционного чугуна = 46 мл. тонн, пластических масс = 100 мл. тон., конструкционных стекла и керамики = 180 мл. тон. Отметим, что плотность пластмасс в 2-3 раза ниже, чем металлов, и в объемных процентах пластмасс выпускается в 2 раза больше других материалов. Отличительной особенностью современного машиностроения является расширение номенклатуры применяемых материалов. Среди металлических материалов мировой объем производства следующий: Алюминий = 12.2, Медь = 7.3, Цинк = 4.68, Свинец = 3.77, Никель = 0.52 (мл. тонн.). Наибольшие темпы роста производства у композиционных и порошковых материалов.

Свойства - характеристики, проявляющиеся в процессе применения и эксплуатации материалов, исключая их экономические показатели. Свойства можно разделить на две группы: эксплуатационно-технические и эстетические. Эксплуатационно-технические свойства обеспечивают необходимые защиту, прочность, долговечность здания, сооружения. Эстетические свойства материалов влияют на восприятие среды жизнедеятельности человека, в том числе внешнего вида зданий, сооружений и их интерьеров. Рассмотрим современные представления о физической сущности и значимости важнейших характеристик материалов.

1.1 Эксплуатационно-технические свойства

Характеристики структуры. С этими характеристиками связаны показатели всех свойств материалов. Различают уровня структуры материала: макроструктура - строение, видимое невооруженным глазом, микроструктура - видимое в оптический микроскоп, и строение на молекулярно-ионном уровне.

К основным видам макроструктуры относят конгломератную, ячеистую, волокнистую, слоистую, рыхлозернистую (порошкообразную).

Конгломератная структура предлагает соединение разнородных веществ, обычно в виде зерен, кусков различных форм и размеров. Ячеистая структура характеризуется наличием макропор, у мелкопористых большинство ячеек гораздо меньших размеров (менее 1 мм). Волокнистая структура присуща материалам с природными или искусственными волокнами, расположенными в одном определенном направлении. Показатели свойств таких материалов заметно отличаются при физическом воздействии вдоль или поперек волокон. Слоистая структура соответственно предполагает наличие нескольких, в том числе разнородных, слоев. Рыхлозернистые (порошкообразные) структуры состоят из большого количества не связанных зерен или мелких частиц.

По микроструктуре выделяют кристаллические и аморфные материалы. Особенностью кристаллической структуры является определенная геометрическая форма модификаций кристаллов и известная температура плавления при постоянном давлении. Многие строительные материалы, как правило, поликристаллические.

Для качественной оценки структурных характеристик применяют следующие специальные методы.

Методы рентгеноструктурного анализа основаны на явлении дифракции рентгеновских лучей кристаллической решеткой вещества. Для исследования строительных материалов применяют метод Дебая-Шеррера (метод порошков), учитывая, что все кристаллические вещества характеризуются определенными, только им присущими рентгенограммами.

Методы термического анализа связаны со способностью большинства физических и химических процессов выделять или поглощать теплоту и соответствующим изучением превращений вещества.

Сущность хроматографического анализа состоит в комплексе компонентов смеси твердым или жидким носителем и последующем извлечении вещества из носителя путем вымывания подходящим растворителем.

Применение люминесцентного анализа основывается на способности ряда компонентов строительных материалов и изделий (бетона, гипса и др.) флуоресцировать (светиться) при облучении ультрафиолетовым спектром. После удаления источника возбуждения свечение прекращается. Используя люминесцентный анализ, производят идентификацию веществ и обнаруживают их малые концентрации, контролируют происходящие в веществе изменения и определяют степень его чистоты.

Метод люминофоров предполагает использование специальных люминесцирующих веществ, способных ярко светиться при облучении ультрафиолетовыми лучами. Применяя этот метод, оценивают гомогенность многокомпонентных строительных материалов. Один из компонентов материала (например, песок) окрашивают тонким слоем люминофора и обрабатывают закрепителем. Оценку распределения меченого компонента можно производить визуально или, что более точно, с помощью фотоэлектронной установки.

Спектральный анализ позволяет определить упорядоченные по длинам волн излучения различных элементов (спектры). На основе изучения молекулярных спектров можно установить химический состав веществ, из которых состоят строительные материалы.

Подавляющее большинство современных материалов, кроме жестковязкого (твердого) вещества, содержат в структуре поры - промежутки, полости, ячейки. Их количество и характер (размеры, распределение, открытые или закрытые) влияют на другие эксплуатационно-технические свойства. Поэтому пористость - важный и определяющий показатель структуры.

Большое значение для практической службы материала имеет характер пористости, для определения которого используют следующие методы.

При проведении оптических измерений фиксируют линейные размеры сечений частиц и пор в плоскости среза материала и вычисляют параметры структуры (метод микроскопического количественного анализа).

Фотометрические оптические измерения связаны с определением величины отраженного светового потока (который с помощью фотоэлемента преобразуется в электрические импульсы) от поверхности образца материала.

Для определения характера пористости применяют также метод ртутной порометрии, который основан на вдавливании ртути в поры образцов материалов.

Высокая пористость материала обеспечивает ем у низкую теплопроводность (особенно при замкнутом характере пор) и высокое звукопоглощение (при сообщающихся порах). Открытые поры которые сообщаются со средой, увеличивают водопоглощение, снижают морозостойкость и долговечность материала.

Весовые характеристики.

Вес - это сила, с которой строительный материал (или любое тело) притягивается землей. Этот показатель измеряется в ньютонах. Однако вес, связанный с ускорением свободного падения, зависит не только от самого материала, но и от месторасположения пункта измерения, например, на полюсе материал будет весить на 0,5% больше, чем на экваторе. Поэтому основная весовая характеристика материала - масса, являющаяся неизменным его свойством и измеряемая в граммах, килограммах, тоннах.

Материалы одинакового объема, состоящие из одинаковых веществ, могут иметь неодинаковую массу. Для характеристики различий в массе материалов, имеющих одинаковый объем, служит плотность - истинная и средняя.

Свойства материалов при действии влаги, воды, замораживания-оттаивания.

Влажность - содержания влаги в материале, отнесенное к массе материала в сухом состоянии, измеряемое в процентах.

Сравнительно простой метод определения влажности связан с высушиванием образцов материала и определением разности массы образца до и после сушки.

Высокой можно считать влажность более 20%, низкой - менее 5%.

Гигроскопичность - способность материала поглощать водяные пары из воздуха (при его повышенной влажности) и удерживать их вследствие капиллярной конденсации.

В зависимости от вида материала для определения гигроскопичности применяют образцы определенных размеров, которые помещают в эксикатор (сосуд с плотно притертой крышкой), где насыщенный раствор соли или вода создают определенную относительную влажность воздуха.

Водопоглощение - способность материала при непосредственном контакте с водой впитывать ее и удерживать.

При определении водопоглощения образцы материалов помещают в сосуд, куда постепенно наливают воду, как правило, через определенные промежутки времени, в зависимости от вида материала. Когда уровень воды будет выше верха образцов на 10-30 мм, их выдерживают в воде некоторое время и периодически взвешивают. Насыщение образцов водой прекращают через 1, 24, 48 или 56 ч, в зависимости от вида материала или после того, как прекратится прирост массы (при определении водопоглощения образцов тяжелого бетона, строительного раствора).

Водостойкость материала характеризуется коэффициентом размягчения Кр - отношением предела прочности при сжатии материала, насыщенного водой, к пределу прочности при сжатии материала в сухом состоянии.

Водопроницаемость - способность материала пропускать воду под давлением. Величина водопроницаемости характеризуется количеством воды, прошедшей в течение 1 ч через 1 см2 площади испытуемого материала при постоянном давлении.

При определении водонепроницаемости измеряется время, в течение которого образец не пропускает воду при постоянном давлении воды, или измеряется гидростатическое давление, которое выдерживает образец материала в течение определенного времени.

Морозостойкость - способность насыщенного водой материала выдерживать попеременное замораживание и оттаивание без признаков разрушения и соответственно без значительных потерь массы и прочности.

Свойства материалов при действии тeпла, огня, звука.

Способность материала передавать через свою толщу тепловой поток, возникающий при разности температур на поверхностях, ограничивающих материал, называется теплопроводностью. Это свойство оценивается количеством теплоты, прошедшей в течение 1 ч через испытуемый материал толщиной 1 м при разнице температур на его противоположных поверхностях в 1 °С. Теплопроводность измеряется коэффициентом л в Вт/(м °С).

Огнестойкость - способность материалов сохранять физико-механические свойства при воздействии огня и высоких температур, развивающихся в условиях пожара.

Огнестойкость материалов и изделий определяют по степени возгораемости с помощью методов огневой трубы и калориметрии.

Метод огневой трубы основывается на оценке возгораемости в течение определенного времени образца материала, расположенного вертикально в металлической трубе. При этом создаются весьма жесткие условия испытания, так как в трубе обеспечивается конденсация теплоты около образца, а его вертикальное положение способствует наилучшим условиям горения. По более точному, но более трудоемкому методу калориметрии образец материала испытывают в герметически закрытой огневой камере, окруженной водяной рубашкой.

По степени горючести материалы делят на три группы: несгораемые, трудносгораемые и сгораемые.

Несгораемые материалы при действии огня и соответственно высокой температуры не воспламеняются, не тлеют и не обугливаются. К таким материалам относятся, например, природный камень, бетон, кирпич, металлы.

Трудносгораемые материалы под воздействием огня или высоких температур обугливаются, тлеют или с трудом воспламеняются, но после удаления источника огня их горение и тление прекращаются. Такие материалы состоят обычно из сгораемых и несгораемых веществ, например асфальтобетон, цементный фибролит.

Сгораемые материалы горят или тлеют под воздействием огня и продолжают гореть после его устранения. К сгораемым относятся материалы, состоящие из органических веществ, например древесина, большинство строительных пластмасс.

Звукопоглощение - способность материалов поглощать звуковые волны.

Звукопоглощение материала характеризуется коэффициентом звукопоглощения, показывающим, какое количество звуковой энергии поглотил материал в единицу времени по сравнению с общим количеством падающей звуковой энергии.

Свойства материалов при действии агрессивных веществ. Коррозионная стойкость - способность материалов сопротивляться действию агрессивных веществ. Последние могут разрушать вещество материала и его структуру.

По механизму коррозионного процесса можно выделить следующие основные виды коррозии: физическая, приводящая к физическому разрушению материала без изменения его химического состава; химическая, определяющая необратимые изменения химического состава материала; физико-химическая, в результате которой происходят физическое разрушение материала и изменение его химического состава; электрохимическая, сопровождающаяся изменением химического состава материала в результате возникновения электрического тока на границе его фаз.

При оценке коррозионной стойкости материалов определяют разность масс образцов до и после воздействия агрессивной среды и соответствующее изменение прочностных и упругих характеристик.

Свойства материалов при действии статических и динамических сил.

Прочность - способность материалов сопротивляться разрушению или необратимому изменению формы под действием внутренних напряжений, вызванных внешними силами или другими факторами.

Прочность материалов оценивают пределом прочности - напряжением, соответствующим нагрузке, при которой фиксируется начало разрушения. Наиболее распространенные нагрузки - сжатие, растяжение, изгиб и удар.

Твердость - способность материала сопротивляться внутренним напряжениям, возникающим при местном внедрении другого, более твердого тела.

В зависимости от вида материала применяют различные методы оценки твердости. Для металлов, некоторых материалов на основе полимеров, бетона, древесины и других определение твердости основано на вдавливании в образец малодеформирующихся тел в виде шарика, конуса или пирамиды. В этом случае единицы измерения рассматриваемого показателя - МПа.

Истираемость - способность материала уменьшаться в объеме и массе вследствие разрушения поверхностного слоя под действием истирающих усилий.

К деформативным свойствам материалов относятся прежде всего упругость, пластичность, хрупкость.

Упругость - способность материала деформироваться под влиянием нагрузки и самопроизвольно восстанавливать первоначальную форму и размеры после прекращения действия внешней среды. Упругая деформация полностью исчезает после прекращения действия нагрузки, поэтому ее принято называть обратимой.

Модуль упругости Е (модуль Юнга) связывает упругую деформацию е и одноосное напряжение у соотношением, выражающим закон Гука:

е = у / Е.

Пластичность - способность материала изменять форму, размеры под действием внешних сил, не разрушаясь. После прекращения действия силы материал не может самопроизвольно восстановить форму и размеры. Остаточная деформация называется пластической.

Хрупкость - способность твердого материала разрушаться при механических воздействиях без сколько-нибудь значительной пластической деформации.

1.2 Эстетические характеристики материалов

К рассматриваемым характеристикам относятся форма, цвет, фактура, рисунок (природный - текстура).

Форма материалов, лицевая поверхность (или поверхности) которых воспринимается визуально в процессе эксплуатации, непосредственно влияет на своеобразие фасада или интерьера здания. В современной архитектуре форма облицовочных материалов, как правило, лаконична - квадрат, прямоугольник.

Цвет материалов - зрительное ощущение, возникающее в результате воздействия на сетчатку глаза человека электромагнитных колебаний, отраженных от лицевой поверхности в результате действия света.

Все цвета материалов можно разделить на две группы - ахроматические (белые, черные и серые всех оттенков) и хроматические (красные, оранжевые, желтые, зеленые, голубые, синие, фиолетовые со всеми промежуточными оттенками). Человеческий глаз способен различать до трехсот оттенков ахроматических и десятки тысяч хроматических цветов.

Координаты цвета получают расчетным путем, используя данные замеров с помощью специальных приборов: спектрофотометров, компараторов, колориметров.

Непосредственно измерять координаты цвета и цветности образцов материалов можно с помощью трехцветных колориметров или спектроколориметров. Указанные приборы обеспечивают измерения в автоматизированной форме.

Основные характеристики цвета - цветовая тональность, светлота и насыщенность.

Цветовая тональность показывает, к какому участку видимого спектра относится цвет материала. Количественно цветовые тона измеряются длинами волн.

Светлота характеризуется относительной яркостью поверхности материала, определяемой коэффициентом отражения, который представляет соответственно отношение отраженного светового потока к падающему.

Насыщенность цвета - степень отличия хроматического цвета от ахроматического той же светлоты.

Применяя визуальные методы оценки цвета, используют атласы цвета, картотеку цветовых эталонов, образцы материалов-эталонов.

Цветовые атласы - альбомы или наборы большого числа ахроматических и хроматических накрасок, предварительно систематизированных.

Картотека цветовых эталонов - комплект карточек различных цветов, каждому из которых присвоен определенный номер. При этом каждая карточка имеет два гнезда, в которые вставляются глянцевая и матовая на краски одного цвета на триацетатной пленке размером 115х6 мм. Размер каждой карточки 130x180 мм. Цветовые характеристики карточек в каждой партии перед выпуском измеряются с помощью фотоэлектрического колориметра. Существуют определенные правила хранения карточек и пользования ими. Максимальный срок их эксплуатации 5 лет.

При оценке цвета по образцам-эталонам часто используют металлические пластины размером 90x120 или 30x100 мм с эталонной краской. Обычно цвет эталона утверждается в пределах «вилки» двух близких оттенков. Применяют также основной эталон и два допуска - более светлый и более темный. При старении цветовых покрытий образец-эталон подлежит замене.

Регулирование цвета материалов, как правило, осуществляется при использовании пигментов - цветных тонкоизмельченных неорганических и органических веществ. Пигменты используют для придания цвета краскам или в качестве компонента других материалов с искусственной структурой.

Фактура - видимое строение лицевой поверхности материала, характеризуемое степенью рельефа и блеска.

По степени рельефа выделяют гладкие, шероховатые (высота рельефа до 0,5 см) и рельефные (высота рельефа более 0,5 см) фактуры.

По степени блеска различают блестящие и матовые фактуры.

Рисунок - различные по форме, размерам, расположению, сочетанию, цвету линии, полосы, пятна и другие элементы на лицевой поверхности материала. Если упомянутые элементы создала природа, рисунок называют текстурой (например, текстура древесины, природного камня).

Стандартизация и классификация материалов

Стандартизацией называется процесс установления и применения стандартов - комплекса нормативно-технических требований, норм и Правил на продукцию массового применения, утвержденных в качестве обязательных для предприятий и организаций-изготовителей и потребителей указанной продукции.

В зависимости от среды действия и уровня утверждения стандарты в Российской Федерации подразделяют на различные категории.

В государственных стандартах (ГОСТах) приведены требования к свойствам материалов, методам их испытаний, правилам приемки, транспортирования и хранения. ГОСТы обязательны для применения на всей территории России, имеют соответствующие номера с Лазанием года утверждения (две цифры после тире), например ГОСТ862.1-85 «Штучный паркет».

Технические условия (ТУ) или временные технические условия (ВТУ) содержат комплекс требований к показателям качества, методам испытаний, правилам приемки к определенным видам материалов, которые не стандартизированы или ограниченно применяются. ТУ действуют в пределах ведомства, министерства.

Кроме стандартов, в строительстве и производстве материалов действует система нормативных документов - строительные нормы и правила (СНиП) - свод нормативных документов по проектированию, строительству и материалам, обязательных для всех организаций и предприятий. Требования, нормы и правила, содержащиеся в СНиПах, основаны на передовом опыте и в основном соответствуют современному уровню архитектурно-строительной науки и техники.

Сопоставление СНиП и системы государственных стандартов показывает, что оба комплекса нормативных документов имеют ряд общих положений и различий. Например, ГОСТы разрабатываются преимущественно на материалы и изделия массового изготовления, СНиПы устанавливают требования ко всей строительной продукции. В СНиПах отсутствуют методы определения показателей свойств материалов, для этого имеются соответствующие ссылки на действующие стандарты. В СНиПах содержатся почти все нормы строительного проектирования, между тем как стандартов на такие нормы нет. В результате оба комплекса нормативных документов по строительству - СНиП и ГОСТ -взаимно дополняют друг друга.

С 1 июля 2003 г. в России вступил в действие закон о техническом регулировании. Согласно этому закону ГОСТы могут упраздняться, а государство будет обеспечивать лишь безопасность продукции для потребления и среды посредством принятия системы технических регламентов. Стандарты качества будут предлагать сами предприятия.

К методам стандартизации относятся унификация и типизация материалов.

Под унификацией следует понимать приведение различных видов материалов к технически и экономически рациональному минимуму типоразмеров, марок, форм, свойств и т. п. При этом, как правило, объединяются технические требования к нескольким материалам одинакового функционального назначения таким образом, чтобы была возможна замена одного материала другим без ухудшения качества строительного объекта. Например, в гражданском и промышленном строительстве России большая часть сборного железобетона приходится на унифицированные изделия. При разработке учитывалось, что их выпуск должен осуществляться в заводских условиях по рациональной технологии и обеспечивать определенные массу изделий, их размеры, форму, сечение и т. д. Унификация типоразмеров ряда отделочных материалов для облицовки позволяет производить замену одного материала другим без изменения проектной документации.

Типизация предполагает разработку типовых материалов или конструкций на основе общих технических характеристик.

В процессе проектирования следует иметь в виду, что конструктивные размеры материалов должны приниматься с учетом величин швов и зазоров при их монтаже, а также различных видов примыкания и опирания, определяющих отклонения oт осевых размеров в ту или другую сторону. Например, обычный керамический кирпич - один из основных стеновых материалов имеет характерный размер 250x120x65 мм, но с учетом Швов толщиной 10 мм получается номинальный размер 260х 130x75 мм.

Типизация и унификация при массовом индустриальном строительстве регламентируют строительные параметры зданий, в том числе высотных. При согласовании архитектурной формы с размерами типовых строительных материалов и инженерного оборудования архитектор пользуется пространственной сеткой с модульными ячейками. Кратность основных членений обусловливает использование цельночисленных отношений, что обогащает пропорциональный строй.

Важно понимать, что стандартизация непосредственно связана с процессом управления качеством материалов, а ее методы (унификация, типизация) не являются тормозом на творческом пути современного зодчего. Например, чем более жестки требования стандарта к количеству возможных дефектов внешнего вида отделочного материала, тем выше его качество. Большое значение унификации и типизации придавали зодчие еще в глубокой древности, создавая теоретические принципы античной модульной системы для каменных стоечно-балочных конструкций. Бесконечное разнообразие древнегреческого орнамента основано на использовании ограниченного количества типовых стандартных элементов. Неповторимые композиции и бесконечно многообразные формы храма Василия Блаженного в Москве связаны с применением только восемнадцати типоразмеров керамического кирпича. И в современном строительстве на разнообразные решения архитектурной формы не должно влиять ограниченное число типоразмеров применяемых материалов. Их унификация и типизация позволяют архитектору создавать разнообразные и оригинальные проекты отдельных зданий и целых ансамблей в условиях массового индустриального строительства.

1.3 Металлы

Металлы относятся к числу наиболее распространенных материалов, которые человек использует для обеспечения своих жизненных потребностей. В наши дни трудно найти такую область производства, научно-технической деятельности человека, его быта, где металлы не играли бы существенной роли.

Чистые металлы характеризуются низкими прочностными свойствами, поэтому в машиностроении применяются главным образом их сплавы. Сплавы являются основными машиностроительными материалами. На их долю приходится примерно 95% от всех материалов, применяемых в технике. И, видимо, эта доля сохранится ещё долгое время.

С развитием науки и техники расширяется перечень используемых материалов. Наряду с традиционными материалами, обеспечивающими определенный комплекс механических и технологических свойств, в промышленности появились новые материалы, обладающие рядом особых свойств, требующихся в отдельных областях промышленного хозяйства.

Необходимость в новых материалах диктуется научно-техническим прогрессом, который выдвигает новые требования к их свойствам, вследствие постоянного повышения рабочих параметров машин и приборов.

Металлы - один из классов конструкционных материалов, характеризующийся определенным набором свойств:

· «металлический блеск» (хорошая отражательная способность);

· пластичность;

· высокая теплопроводность;

· высокая электропроводность.

Данные свойства обусловлены особенностями строения металлов. Согласно теории металлического состояния, металл представляет собой вещество, состоящее из положительных ядер, вокруг которых по орбиталям вращаются электроны. На последнем уровне число электронов невелико и они слабо связаны с ядром. Эти электроны имеют возможность перемещаться по всему объему металла, т.е. принадлежать целой совокупности атомов.

Таким образом, пластичность, теплопроводность и электропроводность обеспечиваются наличием «электронного газа».

Все металлы, затвердевающие в нормальных условиях, представляют собой кристаллические вещества, то есть укладка атомов в них характеризуется определенным порядком - периодичностью, как по различным направлениям, так и по различным плоскостям. Этот порядок определяется понятием кристаллическая решетка.

Другими словами, кристаллическая решетка это воображаемая пространственная решетка, в узлах которой располагаются частицы, образующие твердое тело.

Элементарная ячейка - элемент объема из минимального числа атомов, многократным переносом которого в пространстве можно построить весь кристалл.

Элементарная ячейка характеризует особенности строения кристалла. Основными параметрами кристалла являются:

? размеры ребер элементарной ячейки. a, b, c - периоды решетки - расстояния между центрами ближайших атомов. В одном направлении выдерживаются строго определенными.

? углы между осями ().

? координационное число (К) указывает на число атомов, расположенных на ближайшем одинаковом расстоянии от любого атома в решетке.

? базис решетки количество атомов, приходящихся на одну элементарную ячейку решетки.

? плотность упаковки атомов в кристаллической решетке - объем, занятый атомами, которые условно рассматриваются как жесткие шары. Ее определяют как отношение объема, занятого атомами к объему ячейки (для объемно-центрированной кубической решетки - 0,68, для гранецентрированной кубической решетки - 0,74)

Рис. 1. Схема кристаллической решетки

Классификация возможных видов кристаллических решеток была проведена французским ученым О. Браве, соответственно они получили название «решетки Браве». Всего для кристаллических тел существует четырнадцать видов решеток, разбитых на четыре типа;

? примитивный - узлы решетки совпадают с вершинами элементарных ячеек;

? базоцентрированный - атомы занимают вершины ячеек и два места в противоположных гранях;

? объемно-центрированный - атомы занимают вершины ячеек и ее центр;

? гранецентрированный - атомы занимают вершины ячейки и центры всех шести граней.

Рис. 2. Основные типы кристаллических решеток: а - объемно-центрированная кубическая; б - гранецентрированная кубическая; в - гексагональная плотноупакованная

Основными типами кристаллических решеток являются:

1. Объемно - центрированная кубическая (ОЦК) (см. рис.1.2а), атомы располагаются в вершинах куба и в его центре (V, W, Ti, )

2. Гранецентрированная кубическая (ГЦК) (см. рис. 1.2б), атомы рассполагаются в вершинах куба и по центру куждой из 6 граней (Ag, Au, )

3. Гексагональная, в основании которой лежит шестиугольник:

o простая - атомы располагаются в вершинах ячейки и по центру 2 оснований (углерод в виде графита);

o плотноупакованная (ГПУ) - имеется 3 дополнительных атома в средней плоскости (цинк).

Аллотропия или полиморфные превращения.

Способность некоторых металлов существовать в различных кристаллических формах в зависимости от внешних условий (давление, температура) называется аллотропией или полиморфизмом.

Каждый вид решетки представляет собой аллотропическое видоизменение или модификацию.

Примером аллотропического видоизменения в зависимости от температуры является железо (Fe).

Fe: - ОЦК - ;

- ГЦК - ;

- ОЦК - ; (высокотемпературное )

Превращение одной модификации в другую протекает при постоянной температуре и сопровождается тепловым эффектом. Видоизменения элемента обозначается буквами греческого алфавита в виде индекса у основного обозначения металла.

Примером аллотропического видоизменения, обусловленного изменением давления, является углерод: при низких давлениях образуется графит, а при высоких - алмаз.

Используя явление полиморфизма, можно упрочнять и разупрочнять сплавы при помощи термической обработки.

Магнитные превращения

Некоторые металлы намагничиваются под действием магнитного поля. После удаления магнитного поля они обладают остаточным магнетизмом. Это явление впервые обнаружено на железе и получило название ферромагнетизма. К ферромагнетикам относятся железо, кобальт, никель и некоторые другие металлы.

При нагреве ферромагнитные свойства металла уменьшаются постепенно: вначале слабо, затем резко, и при определённой температуре (точка Кюри) исчезают (точка Кюри для железа - ). Выше этой температуры металлы становятся парамагнетиками. Магнитные превращения не связаны с изменением кристаллической решетки или микроструктуры, они обусловлены изменениями в характере межэлектронного взаимодействия.

Из жидкого расплава можно вырастить монокристалл. Их обычно используют в лабораториях для изучения свойств того или иного вещества.

Металлы и сплавы, полученные в обычных условиях, состоят из большого количества кристаллов, то есть, имеют поликристаллическое строение. Эти кристаллы называются зернами. Они имеют неправильную форму и различно ориентированы в пространстве. Каждое зерно имеет свою ориентировку кристаллической решетки, отличную от ориентировки соседних зерен, вследствие чего свойства реальных металлов усредняются, и явления анизотропии не наблюдается

В кристаллической решетке реальных металлов имеются различные дефекты (несовершенства), которые нарушают связи между атомами и оказывают влияние на свойства металлов. Различают следующие структурные несовершенства:

· точечные - малые во всех трех измерениях;

· линейные - малые в двух измерениях и сколь угодно протяженные в третьем;

· поверхностные - малые в одном измерении.

Точеные дефекты

Одним из распространенных несовершенств кристаллического строения является наличие точечных дефектов: вакансий, дислоцированных атомов и примесей (рис. 3).

Рис. 3. Точечные дефекты

Вакансия - отсутствие атомов в узлах кристаллической решетки, «дырки», которые образовались в результате различных причин. Образуется при переходе атомов с поверхности в окружающую среду или из узлов решетки на поверхность (границы зерен, пустоты, трещины и т. д. ), в результате пластической деформации, при бомбардировке тела атомами или частицами высоких энергий (облучение в циклотроне или нейтронной облучение в ядерном реакторе). Концентрация вакансий в значительной степени определяется температурой тела. Перемещаясь по кристаллу, одиночные вакансии могут встречаться. И объединяться в дивакансии. Скопление многих вакансий может привести к образованию пор и пустот.

Дислоцированный атом - это атом, вышедший из узла решетки и занявший место в междоузлие. Концентрация дислоцированных атомов значительно меньше, чем вакансий, так как для их образования требуются существенные затраты энергии. При этом на месте переместившегося атома образуется вакансия.

Примесные атомы всегда присутствуют в металле, так как практически невозможно выплавить химически чистый металл. Они могут иметь размеры больше или меньше размеров основных атомов и располагаются в узлах решетки или междоузлиях.

Точечные дефекты вызывают незначительные искажения решетки, что может привести к изменению свойств тела (электропроводность, магнитные свойства), их наличие способствует процессам диффузии и протеканию фазовых превращений в твердом состоянии. При перемещении по материалу дефекты могут взаимодействовать.

Линейные дефекты:

Основными линейными дефектами являются дислокации. Априорное представление о дислокациях впервые использовано в 1934 году Орованом и Тейлером при исследовании пластической деформации кристаллических материалов, для объяснения большой разницы между практической и теоретической прочностью металла.

Дислокация - это дефекты кристаллического строения, представляющие собой линии, вдоль и вблизи которых нарушено характерное для кристалла правильное расположение атомных плоскостей.

Методы исследования металлов.

1. Механизм и закономерности кристаллизации металлов.

2. Условия получения мелкозернистой структуры

3. Строение металлического слитка

4. Определение химического состава.

5. Изучение структуры.

6. Физические методы исследования

Строение металлического слитка

Схема стального слитка, данная Черновым Д.К., представлена на рис. 4.

Рис. 4. Схема стального слитка

Слиток состоит из трех зон:

1. мелкокристаллическая корковая зона;

2. зона столбчатых кристаллов;

3. внутренняя зона крупных равноосных кристаллов.

Кристаллизация корковой зоны идет в условиях максимального переохлаждения. Скорость кристаллизации определяется большим числом центров кристаллизации. Образуется мелкозернистая структура.

Жидкий металл под корковой зоной находится в условиях меньшего переохлаждения. Число центров ограничено и процесс кристаллизации реализуется за счет их интенсивного роста до большого размера.

Рост кристаллов во второй зоне имеет направленный характер. Они растут перпендикулярно стенкам изложницы, образуются древовидные кристаллы - дендриты (рис. 5). Растут дендриты с направлением, близким к направлению теплоотвода.

Рис. 5. Схема дендрита по Чернову Д.К.

Так как теплоотвод от незакристаллизовавшегося металла в середине слитка в разные стороны выравнивается, то в центральной зоне образуются крупные дендриты со случайной ориентацией.

Зоны столбчатых кристаллов в процессе кристаллизации стыкуются, это явление называется транскристаллизацией.

Для малопластичных металлов и для сталей это явление нежелательное, так как при последующей прокатке, ковке могут образовываться трещины в зоне стыка.

В верхней части слитка образуется усадочная раковина, которая подлежит отрезке и переплавке, так как металл более рыхлый (около 15…20 % от длины слитка).

Методы исследования металлов: структурные и физические

Металлы и сплавы обладают разнообразными свойствами. Используя один метод исследования металлов, невозможно получить информацию о всех свойствах. Используют несколько методов анализа.

Определение химического состава.

Используются методы количественного анализа.

1. Если не требуется большой точности, то используют спектральный анализ.

Спектральный анализ основан на разложении и исследовании спектра электрической дуги или искры, искусственно возбуждаемой между медным электродом и исследуемым металлом.

Зажигается дуга, луч света через призмы попадает в окуляр для анализа спектра. Цвет и концентрация линий спектра позволяют определить содержание химических элементов.

Используются стационарные и переносные стилоскопы.

2. Более точные сведения о составе дает рентгеноспектральный анализ.

Проводится на микроанализаторах. Позволяет определить состав фаз сплава, характеристики диффузионной подвижности атомов.

Изучение структуры.

Различают макроструктуру, микроструктуру и тонкую структуру.

1. Макроструктурный анализ - изучение строения металлов и сплавов невооруженным глазом или при небольшом увеличении, с помощью лупы.

Осуществляется после предварительной подготовки исследуемой поверхности (шлифование и травление специальными реактивами).

Позволяет выявить и определить дефекты, возникшие на различных этапах производства литых, кованных, штампованных и катанных заготовок, а также причины разрушения деталей.

Устанавливают: вид излома (вязкий, хрупкий); величину, форму и расположение зерен и дендритов литого металла; дефекты, нарушающие сплошность металла (усадочную пористость, газовые пузыри, раковины, трещины); химическую неоднородность металла, вызванную процессами кристаллизации или созданную термической и химико-термической обработкой; волокна в деформированном металле.

2. Микроструктурный анализ - изучение поверхности при помощи световых микроскопов. Увеличение - 50…2000 раз. Позволяет обнаружить элементы структуры размером до 0,2 мкм.

Образцы - микрошлифы с блестящей полированной поверхностью, так как структура рассматривается в отраженном свете. Наблюдаются микротрещины и неметаллические включения.

Для выявления микроструктуры поверхность травят реактивами, зависящими от состава сплава. Различные фазы протравливаются неодинаково и окрашиваются по разному. Можно выявить форму, размеры и ориентировку зерен, отдельные фазы и структурные составляющие.

Кроме световых микроскопов используют электронные микроскопы с большой разрешающей способностью.

Изображение формируется при помощи потока быстро летящих электронов. Электронные лучи с длиной волны (0,04…0,12 ) ·10-8 см дают возможность различать детали объекта, по своим размерам соответствующе межатомным расстояниям.

Просвечивающие микроскопы. Поток электронов проходит через изучаемый объект. Изображение является результатом неодинакового рассеяния электронов на объекте. Различают косвенные и прямые методы исследования.

При косвенном методе изучают не сам объект, а его отпечаток - кварцевый или угольный слепок (реплику), отображающую рельеф микрошлифа, для предупреждения вторичного излучения, искажающего картину.

При прямом методе изучают тонкие металлические фольги, толщиной до 300 нм, на просвет. Фольги получают непосредственно из изучаемого металла.

Растровые микроскопы. Изображение создается за счет вторичной эмиссии электронов, излучаемых поверхностью, на которую падает непрерывно перемещающийся по этой поверхности поток первичных электронов. Изучается непосредственно поверхность металла. Разрешающая способность несколько ниже, чем у просвечивающих микроскопов.

3. Для изучения атомно-кристаллического строения твердых тел (тонкое строение) используются рентгенографические методы, позволяющие устанавливать связь между химическим составом, структурой и свойствами тела, тип твердых растворов, микронапряжения, концентрацию дефектов, плотность дислокаций.

1.4 Физические методы исследования

1. Термический анализ основан на явлении теплового эффекта. Фазовые превращения в сплавах сопровождаются тепловым эффектом, в результате на кривых охлаждения сплавов при температурах фазовых превращений наблюдаются точки перегиба или температурные остановки. Данный метод позволяет определить критические точки.

2. Дилатометрический метод.

При нагреве металлов и сплавов происходит изменение объема и линейных размеров - тепловое расширение. Если изменения обусловлены только увеличением энергииколебаний атомов, то при охлаждении размеры восстанавливаются. При фазовых превращениях изменения размеров - необратимы.

Метод позволяет определить критические точки сплавов, температурные интервалы существования фаз, а также изучать процессы распада твердых растворов.

3 .Магнитный анализ.

Используется для исследования процессов, связанных с переходом из паромагнитного состояния в ферромагнитное (или наоборот), причем возможна количественная оценка этих процессов.

Понятие о сплавах и методах их получения

Под сплавом понимают вещество, полученное сплавлением двух или более элементов. Возможны другие способы приготовления сплавов: спекания, электролиз, возгонка. В этом случае вещества называются псевдосплавами.

Сплав, приготовленный преимущественно из металлических элементов и обладающий металлическими свойствами, называется металлическим сплавом. Сплавы обладают более разнообразным комплексом свойств, которые изменяются в зависимости от состава и метода обработки.

Основные понятия в теории сплавов.

Система - группа тел выделяемых для наблюдения и изучения.

В металловедении системами являются металлы и металлические сплавы. Чистый металл является простой однокомпонентной системой, сплав - сложной системой, состоящей из двух и более компонентов.

...

Подобные документы

  • Основные типы решеток, точечные и линейные дефекты. Связь строения кристаллической решетки с механическими и физическими свойствами материала. Реальное строение кристаллов, формы пластической деформации. Свойства металлов, применяемых в строительстве.

    реферат [218,2 K], добавлен 30.07.2014

  • Основные материалы, используемые в микроэлектронике, электронике и оптоэлектронике. Состав и структура материалов. Определение понятия кристаллической решетки. Сопоставление трех классов твердых тел с пространственным распределением электронов в них.

    курсовая работа [479,0 K], добавлен 15.12.2015

  • Теоретический анализ научно-технической и методической литературы по изучению свойств материалов. Свойства ткани на светопогоду. Определение стойкости текстильных материалов к действию светопогоды. Инструкция по технике безопасности в лаборатории.

    курсовая работа [45,8 K], добавлен 05.12.2008

  • Закономерности формирования структуры поверхностных слоев сталей при высокоэнергетическом воздействии. Технологические варианты плазменного упрочнения деталей. Получение плазмы. Проведение электронно-лучевой и лазерной обработки металлических материалов.

    дипломная работа [1,4 M], добавлен 06.10.2014

  • Изучение свойств материалов, установления величины предельных напряжений. Условный предел текучести. Механические характеристики материалов. Испытание на растяжение, сжатие, кручение, изгиб хрупких материалов статической нагрузкой. Измерение деформаций.

    реферат [480,5 K], добавлен 16.10.2008

  • Характеристика алюминия (серебристо-белого металла), его химическая активность, природные соединения, содержание в земной коре. Модификации оксида алюминия, их получение и применение в технике. Механические свойства и назначение алюминиевых сплавов.

    реферат [11,2 K], добавлен 23.11.2010

  • Рассмотрение основных дефектов стали и методы ее упрочнения обезуглероживанием и порчей теплостойкости. Свойства и область применения полярных термопластических пластмасс (полиамидов, пентонов, поликарбонатов). Характеристика механических свойств латуни.

    контрольная работа [531,0 K], добавлен 16.01.2012

  • Классификация дефектов кристаллической решетки металлов. Схема точечных дефектов в кристалле. Дислокация при кристаллизации или сдвиге. Расположение атомов в области винтовой дислокации. Поверхностные или двухмерные дефекты. Схема блочной структуры.

    лекция [4,4 M], добавлен 08.08.2009

  • Анализ методов оценки упругопластических свойств материалов для верха обуви при растяжении. Обоснование выбора методов испытаний и исследуемых материалов. Разработка автоматизированного комплекса для оценки свойств при одноосном и двухосном растяжении.

    дипломная работа [4,8 M], добавлен 26.10.2011

  • Сплав, его компоненты, фазы, структурные составляющие, микроструктуры механической смеси. Растворы замещения и внедрения, искажение кристаллической решетки при образовании твердого раствора. Кристаллические решетки упорядоченных твердых растворов.

    контрольная работа [850,7 K], добавлен 12.08.2009

  • Роль химии в химической технологии текстильных материалов. Подготовка и колорирование текстильных материалов. Основные положения теории отделки текстильных материалов с применением высокомолекулярных соединений. Ухудшение механических свойств материалов.

    курсовая работа [43,7 K], добавлен 03.04.2010

  • Зависимость работоспособности машин и агрегатов от свойств материалов. Прочность, твердость, триботехнические характеристики. Внедрение в материал более твердого тела – индентора. Температурные, электрические и магнитные характеристики материалов.

    реферат [56,6 K], добавлен 30.07.2009

  • Механические свойства строительных материалов: твердость материалов, методы ее определения, суть шкалы Мооса. Деформативные свойства материалов. Характеристика чугуна как конструкционного материала. Анализ способов химико-термической обработки стали.

    контрольная работа [972,6 K], добавлен 29.03.2012

  • Изучение понятия, видов и свойств керамических материалов и изделий. Характеристика сырья и процесса производства керамических изделий. Исследование использования в строительстве как стеновых, кровельных, облицовочных материалов и заполнителей бетона.

    реферат [17,6 K], добавлен 26.04.2011

  • Общая характеристика модели "сафари". Ассортимент материалов, применяемых для предлагаемой модели, требования к ним. Исследование ассортимента рекомендуемых материалов, их структуры и свойств. Обоснование выбора пакета материалов для изготовления платья.

    курсовая работа [747,3 K], добавлен 02.05.2014

  • Типы кристаллических решёток металлов и дефекты их строения. Свойства и области применения карбида кремния. Электропроводность жидких диэлектриков и влиянии на неё различных факторов. Виды, свойства и применение неметаллических проводниковых материалов.

    контрольная работа [1,5 M], добавлен 09.10.2010

  • Виды теплоизоляционных материалов, которые предназначены для тепловой изоляции конструкций зданий и сооружений, а также различных технических применений. Классификация, свойства. Органические материалы. Материалы на основе природного органического сырья.

    презентация [5,0 M], добавлен 23.04.2016

  • Рассмотрение целей и задач материаловедения. Кавитация как образование в жидкости полостей, заполненных паром. Особенности определения параметров, влияющих на процессы диспергирования и кавитационного разрушения. Виды эрозионного разрушения материалов.

    реферат [75,8 K], добавлен 05.12.2012

  • Описание внешнего вида мужской демисезонной куртки. Перечень материалов для изготовления швейного изделия. Выбор значимых свойств, удовлетворяющих установленным требованиям. Результаты экспериментальной оценки. Физико-механические свойства материалов.

    курсовая работа [328,9 K], добавлен 25.03.2013

  • Физико-химические закономерности формирования; строение и свойства материалов. Типы кристаллических решёток металлов. Испытания на ударный изгиб. Термическая и химико-термическая обработка, контроль качества металлов и сплавов. Конструкционные материалы.

    курсовая работа [3,7 M], добавлен 03.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.