Эксплуатация нефтяных скважин

Область применения установок электропогружных центробежных насосов. Промышленные образцы центробежных насосов с электроприводом. Технические характеристики цельнометаллических литых протекторов. Операции при неразвороте или тяжелом пуске установки.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 10.11.2014
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

- рабочего тока;

- сопротивления изоляции:

* - через 1 сутки -- после вывода на режим (контрольный замер);

* - еженедельно -- до 60 суток работы;

* - ежемесячно -- после 60 суток работы;

- динамического уровня:

* - через 1 сутки после вывода установки на стабильный режим;

* - ежеквартально -- в процессе эксплуатации. Отбор проб на содержание КВЧ в продукции осуществляется:

- при выводе на режим (жидкость глушения);

- через двое суток после вывода на режим;

- один раз в полугодие в процессе дальнейшей эксплуатации.

Отбор проб на обводненность производится после вывода на режим, далее не реже двух раз в месяц с записью результатов анализа в эксплуатационный паспорт УЭЦН.

В соответствии с графиком проводятся операции по предупреждению отложений парафина, солей в подъемных лифтах скважин с отметкой в эксплуатационном паспорте УЭЦН.

1.8 Контроль параметров работы установки в процессе эксплуатации

В современных условиях работы УЭЦН, зачастую осложненных многими факторами (наклонно-направленные скважины, высокая обводненность и химическая активность пластовой жидкости, высокое содержание механических примесей, высокая температура, давление и газовый фактор), нормальная эксплуатация оборудования нереальна без использования систем диагностики. Применение систем диагностики позволяет не только оптимизировать работу системы "пласт-скважина-насосная установка", но и предотвратить большинство отказов и аварий со скважинным оборудованием.

Оборудование диагностики работоспособности УЭЦН является техническим средством контроля рабочих параметров установки и формирования сигналов для автоматического управления работой УЭЦН.

Термоманометрическая система (ТМС) ТМС-3.

Система обеспечивает:

* сигнализацию при достижении заданных значений давления на приеме скважинного ЭЦН и предельно допустимого значения температуры (100 °С) ПЭД;

* формирование сигналов управления УЭЦН при достижении заданных значений давления на приеме ЭЦН и предельно допустимого значения температуры. Система ТМС-3 состоит из скважинного преобразователя, трансформирующего давление и температуру в частотно-манипулированный электрический сигнал, и наземного прибора, осуществляющего функции блока питания, усилителя-формирователя сигналов и устройства управления режимом работы погружным электронасосом по давлению и температуре.

Скважинный преобразователь давления и температуры (ПДТ) выполнен в виде цилиндрического герметичного контейнера, размещаемого в нижней части электродвигателя и подключенного к нулевой точке его статорной обмотки. Наземный прибор, устанавливаемый в комплектное устройство ШГС, обеспечивает формирование сигналов на ее отключение и выключение насоса по давлению и температуре.

В качестве линии связи и энергопитания ПДТ используется силовая сеть питания погружного электродвигателя.

Система термоманометрическая СКАД-2.

Эксплуатационное назначение системы -- контроль технического состояния УЭЦН в процессе эксплуатации, подконтрольный вывод на режим и стабилизация работы скважины в заданном режиме.

Функциональное назначение -- контроль температуры масла электродвигателя и давления пластового флюида в зоне подвески УЭЦН с возможностью автоматического управления установкой по параметрам давления и температуры совместно с блоком управления комплектного устройства ШГС 5805,

ШГС 5806.

Система обеспечивает постоянный контроль избыточного давления пластовой жидкости, окружающей ПЭД, а также температуры статорных обмоток в зоне нижней лобовой части ПЭД. При выходе за установленные граничные значения контролируемого давления и температуры оборудование автоматически отключает УЭЦН.

Система СКАД-2 позволяет фиксировать граничные и текущие значения контролируемых параметров, количества отключений УЭЦН раздельно по каждому из условий, а также текущего и предельно допустимого количества отключении УЭЦН за последние календарные сутки. Обеспечивается также визуальное представление в цифровой форме текущих и граничных значений контролируемых параметров, светодиодная индикация режимов работы системы, самотестирование системы, возможность включения в многоуровневую систему управления технологическим процессом нефтедобычи на правах контрольного пункта нижнего уровня.

Импульсная система телеметрии ИСТ-1.

Импульсная система телеметрии ИСТ-1 предназначена для контроля технического состояния УЭЦН в процессе эксплуатации, подконтрольного вывода на режим и стабилизации работы скважины на заданном режиме за счет управления работой УЭЦН.

Система ИСТ-1 обеспечивает контроль давления жидкости в зоне подвески УЭЦН, температуры масла в электродвигателе, уровня вибрации погружного оборудования и автоматическое управление работой УЭЦН по давлению, температуре и виброускорению совместно с блоком управления устройства комплектного ШГС 5805.

Система ИСТ-1 может использоваться в составе автоматизированных систем управления технологическими процессами нефтедобычи.

1.9 Автоматизация скважин, оборудованных УЭЦН

Устройства управления обеспечивают питание, управление работой погружной насосной установки и защиту ее от аномальных режимов работы.

Устройства управления УЭЦН изготавливаются различных типов, которые определяются системой энергоснабжения скважины, мощностью управляемого электродвигателя, климатическим исполнением и количеством управляемых насосных установок.

Устройства комплектные серии ШГС 5805, применяются наиболее широко. Устройства предназначены для управления и защиты погружных электронасосов добычи нефти с двигателями серии ПЭД (в том числе со встроенной термоманометрической системой) по ГОСТ 18058 - 80 мощностью 14 - 100 кВт и напряжением до 2300 В переменного тока.

Устройства обеспечивают:

1. Включение и отключение электродвигателя насосной установки.

2. Работу электродвигателя насосной установки в режимах «ручной» и «автоматический».

Работа в режиме «автоматический», обеспечивает:

а) автоматическое включение электродвигателя с регулируемой выдержкой времени от 2,5 до 60 мин при подаче напряжения питания;

б) автоматическое повторное включение электродвигателя после его отключения защитой от недогрузки с регулируемой выдержкой времени от 3 до 1200 мин;

в) возможность выбора режима работы с автоматическим повторным включением после срабатывания защиты от недогрузки или без автоматического повторного включения;

г) возможность выбора режима работы с защитой от турбинного вращения двигателя и без защиты;

д) блокировка запоминания срабатывания защиты от перегрузки при отклонении напряжения питающей сети выше 10 % или ниже 15 % от номинального с автоматическим самозапуском при восстановлении напряжения питания;

е) разновременность пуска установок, которые подключены к одному фидеру;

ж) автоматическое повторное включение электродвигателя после его отключения защитой от превышения температуры с выдержкой времени, определяемой временем появления сигнала на включение от термоманометрической системы и выдержкой времени.

3. Управление установкой с диспетчерского пункта.

4. Управление установкой от программного устройства.

5. Управление установкой в зависимости от давления в трубопроводе по сигналам контактного манометра.

Устройства обеспечивают функции защиты, сигнализации и измерения:

1. Защиту от короткого замыкания в силовой цепи напряжением 380 В.

2. Защиту от перегрузки любой из фаз электродвигателя с выбором максимального тока фазы.

3. Защиту от недогрузки при срыве подачи по сигналу, характеризующему загрузку установки, с выдержкой времени на срабатывание защиты не более 45 с.

4. Защиту от снижения напряжения питающей сети.

5. Защиту от турбинного вращения погружного электродвигателя при включении установки.

6. Возможность защиты от порыва нефтепровода по сигналам контактного манометра.

7. Запрещение включения установки после срабатывания защиты от перегрузки

8. Непрерывный контроль сопротивления изоляции системы «погружной электродвигатель - кабель».

9. Контроль тока электродвигателя в одной из фаз.

10. Возможность регистрации тока электродвигателя в одной из фаз самопишущим амперметром.

11. Сигнализацию состояния установки с расшифровкой причины отключения.

12. Наружную световую сигнализацию об аварийном отключении установки.

13. Отключение установки при появлении от термоманометрической системы сигнала на отключение в результате превышения температуры электродвигателя.

14. Отключение электродвигателя при появлении от термоманометрической системы сигнала на отключение в результате достижения средой, окружающей электродвигатель, давления, соответствующего заданному минимальному значению.

Подстанции трансформаторные комплектные серии КТППН и КТППНКС.

КТППН предназначены для питания электроэнергией, управления и защиты электродвигателей погружных насосов из одиночных скважин.

КТППНКС предназначены для электроснабжения, управления и защиты четырех центробежных электронасосов (ЭЦН) с электродвигателями мощностью 16 - 125 кВт для добычи нефти из кустов скважин, питания до четырех электродвигателей станков-качалок и передвижных токоприемников при выполнении ремонтных работ.

КТППНКС рассчитаны на применение, в условиях Крайнего Севера и Западной Сибири.

Станции управления "БОРЕЦ-01".

ОО "Борец" предлагает станции управления серии "БОРЕЦ-01" для погружных электродвигателей мощностью до 160 кВт, на токи силовой цепи 250 А и 400 А. Главное преимущество новых станций - большой набор функций защиты и управления, а также удобство эксплуатации.

Существует множество и других модификаций станций управления: "Электон", МАСУ, СУПЭН-1, СУРС-1, ИРБИ и другие.

1.10 Пуск установки ЭЦН и вывод ее на режим после подземного ремонта

Запуск и вывод УЭЦН на постоянный режим работы производятся под контролем мастера по добыче нефти и газа (технолога) пусковой бригадой в составе: оператор по добыче нефти и газа; электромонтер.

Перед запуском установки пусковая бригада обязана:

- ознакомиться с данными о скважине и УЭЦН по записям в эксплуатационном паспорте;

- проверить оснащенность скважины обратным клапаном между затрубным пространством и выкидной линией, патрубком для отбивки уровня жидкости в затрубном пространстве, манометрами на буфере, выкидной линии и затрубном пространстве.

Оператор по добыче нефти и газа с помощью прибора определяет перед запуском статический, а после запуска динамический уровни в скважине с записью в эксплуатационном паспорте УЭЦН, проверяет исправность замерной установки и пробоотборника, состояние запорных устройств.

Электромонтер проверяет сопротивление изоляции системы «кабель-двигатель» (не менее 5 МОм), работоспособность станции управления, защиты от замыкания на землю, заземление, фазировку кабеля, производит предварительную настройку защит.

Электромонтер по команде оператора по добыче нефти и газа производит запуск УЭЦН в работу. Правильность вращения установки проверяется по величине подачи насоса, буферного давления, рабочего тока электромонтером и оператором совместно.

Подача УЭЦН на выкиде скважины должна появиться за определенное время после запуска в зависимости от типоразмера установки, диаметра НКТ и статического уровня при минимальной производительности насоса, ниже которой эксплуатация УЭЦН запрещается.

После появления подачи на устье производится опрессовка НКТ на герметичность, для чего закрывается выкидная задвижка и по достижении буферного давления 4,0 МПа установка отключается. При герметичных НКТ и обратном клапане, установленном выше ЭЦН, темп падения буферного давления не должен превышать 10% за одну минуту.

Если НКТ герметичны, установка запускается, и производится вывод ее на нормальный режим работы. При этом замеряется подача (дебит) установки на замерной установке, и производится отбивка уровня жидкости в затрубном пространстве через каждые 15-30 минут работы в зависимости от типоразмера установки.

В процессе вывода установки на режим оператор по добыче нефти и газа следит также за ее подачей, буферным и затрубным давлениями, электромонтер -- за сопротивлением изоляции УЭЦН, рабочим током и напряжением. Параметры работы установки заносятся в эксплуатационный паспорт.

В процессе откачки жидкости глушения оператор производит отбор пробы жидкости на содержание в ней КВЧ. При необходимости с помощью штуцера на выкиде скважины производится регулирование подачи установки как в процессе 4 вывода на режим, так и после него.

Установка считается выведенной на нормальный режим, если ее производительность соответствует оптимальной зоне рабочей характеристики насоса, динамический уровень стабилизировался, а погружение насоса под уровень обеспечивает содержание свободного газа в откачиваемой жидкости не более 25% без газосепаратора и 25-50% с газосепаратором.

При выводе на режим УЭЦН возможны следующие основные осложнения:

- недостаточный приток жидкости из пласта;

- неразворот или тяжелый пуск установки;

- отсутствие подачи.

Вывод УЭЦН на режим при недостаточном притоке из пласта

Если в процессе откачки раствора глушения динамический уровень снизился до критического уровня (200 м над приемом насоса) или сработала защита, то это означает, что приток жидкости из пласта ниже производительности установки по каким-либо причинам. Тогда выполняются следующие операции:

1. Восстановление уровня в затрубном пространстве за счет притока из пласта с последующей откачкой до критического уровня. Эти операции повторяются до получения определенного результата (положительного или отрицательного).

2. Если восстановление уровня в затрубном пространстве при отключенной установке не происходит или происходит незначительно, то производится откачка до уровня ниже критического (менее 200 м над приемом насоса) с целью увеличения депрессии на пласт с последующим его восстановлением и откачкой. Операции повторяются также до получения определенного результата. Если вывести установку на режим не удается, то используется штуцирование на выкиде или перевод на периодический режим работы.

3. Запуск УЭЦН и освоение скважины с помощью частотного преобразователя.

Время непрерывной работы установки при недостаточном притоке или отсутствии притока из пласта не должно превышать: 2 часа для ПЭД32, 1 час для ПЭД45, 0,5 часа для ПЭД мощностью более 45 кВт.

Перерывы в работе для охлаждения ПЭД должны быть не менее 1,5 часов.

Операции при неразвороте или тяжелом пуске установки ЭЦН

Перед повторным включением неразвернувшейся установки меняется чередование фаз на погружном кабеле и проверяется напряжение по 3-м фазам на его зажимах. После включения проверяется симметрия фазных токов электродвигателя измерительными клещами. Если установка не развернулась и после смены направления вращения, то при достаточно высокой изоляции (не менее 10 МОм) допускается увеличить напряжение на ТМП на величину дополнительных потерь в кабеле от пусковых токов (до 1,5 Uhom) и еще раз включить УЭЦН. Результаты проверки по фазам при неразвороте установки записываются в эксплуатационном паспорте. Если установка развернулась, то продолжительность работы ее на повышенном напряжении не должна превышать 1 часа, при этом допускается нагрузка по току не более 1,1 номинальной. После снижения нагрузки величину напряжения следует уменьшить до номинального. Продолжительность непрерывной работы двигателя при номинальном напряжении в зависимости от величины нагрузки определяется по таблице: Таблица 62

Продолжительность непрерывной работы ПЭД при перегрузке

Работа двигателя с нагрузкой более 1,5 1ном не допускается. Если за указанное время ток не уменьшается до номинальной величины, то установку следует отключить. Повторный запуск разрешается производить через 15-20 минут после отключения, предварительно повысив выходное напряжение на 1-2 ступени. При работе установки с перегрузкой следует еще раз убедиться, что напряжение и ток по фазам отличаются не более чем на 5%, а если больше, то отключить установку и выяснить причину несимметрии (возможно, неравномерность фазной нагрузки или питающего напряжения).

При отсутствии вращения установки или больших токах (более 1,3 1ном) целесообразно выполнить следующие операции:

- провести промывку насоса наземной техникой при отключенной установке или включенной при наличии вращения;

- приподнять установку или опустить на 1-2 трубы НКТ, если позволяет кривизна эксплуатационной колонны в зоне размещения УЭЦН.

Запуск может быть осуществлен с помощью частотного преобразователя.

Запуск УЭЦН при отсутствии подачи

При отсутствии подачи установки необходимо принять меры по проверке работы системы «скважина-установка-лифт» (клапаны и НКТ).

Вначале необходимо убедиться в том, что насос вращается, и вращается в нужном направлении.

Ток нагрузки должен быть выше, чем ток холостого хода приводного двигателя (из прилагаемого протокола на ПЭД). При этом необходимо учесть, что нижнего предела тока нагрузки, при котором можно оценить, вращается насос или нет, не существует, так как меняется и ток холостого хода в зависимости от питающего напряжения.

Направление вращения ЭЦН по току нагрузки невозможно определить, поэтому после отработки времени в одном направлении вращения при отсутствии подачи следует поменять 2 фазы питающего напряжения и включить установку в другом направлении. Если и после этого подача не появилась, то необходимо:

1. Проверить герметичность лифта наземной техникой.

2. Проверить циркуляцию через затрубье-насос-лифт.

3. Добиться циркуляции при помощи прокачки горячей нефтью.

Если после всех проведенных мероприятий добиться подачи не удалось, то необходимо установку поднять и определить причину.

Время непрерывной работы установки при отсутствии подачи не должно превышать 1 часа (для ЭЦН5А -- 0,5 часа).

Температура горячей нефти, подготовленной для прокачки подачей через затрубное пространство, во избежание порчи кабеля, не должно превышать 80° С.

1.11 Влияние газа на работу УЭЦН и методы борьбы с ним

Одним из основных факторов, влияющих на работу УЭЦН, является газовый фактор. Газовый фактор имеет большое значение при выборе способа эксплуатации и проектировании оптимального режима работы системы пласт-скважина.

Наличие газа в водонефтяной смеси также изменяет свойства последней и поведение рабочей характеристики насоса. Значение оптимального газосодержания дополнительно будет зависеть от свойств нефти и содержания воды в смеси.

Погружной центробежный насос достаточно чувствителен к наличию в откачиваемой жидкости свободного газа. В зависимости от количества свободного газа фактические характеристики насоса деформируются, а при определенном газосодержании насос прекращает подавать жидкость (срыв подачи).

Многочисленные и длительные промысловые исследования работы УЭЦН позволили выделить три качественно различных области работы центробежного насоса, откачивающего газожидкостную смесь. В первой области, характеризующейся небольшим содержанием свободного газа в откачиваемой жидкости, фактические характеристики насоса не отличаются от стендовых характеристик для чистой жидкости (свободный газ отсутствует), а КПД насоса максимален. Давление на приеме насоса, соответствующее небольшому газосодержанию в откачиваемой жидкости, является оптимальным давлением на приеме Ропт. Вторая область работы ЭЦН характеризуется увеличением количества свободного газа в откачиваемой жидкости, вследствие чего реальные характеристики насоса отличаются от стендовых при работе без свободного газа (иногда значительно), но насос сохраняет устойчивую работу при допустимом КПД. Давление на приеме, соответствующее этой области работы насоса со свободным газом, называется допустимым давлением на приеме Рдоп. Третья область работы ЭЦН характеризуется значительным количеством свободного газа в откачиваемой жидкости, вследствие чего нарушается устойчивая работа насоса вплоть до срыва подачи. При этом КПД насоса снижается существенно (вплоть до нуля при срыве подачи), и длительная эксплуатация ЭЦН в этой области становится невозможной.

Давление на приеме, соответствующее этой области работы насоса, называется предельным давлением на приеме Рпред.

Допустимые значения газосодержания на входе в насос по техническим условиям эксплуатации установок составляют 25%, однако на самом деле эта величина колеблется (в зависимости от типоразмера насоса) в пределах 5--25% от объема добываемой продукции.

Известны следующие методы борьбы с газом в скважинах, эксплуатируемых УЭЦН:

1) спуск насоса в зону, где давление на приеме обеспечивает оптимальную подачу насоса и устойчивую ее работу;

2) применение сепараторов различных конструкций;

3) монтаж на приеме насоса диспергирующих устройств;

4) принудительный сброс газа в затрубное пространство;

5) применение комбинированных, так называемых «ступенчатых» (конических), насосов.

Создание на приеме насоса давления, равного давлению насыщения нефти газом или близкого к нему.

Этот метод широко распространен, так как прост технологически и организационно, но является неэкономичным, поскольку для его осуществления требуется спуск насоса на большие глубины, соизмеримые с глубиной скважины. Последнее связано с затратами на насосно-компрессорные трубы, кабель, электроэнергию и спускоподъемные операции, а иногда и невыполнимо по техническим причинам.

Применение сепараторов. Метод предусматривает установку на приеме насоса специальных устройств, разделяющих жидкость и газ, и выброс последнего в затрубное пространство.

В различных нефтедобывающих районах прошло промышленное апробирование как отечественного, так и импортного оборудования. По данным эксплуатации была зафиксирована удовлетворительная работа ЭЦН в течение длительного времени при объемном расходном газосодержании, равном 0,5.

Использование диспергаторов. Применение диспергаторов позволяет увеличить допускаемое значение объемного газосодержания на приеме от 0,10 до 0,25 за счет образования тонкодисперсной структуры тонкодисперсной среды. Диспергаторы устанавливаются как вне, так и внутри насоса взамен нескольких рабочих ступеней. Диспергаторы эффективны в обводненных скважинах, образующих вязкую эмульсию, так как способствуют разрушению ее структуры.

Диспергатор является сильным турбулизатором потока и способствует эффективному выравниванию структуры газожидкостной смеси.

Принудительный сброс газа из затрубного пространства. В процессе эксплуатации скважины часть газа сепарирует из жидкости в области приема в затрубное пространство. Накапливаясь в нем, газ может оттеснить жидкость до приема насоса и, попадая в насос, снизить его подачу или вызвать аварийную работу в режиме сухого трения. Кроме того, газ создает противодавление на пласт, уменьшая приток жидкости.

Известны способы сброса газа из затрубного пространства путем применения автоматически работающих устьевых или скважинных обратных клапанов или эжекторов, отсасывающих газ принудительно (например, система «тандем»).

Применение комбинированных (конических) насосов. «Вредное» влияние газа уменьшается, если на приеме серийного насоса некоторое число ступеней заменить ступенями большей подачи. Обладая большим объемом каналов, эти ступени обеспечивают и большее поступление на прием газожидкостной смеси. При попадании в серийные ступени объем смеси уменьшается за счет сжатия и растворения газа в жидкости, чем и достигается оптимальная подача насоса.

Стабильная работа УЭЦН осуществляется при содержании свободного газа на входе в насос (по техническим условиям) от 5% до 25% в зависимости от типоразмера насоса, при увеличении количества свободного газа происходит ухудшение работы насоса. Газированная жидкость в некоторых случаях, если среда тонкодисперсная и наличие свободного газа не превышает допустимого, может положительно влиять на работу насоса т.к. происходит уменьшение плотности и вязкости откачиваемой смеси. Но, чаще всего, происходит частичное или полное запирание каналов рабочих колес в насосе при большом содержании газа, которое приводит к снижению подачи насоса, снижению наработки насоса на отказ. В некоторых случаях может происходить выход из строя погружного электродвигателя из-за плохого его охлаждение за счет отсутствия потока жидкости.

Газосепараторы предназначены для обеспечения стабильной работы погружного насоса при откачке высокогазированной жидкости.

Применение газосепараторов или диспергаторов позволяет: предотвратить кавитацию и запирание газом рабочих органов насоса, обеспечить необходимую производительность насоса, повысить коэффициент полезного действия. Принцип работы диспергатора заключается в обеспечении необходимого диаметра пузырьков газа в откачиваемой газожидкостной смеси (ГЖС), путем их измельчения; газосепаратора -- в удалении газовой фазы из откачиваемой смеси.

Все виды применяемого оборудования находятся на входе в первую рабочую ступень насоса, т.е. жидкость до входа в насос проходит через дополнительное устройство.

1.12 Принцип действия и конструкции газосепараторов

Мировыми производителями выпускается три типа газосепараторов:

1) гравитационные;

2) вихревые;

3) центробежные.

Применение центробежных газосепараторов является самым надежным средством защиты ЭЦН от вредного влияния свободного газа. От эффективности их работы во многом зависят параметры эксплуатации и наработка на отказ погружного насоса в скважине.

Для отделения газа от жидкости в этих газосепараторах используется плавучесть газовых пузырьков под действием гравитационных или центробежных сил. насос электропривод нефтяной

Гравитационный газосепаратор имеет наименьший коэффициент сепарации, центробежный - наибольший, а вихревой занимает промежуточное положение.

К устройствам предъявляются следующие требования:

1. ликвидация вредного влияния свободного газа, содержание которого больше допускаемого по техническим условиям, что и приводит к срыву подачи насоса;

2. обеспечение минимального диаметрального размера устройства, соответствующего диаметральным размерам насоса определенной габаритной группы;

3. обеспечение необходимой подачи жидкости через рабочие органы устройства для обеспечения устойчивой работы насоса;

4. обеспечение прохождения удлиненного за счет применения устройства, погружного агрегата по всей глубине скважины, особенно - в наклонно-направленных скважинах. Наиболее часто газосепараторы для ЭЦН выполняются

по центробежной схеме. Газосепараторы представляют собой отдельные насосные модули, монтируемые перед пакетом ступеней нижней секции насоса посредством фланцевых соединений. Валы секций или модулей соединяются шлицевыми муфтами.

Одним из первых устройств, запатентованных в нашей стране, был газосепаратор известного российского ученого П. Д. Ляпкова. Принцип действия данного газосепаратора заключается в том, что ротор, вращаясь с валом насоса, создает интенсивное вращательное движение смеси в сепараторе, благодаря чему происходит разделение смеси на жидкость и газ. Газ под действием возникающего при вращении смеси градиента давления выжимается из вращающегося кольца смеси в сторону наименьшего давления, т.е. к центру, а жидкость под действием центробежных сил отбрасывается к периферии внутренней камеры газосепаратора.

Долгое время применялись сепараторы типа 1МНГ5 (рис. 6.15). Газосепаратор 1МНГ5 обеспечивал работу насоса при газосодержании до 50 %. Они успешно работали в широком диапазоне изменения условий эксплуатации. Однако сепаратор имел сложную конструкцию, большую массу, был подвержен абразивному износу и обрыву по корпусу сепаратора. Кроме того, в условиях высоких газосодержаний на многих режимах наблюдалось существенное влияние газа на работу ЭЦН, оборудованных 1МНГ5.

Рис. 15. Газосепаратор типа 1МНГ5

1 - головка; 2 - подшипник; 3 - вал; 4 - сепаратор; 5 - направляющий аппарат; 6 - рабочее колесо; 7 - корпус; 8 - шнек; 9 - основание

Учеными ГАНГ им. И.М. Губкина был предложен новый тип сепарации, на основе которого была разработана конструкция модуля насосного газосепаратора МН-ГСЛ5 (рис. 6.16) к погружным насосам группы 5.Масса нового сепаратора оказалась примерно в 2 раза меньше, чем у 1МНГ5, в частности, за счет упрощения конструкции. Кроме того, в МН-ГСЛ5 предусмотрена защита внутренней поверхности корпуса от абразивного износа. Новый сепаратор позволяет стабильно работать насосу до 80% содержания газа.

насос электропривод нефтяной

Газосепаратор типа МН-ГСЛ состоит из трубного корпуса 1 с головкой 2, основания 3 с приемной сеткой и вала 4 с расположенными на нем рабочими органами. В головке выполнены две группы перекрестных каналов 5, 6 для газа и жидкости и установлена втулка радиального подшипника 7. В основании размещены закрытая сеткой полость с каналами 8 для приема газожидкостной смеси, подпятник 9 и втулка 10 радиального подшипника. На валу размещены пята 11, шнек 12, осевое рабочее колесо 13 с суперкавитирующим профилем лопастей, сепараторы 14 и втулки радиальных подшипников 15. в корпусе размещены направляющая решетка и гильзы.

Газосепаратор работает следующим образом: ГЖС попадает через сетку и отверстия входного модуля на шнек и далее к рабочим органам газосепаратора. За счет приобретенного напора ГЖС поступает во вращающуюся камеру сепаратора, где под действием центробежных сил газ отделяется от жидкости.

Рис. 17. Центробежный сепаратор фирмы REDA

Далее жидкость с периферии камеры сепаратора поступает по каналам переводника на прием насоса, а газ через наклонные отверстия отводится в затрубное пространство.

Газосепараторы выпускают и другие российские производители: ОАО "Борец" и ОАО "Алнас". Предлагаются газосепараторы двух типов: модульные и встроенные в нижнюю секцию насоса.

Все типы отечественных газосепараторов снабжены защитной гильзой, предохраняющей корпус газосепаратора от гидроабразивного износа. Благодаря этому повышается ресурс работы оборудования, уменьшается вероятность аварии.

Для откачивания из скважин нефтяной продукции, представляющей собой ГЖС, установками погружных центробежных насосов фирма REDА предлагает центробежный (рис. 6.17) газосепаратор для случаев с большим газосодержанием (60%).

По данным фирмы, центробежный газосепаратор удаляет из ГЖС до 90% свободного газа.

Несмотря на широкое применение газосепараторов, необходимо отметить и их недостатки:

1. Возможность блокирования скважины газовыми пробками из-за нестабильного поступления газа из скважины, из-за большой обводненности пластовой жидкости, при которой срывное газосодержание примерно пропорционально (1-в), где в - обводненность, или из-за грубой дисперсности газожидкостной смеси с остаточным газом, поступающей в первое рабочее колесо насоса, либо из-за воздействия всех этих факторов.

2. Применение газосепаратора может привести к частичному фонтанированию скважины по затрубному пространству, что, в свою очередь, может привести к его перекрытию из-за отложений парафина и к прекращению функционирования сепаратора.

3. При применении сепаратора практически не используется полезная работа газа при подъеме пластовой жидкости в НКТ, так как большей частью газ направляется в затрубное пространство.

4. Наблюдаются колебания потребляемой насосом с газосепаратором мощности при откачивании ГЖС. Эти колебания при наличии газовой пробки могут привести к частым остановкам по недогрузке, повторным запускам, что снижает надежность работы всей установки.

5. Как показывает промысловая практика установок ЭЦН с газосепараторами, газосепаратор в силу характерных конструктивных признаков (вращение откачиваемой жидкости с содержащимися в них мехпримесями на расстоянии достаточной протяженности) или в силу недостаточной доработанности конструкции может явиться причиной не только отказа, но и «полета» установки.

1.13 Принцип действия и конструкции диспергаторов

Одним из методов борьбы с газом при эксплуатации УЭЦН является применение диспергаторов. Для диспергирования пузырьков газа необходимы высокие градиенты скорости, свойственные вихревому движению. В то же время установлено, что диспергирование происходит постепенно и тонкодисперсная структура достигается через значительное число (50-150) ступеней насоса. Повышение эффективности работы УЭЦН путем специальной подготовки высокодисперсной структуры откачиваемой смеси перед поступлением ее в ступени насоса имеет определенные преимущества по сравнению с предварительным отделением газа от жидкости у приема насоса. Эти преимущества следующие: во-первых, отпадает необходимость в отдельном канале для подъема отсепарированного газа; во-вторых, присутствие определенного количества газовой фазы снижает потери давления в насосных трубах и способствует повышению напора ЭЦН; в-третьих, снижаются затраты энергии на подъем жидкости вследствие усиления газлифтного эффекта в НКТ.

Диспергатор должен отвечать следующим требованиям:

* создавать высокие градиенты скорости;

* обеспечивать диспергирующий эффект значительно выше, чем у отдельной ступени, но не выше, чем у многоступенчатого насоса в целом;

* не допускать больших гидравлических потерь давления;

* иметь механический принцип действия и приводиться в движение валом.

Этим требованиям отвечает конструкция диспергатора, состоящего из нескольких реконструированных ступеней насоса, в рабочих колесах и направляющих аппаратах которого просверлены сквозные отверстия, чем достигается нарушение условия безударного перехода смеси от рабочих колес к направляющим аппаратам. Диспергатор такого типа является сильным турбулизатором потока и способствует эффективному выравниванию структуры газожидкостной эмульсии.

Основные диспергирующие устройства для откачки ГЖС из скважин:

- устройство AGH (Advansed Gas Handling) фирмы REDA;

- диспергатор ОАО "Борец".

Устройство AGH представляет собой пакет ступеней, конструктивно отличающихся от стандартной конструкции ступеней, помещенный в отдельный корпус, а может быть смонтирован в одном корпусе с напорными ступенями насоса. Количество диспергирующих ступеней обычно состоит из 15, а предпочтительное количество диспергирующих ступеней 20-40 в зависимости от диаметра насоса, газосодержания, дебита.

Основным прототипом конструкции диспергирующей ступени является конструкция высокопроизводительной ступени с рабочим колесом, разгруженным от осевой силы при помощи выполненного у колеса второго верхнего уплотнения камеры за ведущим диском колеса, в которой давление с помощью отверстий в диске уравновешивается с давлением у входа в колесо. По сравнению с прототипом в диспергирующей ступени фирмы REDA дополнительно введен второй ряд отверстий (отверстия 1,2; рис. 6.18, а, б). Два ряда отверстий позволяют ограниченному количеству жидкости постоянно циркулировать для уменьшения вероятности образования газовой пробки в области Л, при этом жидкость, циркулирующая через отверстия смешивается с потоком в межлопастных каналах рабочего колеса, что позволяет разбивать газовые пузыри на более мелкие, т.е. диспергировать ГЖС. Этой же цели служат отверстия 3 в лопатках рабочих колес (рис. 6.18, в).

Модули насосные-диспергаторы МНДБ5 (производства ОАО "Борец") предназначены для измельчения газовых включений в пластовой жидкости, подготовки однородной газожидкостной смеси и подачи ее на вход насоса. Диспергаторы МНДБ5 устанавливаются на входе вместо входного модуля. Максимальное допустимое содержание свободного газа на входе в диспергатор при максимальной подаче - 55% по объему. При прохождении потока газожидкостной смеси через диспергатор повышается ее однородность и степень измельченности газовых включений, благодаря чему улучшается работа центробежного насоса: уменьшается его вибрация и пульсация потока в НКТ, обеспечивается работа с заданным КПД. За насосом в НКТ из перекачиваемой жидкости выделяется свободный газ, который, расширяясь, совершает дополнительную работу по подъему жидкости из скважины. В целом, применение диспергатора способствует улучшению условий работы насоса, повышению стабильности его характеристик и увеличению экономичности всей установки погружного центробежного насоса.

1.14 Винтовые насосы для добычи нефти

Винтовой насос представлен на рис. 6.19 и состоит из ротора (рис. 6.19, а) в виде простой спирали (винта) с шагом lр и статора (рис. 6.19, б) в виде двойной спирали с шагом lс, в два раза превышающим шаг ротора, т.е.

lс = 2lр (6.2)

На рис. 6.19 в схематично показана часть винтового насоса в сборе. Основными параметрами винтового насоса являются диаметр ротора D длина шага статора lс и эксцентриситет е. Полости, сформированные между ротором и статором, разделены. При вращении ротора эти полости перемещаются как по радиусу, так и по оси. Перемещение полостей приводит к проталкиванию жидкости снизу вверх, поэтому иногда этот насос называют насосом с перемещающейся полостью.

Ротор представляет собой однозаходный винт с плавной нарезкой и изготавливается из высокопрочной стали с хромированным или иным покрытием против истирания. Статор представляет собой двухзаходную винтовую поверхность с шагом в два раза большим, чем шаг винта ротора, изготавливается из резины или пластического материала и устанавливается в корпусе насоса.

К материалу для статора предъявляются достаточно жесткие требования.

В любом поперечном сечении статора лежит круг, а центры этих кругов лежат на винтовой линии, ось которой является осью вращения ротора. В любом поперечном сечении ротора круговое сечение смещено от оси вращения на расстояние «е», называемое эксцентриситетом.

Поперечные сечения внутренней полости статора вдоль оси одинаковы, но повернуты относительно друг друга; через расстояние, равное шагу статора /с, эти сечения совпадают. Сечение внутренней полости статора представляет собой две полуокружности с радиусом, равным радиусу сечения ротора, центры которых (полуокружностей) раздвинуты на расстояние 4е. При вращении ротора он вращается вокруг собственной оси; одновременно сама ось ротора совершает вращательное движение по окружности диаметром 2е (рис. 6.20).

Спиральный гребень ротора по всей его длине находится в непрерывном контакте со статором; при этом между ротором и статором образуется полость, площадь сечения которой равна произведению диаметра ротора D на расстояние 4е, а осевая длина этой полости равна шагу статора /,. Эта полость заполнена откачиваемой продукцией скважины, и при повороте ротора на один оборот продукция перемещается вдоль его оси на расстояние /с.

Таким образом, фактическая суточная подача винтового насоса Q 3/сут) такова:

Главным конструктивным недостатком одновинтового погружного насоса является возникновение осевой силы за счет перепада давлений на выкиде и приеме, действующей на ротор.

На нефтяных промыслах применяется винтовой насос, состоящий из двух роторов, нагнетающих жидкость навстречу друг другу и имеющих раздельные приемы и общий выкид. Роторы соединены между собой и с погружным электродвигателем валом с эксцентриковыми муфтами; роторы вращаются в одном направлении, но один из них имеет правое направление спирали, а другой -- левое. При этом верхний ротор подает жидкость сверху вниз, а нижний -- снизу вверх. Такая схема уравновешивает осевую нагрузку, действующую на роторы. Эксцентриковые муфты позволяют роторам вращаться не только вокруг своей оси, но и по окружности диаметром Те. Эксцентриковые муфты работают в откачиваемой жидкости.

Для привода винтовых насосов применяют погружной электрический двигатель -- ПЭД. В комплект установки входит автотрансформатор, станция управления со всеми системами автоматики и защиты, устьевая арматура, электрический кабель и погружной агрегат с протектором. Как правило, ПЭД четырехполюсный, маслозаполненный, с гидрозащитой.

Частота вращения вала двигателя примерно 1400 об/мин, поэтому в шифре погружных винтовых установок имеется буква «Т», что означает тихоходный. Снижение частоты вращения вала электродвигателя диктуется принципом действия насоса, у которого с увеличением частоты вращения ухудшаются эксплуатационные характеристики из-за увеличения износа, нагрева и снижения КПД.

Установка спускается в скважину на колонне НКТ. Погружной насос имеет двухсторонний прием продукции и общий выкид в пространство между нижним и верхним роторами. Далее продукция движется по кольцевому зазору между корпусом статора верхнего насоса и корпусом насоса, проходит через специальные наклонные каналы и попадает в головную часть погружного насоса. В головной части имеется многофункциональный предохранительный клапан поршеньково-золотникового типа. Продукция обходит этот клапан по специальным каналам, проходит через шламовую трубу и попадает в колонну НКТ.

В погружных винтовых насосах поршеньково-золотниковый клапан является одним из ответственных элементов и выполняет следующие функции:

-- при спуске погружного агрегата в скважину сообщает затрубное пространство с колонной НКТ (переток жидкости из затрубного пространства в колонну НКТ через насос невозможен);

-- при подъеме погружного агрегата из скважины сообщает полость НКТ с затрубным пространством с возможностью слива жидкости из НКТ;

-- при откачке жидкости с большим содержанием свободного газа или при недостаточном притоке из пласта сбрасывает часть продукции с выкида в затрубное пространство; при нормальной подаче сброс жидкости прекращается;

-- при непредвиденном повышении давления на выкиде насоса, например, за счет закрытия задвижки на устье, клапан срабатывает и сбрасывает жидкость в затрубное пространство (винтовой насос является объемным насосом, поэтому не может работать в режиме закрытой задвижки на нагнетательной линии);

-- исключает работу насоса в режиме сухого трения ротора в статоре, предотвращая поломку насоса;

-- предотвращает снижение динамического уровня до приемной сетки верхнего насоса, сбрасывая часть жидкости с выкида в затрубное пространство; при этом подача установки снижается, срабатывает защита в станции управления, и установка отключается. После восстановления нормального динамического уровня, клапан закрывает спускной канал, и установка переходит в нормальный режим работы с расчетной подачей.

Шламовая труба предназначена для улавливания твердых частиц, которые могут появляться в колонне НКТ (окалина, стеклянная крошка или кусочки эмали при использовании остеклованных или эмалированных труб), и предотвращения их попадания в насос. В противном случае эти частицы попадают в зазор между ротором и статором, приводя к повреждению статора.

Погружные винтовые насосы предназначены для откачки из скважин жидкостей высокой вязкости. Кроме того, эти насосы, являясь объемными, менее чувствительны к наличию в откачиваемой жидкости свободного газа, чем центробежные насосы, допуская более высокое газосодержание на входе в насос. Отсутствие в винтовых насосах клапанных узлов, малая длина самих насосов и их роторов позволяют им работать в практически горизонтальных скважинах. Винтовые насосы приспособлены к перекачке пластовой жидкости с повышенным содержанием механических примесей (до 400 мг/л).

Наиболее слабым элементом погружного винтового насоса является статор, т.к. при откачке продукции с механическими примесями происходит повреждение поверхности статора; кроме того, статор повреждается при недостаточной его смазке. Наличие резиновой обоймы накладывает температурные ограничения на область применения винтовых насосов, температура откачиваемой жидкости должна быть ниже 90 °С. Кроме того, установка имеет недостаточную гибкость по изменению производительности.

Машиностроительная промышленность выпускает винтовые насосы на подачу от 40 до 240 м3/сут, которые показали в определенных эксплуатационных условиях очень хорошие результаты. Эти насосные установки рекомендуются для эксплуатации скважин со следующими условиями:

-- вязкость нефти до 20 Пас;

-- повышенное содержание свободного газа;

-- большие отклонения скважины от вертикали (до 70°). КПД винтовых насосов достигает 80%. Отечественные

винтовые насосы имеют следующий шифр, например, ЭВНТ5А-100-1000: электрический (Э) винтовой (В) насос (Н), тихоходный (Т), под обсадную колонну 5А, с подачей 100 м3/сут и напором 1000 м.

1.15 Гидропоршневые насосы для добычи нефти

Гидравлические поршневые насосные установки (ГПНУ) предназначены для эксплуатации высокодебитных глубоких скважин, продукция которых не содержит механических примесей.

В состав скважинного оборудования входят: скважинный насосный агрегат, колонны НКТ, различные скважинные устройства -- пакеры, якори, центраторы, клапаны-отсекатели и др. Скважинный насосный агрегат включает в себя плунжерный или поршневой насос, плунжерный или поршневой гидравлический двигатель. При этом плунжер насоса соединен штоком с плунжером гидравлического двигателя. К гидравлическому двигателю с поверхности подается силовыми насосами под давлением рабочая жидкость (это может быть подготовленная добытая нефть, отделенная от воды и газа и очищенная от механических примесей). Золотник-распределитель или переключатель гидравлического двигателя направляет рабочую жидкость попеременно в штоковую или рабочую полости цилиндра двигателя, расположенные под и над его поршнем. Поршень двигателя приводится в возвратно-поступательное движение и через шток передает это движение плунжеру насоса. Работа золотника регулируется штоком, соединяющим поршни глубинного агрегата, или специальной системой управления.

Насос отбирает добываемую жидкость. Отработанная рабочая жидкость из двигателя направляется в подъемные трубы, по которым идет жидкость, отбираемая из скважины. На поверхность поднимается их смесь.

На поверхности располагаются насос, подающий рабочую жидкость к скважинному агрегату, и система подготовки рабочей жидкости. Часть жидкости, поднятая из скважины, направляется в промысловую систему сбора продукции, а часть идет в открытую систему подготовки рабочей жидкости, откуда отделенные вода и газ направляются в промысловую сеть, а чистая рабочая жидкость -- в поверхностный насос, рис. 6.21. Открытая система циркуляции и подготовки рабочей жидкости имеет отстойники, сепараторы, устройства для подачи реагентов (например, для разделения стойких эмульсий) и иногда подогреватели. Поверхностные силовые насосы обычно плунжерные, но могут применяться и высоконапорные центробежные насосы.

Применяется также схема с замкнутой циркуляцией рабочей жидкости. В этом случае в скважине должен быть третий трубопровод, по которому рабочая жидкость, отработавшая в двигателе, поднимается на поверхность, не смешиваясь с добытой жидкостью. Таким образом, подготовка рабочей жидкости резко упрощается. Практически в этом случае в основном надо отделить лишь механические примеси (окалина с труб, продукты износа трущихся деталей). Поверхностное оборудование значительно упрощается, но требуется иметь три канала в скважине, что не всегда экономично, а иногда и невозможно.

Целесообразно иметь одну мощную поверхностную систему подготовки жидкости установки на несколько эксплуатируемых скважин (7--40 скважин). Скважинные гидропоршневые насосы при этом могут быть нескольких типоразмеров. В этом случае облегчается обслуживание и уменьшается число единиц оборудования. Такие установки называют групповыми, в отличие от индивидуальных, имеющих у каждой эксплуатируемой скважины поверхностный насос и систему подготовки рабочей жидкости.

ГПНУ в сравнении с другими типами бесштанговых установок обладают следующими преимуществами:

- возможность регулирования в достаточно широком диапазоне основных характеристик;

- высокий КПД установки;

- простота управления;

- упрощение подземного ремонта, т.к. спуск и подъем погружного агрегата осуществляются собственным силовым насосом;

- возможность эффективной эксплуатации наклонно-направленных скважин.

В то же время этим установкам присущи и существенные недостатки:

- сложность и громоздкость наземного оборудования;

- высокая металлоемкость;

- для двухканальных схем необходима специальная подготовка силовой жидкости, в качестве которой используется часть продукции скважин;

- при использовании нефти в качестве рабочей жидкости установка пожароопасна;

- плохая работа с газированной жидкостью;

- высокая стоимость как погружного агрегата, так и наземного оборудования;

- невозможность откачки продукции с механическими примесями.

Современные гидропоршневые установки способны добывать до 400-600 т/сут жидкости, позволяют эксплуатировать скважины с глубиной до 4500 м.

1.16 Диафрагменные насосы для добычи нефти

Диафрагменные насосы являются насосами объемного типа. Основным рабочим элементом насоса является диафрагма, которая отделяет откачиваемую жидкость от контакта с другими элементами насоса.

Скважинный диафрагменный насос приводится в действие погружным электродвигателем. Установка состоит из наземного и погружного оборудования. Наземное оборудование аналогично таковому для эксплуатации скважин винтовыми насосами.

Схема погружного агрегата представлена на рис. 6.22. Глубинный насос состоит из двух частей: верхней, в которой размещена круглая диафрагма 5, делящая эту часть на наддиафрагменную полость и являющаяся, по существу, насосом с нагнетательным клапаном 3 и всасывающим клапаном 4, и нижней поддиафрагменной полости А, которая заполнена маслом. Полость А образована диафрагмой 5, а также парой «цилиндр 8--поршень 9», которые размещены в корпусе 10, в верхней части которого имеется осевой канал 6, сообщающийся с камерой А. Сверху поршень подпружинен винтовой пружиной 7. Между погружным электродвигателем 15 и поршнем 9 имеется камера Б, также заполненная маслом. В нижней части поршень 9 контактирует с эксцентриком 11, закрепленным на оси в опоре 12. На этой же оси закреплено зубчатое колесо 13. Второе

зубчатое колесо 14 закреплено на выходном валу погружного электродвигателя 15. Зубчатые колеса 13 и 14 образуют угловую зубчатую передачу. В нижней части погружного двигателя имеется компенсационная диафрагма 16. Электродвигатель, камеры А и Б заполнены одним и тем же маслом. Камеры А и Б могут сообщаться через специальный клапанный узел 18, расположенный в корпусе 10. Камера А имеет строго определенный объем, а следовательно, и объем масла в ней. Утечки масла из камеры А через зазор «цилиндр--поршень» в камеру Б приводят к открытию клапанного узла 18 и восполнению масла в камере А. Излишки масла в камере А также сбрасываются в камеру Б клапанным узлом 18. Электрическое питание погружному электродвигателю подается по кабелю 17.

...

Подобные документы

  • Принцип работы поршневого насоса, его устройство и назначение. Технические характеристики насосов типа Д, 1Д, 2Д. Недостатки ротационных насосов. Конструкция химических однопоточных центробежных насосов со спиральным корпусом. Особенности осевых насосов.

    контрольная работа [4,1 M], добавлен 20.10.2011

  • Подбор и регулирование центробежных насосов водоснабжения с водонапорной башней при экономичном режиме работы насосной станции. Исследование параллельного и последовательного включений одинаковых насосов и определение оптимальной схемы их соединения.

    контрольная работа [86,7 K], добавлен 20.02.2011

  • Назначение погружных центробежных электронасосов, анализ конструкции и установки. Сущность отечественных и зарубежных погружных центробежных насосов. Анализ насосов фирм ODI и Centrilift. Электроцентробежные насосы ЭЦНА 5 - 45 "Анаконда", расчет мощности.

    курсовая работа [513,1 K], добавлен 30.04.2012

  • Эксплуатация скважин центробежными погружными насосами. Насосы погружные центробежные модульные типа ЭЦНД. Установка ПЦЭН специального назначения и определение глубины его подвески. Элементы электрооборудования установки и погружной насосный агрегат.

    дипломная работа [1,4 M], добавлен 27.02.2009

  • Технология ремонта центробежных насосов и теплообменных аппаратов, входящих в состав технологических установок: назначение конденсатора и насоса, описание конструкции и расчет, требования к монтажу и эксплуатации. Техника безопасности при ремонте.

    дипломная работа [3,8 M], добавлен 26.08.2009

  • Технологические трубопроводы на НПС "Кириши". Неисправности центробежных насосов, способы устранения. Направление потока в уплотнительном кольце типа угольника. Контроль работоспособности узлов и деталей насосов. Послеремонтный диагностический контроль.

    курсовая работа [3,2 M], добавлен 10.05.2015

  • Конструкция и основные параметры центробежных насосов. Характеристика насосной установки. Величины, характеризующие рабочий процесс объемных насосов. Гидроцилиндры одностороннего и двухстороннего действия. Полезная и потребляемая мощность гидромоторов.

    презентация [788,6 K], добавлен 21.10.2013

  • Назначение, устройство и техническая характеристика центробежных насосов. Виды и периодичность технического обслуживания и ремонта оборудования. Описание дефектов и способов их устранения. Техника безопасности при ремонте нефтепромыслового оборудования.

    курсовая работа [1,9 M], добавлен 26.06.2011

  • Фонтанный способ добычи нефти. Оборудование при фонтанном способе добычи нефти. Эксплуатация скважин газлифтным методом, применяемое оборудование. Установки погружных насосов с электроприводом. Вспомогательное скважинное оборудование, классификация ВШНУ.

    курсовая работа [4,0 M], добавлен 29.06.2010

  • Общая и геологическая характеристика района нефтегазоконденсатного месторождения. Изучение технологического процесса, выявление недостатков работы и анализ причин ремонтов скважин. Основные опасности и вредности при эксплуатации нефтяных месторождений.

    дипломная работа [753,5 K], добавлен 16.07.2014

  • Назначение и технические данные установок погружных центробежных насосов, их типы. Анализ аварийного фонда по НГДУ "Лянторнефть". Гидрозащита электродвигателя, предназначенная для предотвращения проникновения пластовой жидкости в его внутреннюю полость.

    дипломная работа [784,0 K], добавлен 31.12.2015

  • Классификация центробежных насосов, скорость жидкости в рабочем колесе. Расчет центробежного насоса: выбор диаметра трубопровода, определение потерь напора во всасывающей и нагнетательной линии, полезной мощности и мощности, потребляемой двигателем.

    курсовая работа [120,8 K], добавлен 24.11.2009

  • Технические характеристики центробежных насосных нефтеперекачивающих агрегатов. Выбор насоса и устранение его дефектов и поломок. Технология ремонта деталей и правки отдельных узлов насосного агрегата АЦНС-240 для закачки воды в продуктивные пласты.

    дипломная работа [2,6 M], добавлен 15.06.2014

  • Описание рабочего процесса объёмных насосов, их виды и характеристики, устройство и принцип действия, достоинства и недостатки. Конструктивные особенности и область применения насосов различных конструкций. Техника безопасности при их эксплуатации.

    реферат [909,2 K], добавлен 11.05.2011

  • Центробежные насосы и их применение. Основные элементы центробежного насоса. Назначение, устройство и техническая характеристика насосов. Капитальный ремонт центробежных насосов типа "НМ". Указания по дефектации деталей. Обточка рабочего колеса.

    курсовая работа [51,3 K], добавлен 26.06.2011

  • Устройство и эксплуатация цепных и ременных передач буровых установок. Коробки перемены передач, муфты сцепления. Характер износа основных деталей трансмиссии насосов буровой установки 3200 ДТУ, технологическая последовательность их капитального ремонта.

    дипломная работа [515,5 K], добавлен 09.06.2016

  • Обоснование и расчет аппарата, применяемого для абсорбции аммиака - насадочного абсорбера с насадкой (керамические кольца Рашига). Осуществление подбора вспомогательного оборудования: теплообменника-рекуператора, центробежных насосов и вентилятора.

    курсовая работа [1,5 M], добавлен 09.03.2015

  • Выполнение эксплуатационного расчета в производительности центробежных насосов (основного и резервного). Составление графика планово-предупредительного ремонта центробежного насоса. Выявление возможных неисправностей и вспомогательного оборудования.

    курсовая работа [560,4 K], добавлен 24.01.2018

  • Насосы и насосное оборудование. Наиболее распространенные типы центробежных насосов. Определяющие технические параметры насоса. Номинальные величины коэффициента полезного действия. Изменение числа оборотов привода. Оптимальный коэффициент диффузорности.

    курсовая работа [697,8 K], добавлен 27.06.2011

  • Устройство скважинных насосов различных типов, область использования, минимальное заглубление. Особенности эксплуатации скважинных насосных установок. Электродвигатели, применяемые для трансмиссионных насосов. Сводный график их напорных характеристик.

    реферат [1,6 M], добавлен 13.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.