Эксплуатация нефтяных скважин

Область применения установок электропогружных центробежных насосов. Промышленные образцы центробежных насосов с электроприводом. Технические характеристики цельнометаллических литых протекторов. Операции при неразвороте или тяжелом пуске установки.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 10.11.2014
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Насос работает следующим образом. Вращение вала двигателя приводит в действие угловую зубчатую передачу. Вместе с вращением зубчатого колеса 13 вращается эксцентрик 11, приводя в возвратно-поступательное движение поршень 9, прижатый к эксцентрику пружиной 7. На схеме рис. 6.22 показано нижнее положение поршня. Так как объем камеры А постоянен, пространство, освобожденное поршнем в цилиндре, заполняется маслом и диафрагма занимает нижнее положение, показанное на рис. 6.22. За время движения поршня вниз давление в наддиафрагменной полости снижается, нагнетательный клапан закрывается, открывается всасывающий клапан, и продукция скважины поступает в наддиафрагменную полость. При ходе поршня вверх давление в камере А повышается, приводя к перемещению вверх и диафрагмы. Давление в наддиафрагменной полости повышается, всасывающий клапан 4 закрывается, а нагнетательный клапан 3 открывается, жидкость из наддиафрагменной полости вытесняется в колонну НКТ. Изменение объема камеры Б при движении поршня изменяет и объем масла в ней. Эти изменения компенсируются компенсационной диафрагмой 16.

Диафрагменные насосные установки предназначены для эксплуатации скважин с агрессивной продукцией, а также содержащей механические примеси. Это связано с тем, что откачиваемая продукция не контактирует с подвижными деталями погружного агрегата, будучи отделенной от них диафрагмой. Установка проста в монтаже и обслуживании.

К недостаткам можно отнести невысокую подачу до 20 м3/сут и очень узкую область применения по подачам и напорам. При подаче 4 м3/сут напор насоса составляет 2000 м, а при подаче 20 м3/сут - всего 600 м.

1.17 Струйные насосы для добычи нефти

Одним из новых и перспективных для нефтепромысловой практики видов добывающего оборудования являются установки струйных насосов (УСН). Струйные аппараты нашли широкое применение в самых различных отраслях, что связано с простотой их конструкции, отсутствием движущихся частей, хорошей надежностью и способностью работать в очень сложных условиях: при высоком содержании в откачиваемой жидкости механических примесей и свободного газа, в условиях повышенных температур и агрессивности инжектируемой продукции.

В настоящее время разработаны струйные насосные установки с наземным и погружным силовым приводом; при этом струйный насос может быть стационарным или вставным (сбрасываемым). Струйные насосные установки с наземным приводом могут быть двухтрубными и однотрубными, но с использованием пакера. Струйные насосные установки с погружным силовым приводом, как правило, однотрубные без пакера. Каждая система имеет преимущества, недостатки и свою область рационального применения. Особое место занимают струйные насосные установки с погружным приводом, в качестве которого используется УЭЦН. Такие установки получили название тандемных установок: они обладают рядом существенных преимуществ перед любыми другими способами механизированной эксплуатации скважин, выводя технологию эксплуатации скважин на более высокий уровень.

Рис. 23. Принципиальная схема струйного насоса:

1 - канал подвода рабочего агента; 2 - активное сопло; 3 - канал подвода инжектируемой жидкости; 4 - камера смешения;

5 - диффузор

Принципиальная схема струйного насоса представлена на рис. 6.23. Насос состоит из следующих элементов: канала подвода рабочего агента 1, активного сопла 2, канала подвода инжектируемой жидкости 3 (в области сопла этот канал часто называют приемной камерой), камеры смешения 4 и диффузора 5. Принцип работы струйного насоса заключается в следующем: рабочий агент, обладающий значительной потенциальной энергией, подводится к активному соплу 2, в котором происходит преобразование части потенциальной энергии в кинетическую. Струя рабочего агента, вытекающая из сопла 2, понижает давление в приемной камере (объем между началом камеры смешения и срезом сопла), вследствие чего часть инжектируемой жидкости (продукция скважины) подмешивается к рабочему агенту и поступает в камеру смешения 4. В камере смешения рабочий агент и инжектируемая жидкость перемешиваются, выравниваются их скорости и давления, и смешанный поток поступает в диффузор 5. В диффузоре происходит плавное снижение кинетической энергии смешанного потока и рост его потенциальной энергии. На выходе из диффузора смешанный поток должен обладать потенциальной энергией, достаточной для подъема его на поверхность. Серийное производство струйных насосов, используемых при эксплуатации скважин, освоено Лебедянским машиностроительным заводом (ЛеМаЗ).

При применении УСН с поверхностным силовым приводом может использоваться однотрубная или двухтрубная система. При однотрубной системе используется пакер, который отделяет всасывающую линию от нагнетательной.

На рис. 6.24 представлена схема стационарной части погружного оборудования УСН, спускаемой на колонне НКТ вместе

Рис. 24. Схема стационарной части погружного оборудования струйной насосной установки:

1 -- колонна НКТ; 2 -- корпус насоса; 3 -- радиальные каналы; 4 -- посадочный конус; 5 -- каналы подвода инжектируемой жидкости; б -- диффузор насоса; 7 -- радиальные отверстия; 8 -- пакер; 9 -- приемный патрубок

с пакером. Эта часть включает колонну НКТ 1, корпус 2 струйного насоса, пакер 8 и приемный патрубок 9. в корпусе струйного насоса выполнены радиальные каналы 3, сообщающие полость посадочного конуса 4 с каналами 5 подвода инжектируемой жидкости, а также размещен диффузор 6, сообщающийся радиальными отверстиями 7 с

затрубным пространством скважины. Подпакерное пространство соединено с насосом патрубком 9.

Широко применяемые для добычи нефти установки погружных электрических центробежных насосов (УЭЦН) можно использовать в качестве силовых приводов струйных насосов, формируя так называемые тандемные установки «ЭЦН-СН». Под тандемными установками будем понимать такие установки для эксплуатации скважин, глубинный насосный агрегат которых представлен, по крайней мере, двумя насосами с различным или одинаковым принципом действия.

На рис. 6.25 приведена принципиальная схема тандемной установки «ЭЦН-СН». Установка включает погружной агрегат УЭЦН 1, спускаемый на колонне НКТ 3, на выкиде которого установлен струйный насос, включающий корпус 2, сопло 4, приемную камеру 5, обратный клапан 6, камеру смешения 7 и диффузор 8.

Тандемная установка работает следующим образом. Продукция скважины, откачиваемая погружным центробежным насосом, подается к соплу 4 струйного насоса, в котором скорость потока возрастает. Истекающая из сопла струя попадает в приемную камеру 5, понижая в ней давление. При этом обратный клапан 6 открывается, и часть продукции скважины (жидкость и отсепарированный на входе в насос свободный газ) поступает в приемную камеру. В камере 7 происходит смешение силовой жидкости (продукции скважины) с инжектируемой из затрубного пространства смесью; здесь формируется мелкодисперсная газожидкостная смесь, которая пройдя диффузор 8, попадает в колонну НКТ 3 и далее поднимается на поверхность.

При разработке тандемных установок исходили из следующих основных требований:

1. Возможность увеличения отбора продукции из добывающих скважин.

2. Максимальное использование сепарирующегося у приема ЭЦН свободного газа для подъема продукции скважины, а также дополнительное выделение газа из раствора за счет снижения давления в сопле и приемной камере с формированием в камере смешения мелкодисперсной смеси (т.е. создания наиболее благоприятной эмульсионной структуры смеси).

Рис. 6.25. Принципиальная схема тандемной установки «ЭЦН-

СН»: 1 -- погружной агрегат УЭЦН; 2 -- корпус струйного насоса; 3 -- колонна НКТ; 4 -- сопло; 5 -- приемная камера; б -- обратный клапан; 7 -- камера смешения; 8 --Диффузор

3. Повышение КПД установки за счет исключения канала подачи силовой (рабочей) жидкости (снижение гидравлических потерь) и за счет наиболее полного и эффективного использования энергии свободного газа (увеличение газлифтного эффекта).

4. Упрощение конструкции установки со струйным насосом, повышение надежности ее работы и снижение металлоемкости (исключается вариант двухрядного подъемника или отпадает необходимость использования пакера, отпадает также необходимость специальной подготовки рабочей жидкости и обслуживания всего поверхностного оборудования УСН).

5. Упрощение и сокращение сроков подземного ремонта скважины.

Кроме этого, учитывая характеристики Q--Н ЭЦН и струйного насоса, можно говорить о гибкости тандемной установки и автоматической перестройке режима ее работы при изменении условий эксплуатации, связанных с изменением пластового давления, свойств продукции и продуктивности скважины; при этом ЭЦН работает в области оптимального режима.

Практика широкомасштабного промышленного применения тандемных установок «ЭЦН-СН» вскрыла еще одно чрезвычайно важное их преимущество перед всеми известными установками для добычи нефти: возможность вызова притока, освоения и вывода на проектный режим работы скважин любых категорий сложности, которые не могут быть освоены известными способами за разумное время, т.е. при допустимой стоимости процесса освоения.

Технология применения тандемных установок позволяет:

-- стабилизировать режим работы системы «погружная установка--скважина--пласт», а также легко регулировать забойное давление и дебит скважины;

-- установить и поддерживать оптимальный режим работы УЭЦН при неконтролируемом изменении условий эксплуатации (пластовое давление, обводненность и др.);

-- облегчить и ускорить вызов притока и вывод скважины на установившийся режим работы после ее глушения или остановки;

-- эффективно использовать отсепарированный на входе в ЭЦН свободный газ в процессе подъема продукции путем его перепуска из затрубного пространства через струйный насос в колонну НКТ с созданием благоприятной структуры газожидкостной смеси; *

--предотвратить фонтанирование скважины по затрубному пространству с образованием в нем парафиновых и гидратных пробок;

-- улучшить охлаждение погружного электродвигателя;

-- снизить и стабилизировать токовые нагрузки погружного электродвигателя;

-- повысить наработку на отказ элементов погружной установки;

-- повысить КПД добывающей системы.

1.18 Вибрационные насосы для добычи нефти

Исследования вибрационного или звукового насоса для эксплуатации скважин показало возможность его практического применения для подъема продукции скважин, в том числе со значительным содержанием механических примесей.

В основе вибрационного насоса лежит использование энергии чередующихся во времени удлинений и сжатий колонны насосно-компрессорных труб при действии на нее переменной возмущающей силы.

Схема вибронасосной установки приведена на рис. 6.26. Установка состоит из колонны обычных насосно-компрессорных труб 1, в муфтовых соединениях которой установлены шариковые клапаны 2. В отличие от шариковых клапанов глубинных плунжерных насосов шарики клапанов вибрационного насоса должны иметь меньшую массу; поэтому они изготавливаются из легких материалов на основе алюминия, пластических материалов и т.п. Клапан с принудительной посадкой шарика винтовой пружиной. Во избежание самоотворачивания труб, вследствие колебаний колонны муфты имеют специальные стопоры 3; снижение трения колонны НКТ в обсадной колонне достигается установкой центраторов 4.

Рис. 26. Принципиальная схема вибронасосной установки:

1-- колонна НКТ; 2 -- шариковый клапан; 3 -- стопор; 4 -- центратор НКТ; 5 -- опорная плита; 6 -- пружины; 7 -- вибрационная плита; 8 -- вибратор; 9 -- гибкий шланг; 10 -- муфта НКТ;

11 -- седло шарикового клапана; 12 -- шарик; 13 -- пружина клапана; 14 -- упор пружины клапана

На устье колонна НКТ подвешивается на вибрационной плите 7, которая через несколько винтовых пружин 6 опирается на опорную плиту 5. Жесткость пружин рассчитана таким образом, что под действием веса колонны НКТ не происходит их просадки; в то же время при работе насоса колонна НКТ может совершать вертикальные колебания с амплитудой 10-15мм.

Для сообщения колонне труб колебаний на верхнем конце ее установлен специальный вибратор 8, состоящий из двух маховиков с эксцентриками, вращающимися в противоположных направлениях. Встречное движение маховиков обеспечивается зубчатой передачей. Так как маховики вращаются навстречу друг другу, эксцентрики перемещаются вверх или вниз одновременно; в горизонтальной же плоскости один движется влево, другой -- вправо, устраняя горизонтальные колебания и усиливая -- вертикальные. Привод вибратора осуществляется от электродвигателя или двигателя внутреннего сгорания.

В результате работы вибратора от верхнего конца колонны НКТ распространяются упругие колебания со скоростью звука в материале труб (стали) примерно 5000 м/с, а в откачиваемой продукции -- со скоростью 1000-1500 м/с. При равенстве частоты вынужденных колебаний и собственной частоты системы различные участки колонны труб то растягиваются, то сжимаются с достаточно высокой частотой. Во избежание разрушения колонны труб необходимо соблюдение условия: напряжение от создаваемых колебаний не должно превышать предела упругости материала труб.

Насос работает следующим образом. Так как нижняя часть колонны труб погружена в откачиваемую жидкость, а колонна во время колебания растягивается на 10-15 мм с ускорением, превышающим ускорение свободного падения g, жидкость, приподнимая шарик, движется вверх. В следующий момент, когда колонна сжимается, шарик садится в седло, перекрывая путь движению жидкости вниз. Вследствие повторения циклов «растяжение--сжатие» жидкость поднимается до устья, где отводится в сборную емкость через гибкий шланг 9.

Так как клапаны установлены в каждом муфтовом соединении колонны НКТ (примерно через 8 м), каждый клапан подвергается давлению столба жидкости высотой 8 м, что не является большой величиной и не вызывает практического износа клапанов (шариков и седел), а также позволяет откачивать жидкость со значительным содержанием механических примесей. Расчетная подача таких установок колеблется в пределах 2 - 150 м3/сут.

Установлено, что практически не существует предельной глубины, с которой возможна откачка жидкости вибронасосом. При этом при глубинах спуска более 2000 м большая часть веса колонны НКТ может передаваться на обсадную колонну через специальные устройства, устанавливаемые в обсадной колонне.

Основные преимущества вибронасоса следующие:

1. Невысокая стоимость изготовления и эксплуатации.

2. Простота наземного оборудования и малая металлоемкость.

3. Возможность откачки жидкости с песком.

4. Возможность использования в искривленных скважинах.

5. Высокая наработка на отказ.

6. Сравнительно высокий КПД установки.

Но этому насосу присущи и существенные недостатки:

1. Невозможность механической очистки труб от отложений парафина.

2. Ухудшение показателей работы насоса при откачке парафинистой нефти вследствие отложения парафина в клапанах.

3. Возможность усталостных разрушений колонны НКТ.

Следует отметить, что вибрационные насосы можно отнести к перспективным техническим средствам эксплуатации скважин, в том числе и для шельфовых месторождений.

1.19 Гидроимпульсные насосные установки для добычи нефти

Работа гидроимпульсного насоса основана на принципе преобразования энергии упругих волн, индуцируемых в столбе жидкости в рабочих трубках, в полезную работу, в частности преобразования энергии упругих волн силовой жидкости, возникающих при гидравлических импульсах (изменение давления в потоке жидкости в зависимости от скорости течения потока). При этом различают положительный гидравлический импульс, когда давление в трубопроводе повышается, и отрицательный, когда давление в трубопроводе падает.

Рабочий цикл гидроимпульсного насоса разделяется на два полупериода: зарядки, когда расходуется силовая жидкость с постоянной скоростью, и разрядки, когда жидкость всасывается из скважины с той же скоростью.

Оптимальным условием работы гидроимпульсного насоса является синхронизация частоты перемещения распределительного устройства и волновых процессов в рабочих трубках.

Рис. 6.27. Схемы гидроимпульсной насосной установки:

а - общий вид установки; б - скважинного агрегата; в - управления распределительным клапаном; г - эффективного привода распределительного клапана УГИН

В этом случае подача установки зависит только от расхода силовой жидкости или от давления на силовом насосе, поскольку гидравлические потери являются также функцией расхода. Гидравлические потери установки суммируются из потерь в рабочих узлах глубинного агрегата и потерь в подводящем канале (трубопроводах, НКТ).

Оптимальная синхронизация работы распределительного клапана и собственной частоты колебаний жидкости в рабочих трубках возможна, если перемещение распределительного клапана управляется импульсами. Неустойчивость распределительного клапана 9 в крайних положениях возникает вследствие закрепления на нем шайбы 13. В любом крайнем положении клапана один из отводных каналов А для жидкости закрыт, и весь поток проходит через противоположный поток Б. В радиальной щели скорость потока возрастает, а давление снижается. С противоположной стороны шайбы жидкость находится в покое, поэтому там нет перепада давления. Длина рабочих трубок подбирается и рассчитывается так, чтобы продолжительность переключения составляла 1 --3 % рабочего цикла. Этому способствует также уменьшение щели, снижение массы распределительного клапана с шайбой путем применения легких полимерных материалов. Рабочие трубки, поочередно соединяясь с нагнетательной трубой при помощи распределительного клапана, получают от силовой жидкости импульсную энергию, которая после отключения рабочих трубок от нагнетательной трубы превращается в полезную работу по подъему жидкости из скважины через нагнетательные клапаны.

Относительно высокие КПД и подача гидроимпульсных установок, особенно на больших глубинах порядка 3000 м, свидетельствуют об их перспективности в нефтяной отрасли.

Преимущества, которыми обладает гидроимпульсный насос по сравнению с существующими типами насосов:

1) отсутствие в стволе скважины длинной механической связи глубинного агрегата с наземным приводом (ШСНУ) или электрокабеля (УЭЦН);

2) возможность использования потоков рабочей жидкости не только для передачи энергии для привода забойного агрегата, но и для проведения многих технологических операций, например, передачи к забою химических реагентов, тепла, растворителей и т.д.;

3) возможность осуществления наземного группового привода на кустах скважин, что позволяет увеличить технологические возможности.

К очевидным недостаткам можно отнести неотработанность конструкций гидроимпульсных насосных установок.

1.20 Турбонасосные установки для добычи нефти

Турбонасосные установки предназначены для добычи нефти из скважин средних и высоких дебитов и представляют собой сложный агрегат с лопастной турбиной и центробежным насосом (рис. 6.28).

Турбонасосный агрегат включает в себя лопастную турбину, вал которой соединен с валом центробежного насоса. Турбина приводится в действие при закачке в нее с поверхности рабочей жидкости. Центробежный насос отбирает из скважины

жидкость и нагнетает ее на поверхность. Рабочая жидкость, отработавшая в турбине, выходит в тот же канал, что и добытая жидкость, и в смеси с ней поднимается на поверхность. На поверхности смесь разделяется, и добытая жидкость с нефтью идет в промысловую сеть, а рабочая жидкость (в большинстве случаев вода) поступает в поверхностный насос и далее в скважину для привода погружной турбины.

Такие насосы предназначены для отбора больших количеств жидкости из скважин (400--500 м3/сут и более) с относительно малых глубин (в опытных образцах 200--1000 м).

Преимущество такой насосной установки -- возможность отбора больших количеств жидкости из скважины при достаточно высокой эффективности (КПД около 0,3--0,25). При

этом возможна эксплуатация наклонно-направленных скважин. Установка может быть выполнена сбрасываемой в скважину при увеличенной частоте вращения вала. Это существенно снижает объем ремонтных работ на скважине.

Однако недостатки этой установки пока не преодолены. Большие объемы рабочей жидкости, закачиваемой в скважину, требуют обустройства ее каналами со значительными проходными сечениями. В скважинах с обсадными колоннами диаметром 146 и 168 мм это трудновыполнимо. На поверхности необходимо организовать очистку и подготовку больших количеств рабочей жидкости, что приводит к установке металлоемкого оборудования, требует затрат на его обслуживание.

Рис. 28. Турбонасосная установка для добычи нефти

1 - система очистки и подготовки рабочей жидкости; 2- силовой насос;

3 - устьевая арматура;

4 - скважина;

5 - колонна труб;

6 - турбина;

7 - центробежный насос;

8 - пакер

Кроме того, существуют особые конструкции турбонасосов для работы при более высоких температурах.

Турбонасосы имеют следующие преимущества:

- отсутствие погружного электродвигателя и кабеля исключает все сложности выполнения спускоподъемных операций в скважинах со значительной кривизной ствола, позволяет использовать турбонасосы для подъема жидкостей с высокими температурами, в том числе из геотермальных скважин;

- незначительная габаритная длина скважинного агрегата по сравнению с электроприводными центробежными насосами дает возможность применять его в скважинах с большой интенсивностью набора кривизны, облегчает транспортные и монтажные работы;

- отсутствие клапанов в скважинном насосном агрегате обусловливает использование турбонасоса практически, без ограничений по кривизне ствола скважин вплоть до горизонтальных;

- подшипники насоса и турбины гидростатического типа, что обеспечивает прочную и надежную работу опоры ротора агрегата; смазка подшипников выполняется предварительно очищенной и подготовленной жидкостью, что защищает подшипники от воздействия абразивных компонентов скважинной жидкости;

- гибкость регулирования рабочих характеристик, широкий рабочий диапазон плавного изменения подачи насоса;

- возможность применения скважинного турбонасосного агрегата сбрасываемого типа;

- неограниченность глубины спуска турбонасоса;

- в скважину могут вводиться различные химические реагенты, ингибиторы, деэмульгаторы и др.;

-- можно применить различные методы глушения скважин перед подземным ремонтом, в том числе при нахождении турбонасосного агрегата в скважине.

1.21 Сравнение различных способов эксплуатации нефтяных скважин

Проблема повышения эффективности выработки запасов углеводородного сырья органически связана не только с решением ряда вопросов по выбору оптимального в данных условиях способа эксплуатации, но и с разработкой новых средств и технологий подъема продукции скважин, таких, например, как тандемные установки.

Относительный выбор наилучшего для данных условий способа эксплуатации является одной из основных задач, особенно в процессе составления проекта разработки месторождения. При выборе способа эксплуатации скважин в качестве основ-

ТабмщабЗ

Сравнительные возможности разных способов эксплуатации нефтяных скважин

Факторы осложняющие эксплуатацию

Оборудование для подъема жидкости из скважин

Штанговые

Электроприводные

Гидроприводные

Газлифт

Плунжерные

Винтовые

Центробежные

Диафрагменные

Поршневые

Струйные

Море

X

X

XX

XX

XXX

XXX

XX

Пустыня

XX

XX

X

X

XX

XXX

XX

Городская зона

0

XX

XX

XX

XXX

XXX

XX

Одиночные скважины

XXX

X

X

X

XXX

XXX

0

Куст скважин

X

XX

XX

XX

XXX

XXX

XXX

Большая глубина

X

0

0

0

XXX

XXX

XX

Низкое забойное давление

XXX

XX

XX

XX

XXX

X

X

Высокая температура

XX

0

0

0

XX

XXX

XXX

Вязкая жидкость

X

XXX

0

0

XX

XX

X

Коррозионная жидкость

X

X

0

XXX

XXX

XXX

XX

Наличие песка

X

0

0

XXX

X

X

XX

Солеотложения

X

X

X

XX

XX

XX

0

Опасность образования

эмульсии

XX

XX

X

X

XXX

0

X

Высокий газовый фактор

X

X

0

0

X

XX

XX

Примечание: Оценка работы: 0 - плохо, X - удовлетворительно, XX - хорошо, XXX ных необходимо рассматривать технические, технологические, эксплуатационные и экономические показатели.

Обобщенные сведения о возможностях разных способов эксплуатации нефтяных скважин представлены в таблице 6.3.

Контрольные вопросы:

1. Основные элементы УЭЦН и их назначение.

2. Характеристика модульных ЭЦН.

3. Что входит в маркировку ЭЦН?

4. Как проводится подбор УЭЦН к скважине?

5. Какие параметры контролируются в процессе эксплуатации ЭЦН?

6. Какие виды работ проводятся при монтаже ЭЦН?

7. Как проводится запуск ЭЦН в работу?

8. Методы борьбы с газом при эксплуатации УЭЦН.

9. Устройство и работа газосепараторов.

10.Назначение и принцип работы диспергаторов.

11. Устройство и область применения винтовых насосов.

12. Устройство и область применения гидропоршневых насосов.

13. Устройство и область применения диафрагменных насосов.

14. Назначение и работа обратного и спускного клапанов в ЭЦН

15. Из чего состоит кабельная линия ЭЦН?

Размещено на Allbest.ru

...

Подобные документы

  • Принцип работы поршневого насоса, его устройство и назначение. Технические характеристики насосов типа Д, 1Д, 2Д. Недостатки ротационных насосов. Конструкция химических однопоточных центробежных насосов со спиральным корпусом. Особенности осевых насосов.

    контрольная работа [4,1 M], добавлен 20.10.2011

  • Подбор и регулирование центробежных насосов водоснабжения с водонапорной башней при экономичном режиме работы насосной станции. Исследование параллельного и последовательного включений одинаковых насосов и определение оптимальной схемы их соединения.

    контрольная работа [86,7 K], добавлен 20.02.2011

  • Назначение погружных центробежных электронасосов, анализ конструкции и установки. Сущность отечественных и зарубежных погружных центробежных насосов. Анализ насосов фирм ODI и Centrilift. Электроцентробежные насосы ЭЦНА 5 - 45 "Анаконда", расчет мощности.

    курсовая работа [513,1 K], добавлен 30.04.2012

  • Эксплуатация скважин центробежными погружными насосами. Насосы погружные центробежные модульные типа ЭЦНД. Установка ПЦЭН специального назначения и определение глубины его подвески. Элементы электрооборудования установки и погружной насосный агрегат.

    дипломная работа [1,4 M], добавлен 27.02.2009

  • Технология ремонта центробежных насосов и теплообменных аппаратов, входящих в состав технологических установок: назначение конденсатора и насоса, описание конструкции и расчет, требования к монтажу и эксплуатации. Техника безопасности при ремонте.

    дипломная работа [3,8 M], добавлен 26.08.2009

  • Технологические трубопроводы на НПС "Кириши". Неисправности центробежных насосов, способы устранения. Направление потока в уплотнительном кольце типа угольника. Контроль работоспособности узлов и деталей насосов. Послеремонтный диагностический контроль.

    курсовая работа [3,2 M], добавлен 10.05.2015

  • Конструкция и основные параметры центробежных насосов. Характеристика насосной установки. Величины, характеризующие рабочий процесс объемных насосов. Гидроцилиндры одностороннего и двухстороннего действия. Полезная и потребляемая мощность гидромоторов.

    презентация [788,6 K], добавлен 21.10.2013

  • Назначение, устройство и техническая характеристика центробежных насосов. Виды и периодичность технического обслуживания и ремонта оборудования. Описание дефектов и способов их устранения. Техника безопасности при ремонте нефтепромыслового оборудования.

    курсовая работа [1,9 M], добавлен 26.06.2011

  • Фонтанный способ добычи нефти. Оборудование при фонтанном способе добычи нефти. Эксплуатация скважин газлифтным методом, применяемое оборудование. Установки погружных насосов с электроприводом. Вспомогательное скважинное оборудование, классификация ВШНУ.

    курсовая работа [4,0 M], добавлен 29.06.2010

  • Общая и геологическая характеристика района нефтегазоконденсатного месторождения. Изучение технологического процесса, выявление недостатков работы и анализ причин ремонтов скважин. Основные опасности и вредности при эксплуатации нефтяных месторождений.

    дипломная работа [753,5 K], добавлен 16.07.2014

  • Назначение и технические данные установок погружных центробежных насосов, их типы. Анализ аварийного фонда по НГДУ "Лянторнефть". Гидрозащита электродвигателя, предназначенная для предотвращения проникновения пластовой жидкости в его внутреннюю полость.

    дипломная работа [784,0 K], добавлен 31.12.2015

  • Классификация центробежных насосов, скорость жидкости в рабочем колесе. Расчет центробежного насоса: выбор диаметра трубопровода, определение потерь напора во всасывающей и нагнетательной линии, полезной мощности и мощности, потребляемой двигателем.

    курсовая работа [120,8 K], добавлен 24.11.2009

  • Технические характеристики центробежных насосных нефтеперекачивающих агрегатов. Выбор насоса и устранение его дефектов и поломок. Технология ремонта деталей и правки отдельных узлов насосного агрегата АЦНС-240 для закачки воды в продуктивные пласты.

    дипломная работа [2,6 M], добавлен 15.06.2014

  • Описание рабочего процесса объёмных насосов, их виды и характеристики, устройство и принцип действия, достоинства и недостатки. Конструктивные особенности и область применения насосов различных конструкций. Техника безопасности при их эксплуатации.

    реферат [909,2 K], добавлен 11.05.2011

  • Центробежные насосы и их применение. Основные элементы центробежного насоса. Назначение, устройство и техническая характеристика насосов. Капитальный ремонт центробежных насосов типа "НМ". Указания по дефектации деталей. Обточка рабочего колеса.

    курсовая работа [51,3 K], добавлен 26.06.2011

  • Устройство и эксплуатация цепных и ременных передач буровых установок. Коробки перемены передач, муфты сцепления. Характер износа основных деталей трансмиссии насосов буровой установки 3200 ДТУ, технологическая последовательность их капитального ремонта.

    дипломная работа [515,5 K], добавлен 09.06.2016

  • Обоснование и расчет аппарата, применяемого для абсорбции аммиака - насадочного абсорбера с насадкой (керамические кольца Рашига). Осуществление подбора вспомогательного оборудования: теплообменника-рекуператора, центробежных насосов и вентилятора.

    курсовая работа [1,5 M], добавлен 09.03.2015

  • Выполнение эксплуатационного расчета в производительности центробежных насосов (основного и резервного). Составление графика планово-предупредительного ремонта центробежного насоса. Выявление возможных неисправностей и вспомогательного оборудования.

    курсовая работа [560,4 K], добавлен 24.01.2018

  • Насосы и насосное оборудование. Наиболее распространенные типы центробежных насосов. Определяющие технические параметры насоса. Номинальные величины коэффициента полезного действия. Изменение числа оборотов привода. Оптимальный коэффициент диффузорности.

    курсовая работа [697,8 K], добавлен 27.06.2011

  • Устройство скважинных насосов различных типов, область использования, минимальное заглубление. Особенности эксплуатации скважинных насосных установок. Электродвигатели, применяемые для трансмиссионных насосов. Сводный график их напорных характеристик.

    реферат [1,6 M], добавлен 13.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.