Композитные наноматериалы
Нанокомпозиты как материалы, сформированные при введении наноразмерных частиц (наполнителей) в структурообразующую твердую фазу (матрицу). Общие закономерности их строения, а также основные факторы, влияющие на свойства. Типы и направления использования.
Рубрика | Производство и технологии |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 13.11.2014 |
Размер файла | 884,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Разрабатывают керамические биологически совместимые и биологически активные материалы медицинского назначения для реконструкции дефектов костных тканей и изготовления имплантатов, несущих физиологические нагрузки. Например, прочность фиксации титановых имплантатов с фосфатно-кальциевым покрытием в 4 раза выше, чем таковая для имплантатов без покрытия. Фосфатно-кальциевые цементы уже широко применяются в стоматологии и костной хирургии.
Интерметаллиды по своим характеристикам занимают среднее положение между металлом и керамикой. Они имеют более высокую пластичность и вязкость разрушения, чем керамика. Такие свойства интерметаллидов, как температура плавления, модуль Юнга и отношение модуля Юнга к плотности, для интерметаллидов выше, чем для соответствующих металлов. Относительное удлинение интерметаллидов значительно увеличивается с уменьшением размера зерна.
Например, интерметаллиды на основе алюминидов титана являются перспективными материалами для применения в авиакосмической промышленности благодаря их высокой жаропрочности, жаростойкости, высокой удельной прочности и модулю упругости, однако недостатком алюминидов титана является низкая пластичность (1-3%).
Методом всесторонней изотермической ковки получены интерметаллиды с размером зерен 100-500 нм, обладающие высокой пластичностью при комнатной температуре (10-20%) и сверхпластичностью при температурах на 200-400°С ниже, чем для аналогов с микронным размером зерен. Рост пластичности таких алюминидов титана при комнатной и повышенных температурах обусловлен повышенной релаксационной способностью границ зерен, которые благодаря этому способны обеспечить релаксацию напряжений в вершине дислокационных скоплений. Это значительно облегчает прокатку сплавов при комнатной температуре для изготовления листовых и фольговых заготовок.
Для получения наноструктурных покрытий используют различные методы: плазменное нанесение покрытий, физическое осаждение из газовой фазы (PVD), магнетронное напыление, химическое осаждение из газовой фазы (CVD), электролитическое осаждение и другие методы.
Исследования трибологических характеристик детонационных покрытий из наноструктурированных (с размером зерна карбида вольфрама 17 нм) и крупнозернистых порошков твердых сплавов на основе карбида вольфрама с кобальтом показали, что наноструктурированное покрытие имеет предельную нагрузку, при которой наблюдается катастрофическое разрушение поверхности, на 20% выше, чем крупнозернистое покрытие. Коэффициент трения наноструктурированного покрытия на 40-50% меньше, чем для крупнозернистого покрытия.
Методом плазменного нанесения и лазерного оплавления получены износостойкие металлокерамические покрытия с ультрадисперсной упрочняющей фазой оксида алюминия для тяжелонагруженных узлов трибосопряжений. По критериям износостойкости, задиростойкости и антифрикционности разработанные покрытия значительно эффективнее твердого электролитического хромирования, а по экономическим показателям в условиях серийного производства и по экологии процесса существенно лучше. Например, нанесение таких покрытий на внутреннюю цилиндрическую поверхность корпуса роторно-пластинчатого насоса для перекачки травящего раствора в производстве печатных плат позволило в условиях серийного производства повысить ресурс работы насосов более чем в 20 раз.
Наноматериалы конструкционного назначения получают в основном методами порошковой металлургии, кристаллизацией из аморфного состояния и интенсивной пластической деформацией. Особенности структуры таких наноматериалов (размер зерен, значительная доля границ раздела и их состояние, пористость и другие дефекты структуры) определяются методами их получения и оказывают существенное влияние на их свойства. Конструкционные наноматериалы обладают высокими эксплуатационными свойствами: прочностью при достаточно высоком уровне пластичности; твердостью; износостойкостью; низкотемпературной и высокоскоростной сверхпластичностью; повышенным сопротивлением малоцикловой и многоцикловой усталости; высокодемпфирующими свойствами. Повышенная низкотемпературная пластичность интерметаллидов и керамики повышает возможность их обработки и получения новых конструкционных материалов.
Это, в свою очередь, позволяет создавать принципиально новые устройства, конструкции и приборы с параметрами, недостижимыми при использовании традиционных материалов. Например, повышение конструкционной прочности и износостойкости материалов при сохранении достаточной пластичности позволит: увеличить надежность и долговечность инструмента, деталей, машин и конструкций, уменьшить расход металла на изготовление машин и конструкций, увеличить полезную грузоподъемность различных видов транспорта, увеличить скорость движения машин, уменьшить расход топлива и загрязнение окружающей среды.
В машиностроении создание новых нанокристаллических материалов, покрытий и упрочняющих слоев приводит к оптимизации конструкций, повышению их надежности, энерго- и ресурсосбережению, улучшению трибологических, противоизносных и прочностных свойств изделий. Создание наноматериалов с повышенными физико-механическими свойствами имеет существенное значение при создании ряда новых изделий космической, электротехнической и медицинской nехники.
7. Нанокомпозиты, содержащие металлы или полупроводники
Исследования в области наноструктурных материалов позволили определить особенности структуры, состав и свойства дисперсионно-упрочненных сплавов на основе Al и Cu и разработать технологию и оборудование для их промышленного производства. При этом получены следующие размеры частиц: 20 нм для оксидов и нитридов, синтезированных при механическом легировании, и до 100 нм для интерметаллидов и карбидов. Разработаны антифрикционные сплавы Al-Pb-MO, высокопрочные сплавы Al-La, сплавы Al-Si с низким коэффициентом температурного расширения, а также сплавы Al-B с высоким эффективным сечением захвата нейтронов вплоть до 450°С. Электроды на основе сложных сплавов Cu для контактной сварки имеют срок службы в 2,5-3 раза превышающий срок службы стандартных электродов.
Нанокомпозиты, содержащие металлы или полупроводники привлекают внимание прежде всего уникальными свойствами входящих в их состав кластеров, образованных разным количеством атомов металла или полупроводника - от десяти до нескольких тысяч. Типичные размеры такого агрегата - от 1 до 10 нм, что соответствует огромной удельной поверхности. Подобные наночастицы отличаются по свойствам (ширине полосы поглощения, спектральным характеристикам, электронному переносу) как от блочного материала, так и индивидуального атома или молекулы, причем полупроводниковые особенно сильно, даже если размер частицы достигает сотен нанометров. Так, при переходе от нанокристалла CdS к макрокристаллу ширина запрещенной зоны уменьшается от 4.5 до 2.5 эВ, время жизни на нижнем возбужденном уровне увеличивается от пикосекунд до нескольких наносекунд, от 400 до 1600°С повышается температура плавления. Нелинейные оптические свойства нанокластеров позволяют создавать на их основе управляемые квантовые светодиоды для применения в микроэлектронике и телекоммуникации.
Наночастицы проявляют также суперпарамагнетизм и каталитические свойства. При использовании кластеров металлов в качестве катализаторов наночастицы стабилизируют, например, в растворе с помощью поверхностно-активных соединений или на подложке из полимерной пленки. Несмотря на сравнительно невысокую термическую стабильность, полимерные материалы довольно часто служат матрицей, фиксирующей нанокластеры. В зависимости от того, какие свойства хотят придать конечному продукту, используют либо прозрачный полимер, либо проницаемый, либо электропроводящий и легко перерабатываемый.
Металлические (и полупроводниковые) нанокластеры можно приготовить по-разному: испарением или распылением металлов, восстановлением их солей и другими способами. В одной из первых работ кластеры серебра, золота или палладия размером 1-15 нм были диспергированы в пленку полистирола (или полиметилметакрилата) в ходе полимеризации жидкого мономера, в который предварительно осаждался металл из паров. Судя по структурным исследованиям, металлические кластеры при этом объединяются в агломераты разной величины - вплоть до нескольких десятков нанометров. Похожую структуру имеют композитные пленки, полученные одновременным осаждением паров металла и плазменной полимеризацией бензола или гексаметилдисилазана.
Схема получения нанокомпозиционных пленок (вверху) и установка для проведения этого процесса. Х - разные заместители
Такой способ имеет целый ряд преимуществ по сравнению с другими: он позволяет получать тонкие пленки, содержащие атомы разных металлов и других веществ (например, фуллерен С60); легко варьировать концентрацию компонентов; создавать нанокомпозиты высокой чистоты. Оказалось, что синтезированные этим методом нанокомпозиты на основе разных металлов или полупроводников и поли-п-ксилилена обладают необычными фотофизическими, магнитными, каталитическими и сенсорными свойствами. Примечательно, что все они, как выяснилось, определяются концентрацией неорганической составляющей. При низком содержании металла наночастицы не взаимодействуют между собой, поскольку разделены матрицей. В этом случае электросопротивление исследуемых пленок максимально - ~1012 Ом. Если концентрацию металла увеличить настолько, чтобы возникла перколяция - обмен зарядами между его наночастицами, сопротивление образцов может снизиться до 100 Ом.
Металлсодержащие полимерные нанокомпозиты с такими крайними свойствами по-разному проявляют себя и в каталитических реакциях. В частности, при низком содержании палладия в композиционном материале в катализируемой этим металлом изомеризации 3,4 - дихлорбутена цис - 1,4 - изомера образуется в 10 раз больше, чем транс-формы. (Заметим, такое же соотношение бывает в реакции, когда катализатором служит массивная пластинка палладия.) При высокой концентрации палладия выход транс-формы увеличивается втрое.
Поведение в магнитном поле полимерного нанокомпозита проявляет сходный характер. Так, при высоком содержании в нем железа магнитосопротивление на 40% ниже, чем при низкой концентрации.
Композитная пленка с наночастицами оксида свинца проявляет очень высокую чувствительность к аммиаку, содержащемуся в атмосфере. В его присутствии электрическая проводимость пленки меняется на несколько порядков величины в области концентраций аммиака, измеряемых миллионными долями. Примечательно, что эти изменения обратимы: если аммиак удалить из атмосферы, проводимость пленки возвращается к исходной величине.
Нанокомпозиты, содержащие металлы или полупроводники получают еще несколькими способами. В одном из них органическую матрицу синтезируют из смеси полимеров или сополимеров с функциональными мономерами и после ее набухания вводят соль металла, которую затем восстанавливают, например, в атмосфере сероводорода. К сожалению, полученные таким образом кластеры довольно сильно варьируют по размеру, что значительно снижает ценность метода.
Нанокомпозиционные материалы получают также на основе блоксополимеров, т.е. не одинаковых, а разных полимерных молекул. Соединяясь друг с другом, они образуют блок, или домен, многократно повторяющийся в полимерной цепочке. Каждый из доменов - это своеобразный реактор, в одной из микрофаз которого и возникают неорганические нанокластеры. Их размеры, что очень важно, ограничены величиной такого реактора. Но не только в этом достоинство метода. Он позволяет получать разные надмолекулярные структуры в зависимости от химического строения блоксополимера и его состава. В числе таких структур - ламеллярная, гироидная, колончатая, кубическая, перфорированная ламеллярная и двойная алмазная, причем две последние - в нестабильном состоянии, а остальные - в стабильном. Необходимо отметить, что по мере того, как увеличивается содержание в сополимере одного блока относительно другого, все больше возникает структур с повышенной кривизной поверхности наночастиц. Особый интерес представляют взаимопроникающие гироидная и двойная алмазная структуры, в которых микрофаза, обогащенная металлом или полупроводником, может формировать непрерывные взаимопроникающие сетки.
Такой метод оказался эффективным при использовании двойного блоксополимера - из стирола и 2-винилпиридина. В этом случае прозрачные пленки сополимера отливают из раствора, содержащего соли серебра, меди, кобальта или кадмия с последующим их восстановлением до чистого металла или его сульфидов. В результате образуются ламеллярные, колончатые и сферические структуры с регулируемым размером нанокластера.
Органическими компонентами для синтеза блоксополимера могут служить норборненовые мономеры, в один из которых внедряют ионы золота, серебра, кадмия или цинка. Норборнены, будучи циклическими соединениями с двойной связью, отличаются высокой реакционной способностью. Под действием катализатора они подвергаются перегруппировке: 5-членный цикл молекулы раскрывается и образуется линейный полимер (такую реакцию называют метатезисом с раскрытием цикла).
В ходе реакции полимеризации одновременно образуются и домены металлов (или полупроводников) размером в несколько нанометров. Изменяя относительную длину полимерных блоков, можно создавать, как и предыдущим способом, неорганические структуры разной морфологии. Полученные материалы оптически прозрачны, высоко проницаемы для низкомолекулярных веществ, а потому пригодны для использования в качестве оптических и люминесцентных микроприборов, катализаторов и т.д.
Образование нанокристаллов ZnS в ходе реакции полимеризации норборненовых мономеров. ROMP - реакция метатезиса с раскрытием цикла,
Ph - фенильный остаток, Me - метильный, Bu - бутильный.
композит матрица наноматериал
Большое количестиво тонкопленочных неорганических нанокомпозитов и покрытий, было получено ионно-лучевым распылением составных мишеней. Нанокомпозиты в системах металл-диэлектрик (в частности, Co-CaF2) были синтезированы и исследованы в широком интервале соотношений диэлектрической и металлической фаз. Особенность системы Co-CaF заключается в том, что изолирующая матрица не содержит кислород, а роль окислителя в процессе формирования материала играет фтор. Наличие отрицательного магнитосопротивления (ОМС) в системе Co-CaF вместе с характерной s-образной зависимостью сопротивления от состава и порогом перколяции, свидетельствует о том, что плёнки являются наногранулированными.
Сообщается также об обнаружении новой перколяционной ситуации в нанокомпозитах металл-диэлектрик, содержащих ферромагнитные компоненты (Co40Fe40B20)x(SiO2)100-x). При достижении некоторой концентрации металлических атомов появляется синфазное поведение векторов спонтанной намагниченности отдельных наночастиц. Как результат, в структуре, состоящей из огромного числа ферромагнитных наночастиц, наблюдается перемагничивание макроскопического объема нанокомпозита одним гигантским скачком Баркгаузена.
Перспективным направлением получения нанокомпозитов в системах металл / металл, металл / оксид, интерметаллид / оксид показал себя процесс механохимического синтеза. Было обнаружено, что главную роль в механохимических процессах играет достижение, по крайней мере, одним из реагирующих веществ наноразмеров. В результате происходит механохимическое взаимодействие компонентов с образованием нанокомпозитов металл / оксид и интерметаллид / оксид, которые являются прекрасными прекурсорами для последующего термического синтеза (в т.ч. самовоспламеняющегося синтеза, СВС). Кроме того, в случае систем металл / металл (например Fe-In, Cu-Ga, Ni-Ga, Ni-Ge), возможно получение наносплавов металлов несмешиваемых в расплавах при обычных условиях.
8. Углеродные нанокомпозиты
Углеродный нанокомпозит получают по одностадийной технологии в результате одновременного формирования наночастиц углерода и связывающей их углеродной матрицы с образованием нанокомпозита системы углерод-углерод в одном и том же реакторе. На входе в химический реактор поступает углеродсодержащее сырье, а на выходе из реактора получаем готовую товарную продукцию. Этим технология выгодно отличается от традиционной технологии нанокомпозитов, где наночастицы получают в одном месте по определенной технологии, а консолидируют их в другом месте путем введения наноразмерного наполнителя в матрицу по совсем другой технологии.
Одностадийная технология углеродного нанокомпозита превосходит традиционную технологию нанокомпозитов, основанную на раздельных технологических операциях получения наночастиц и их консолидации матрицей.
Уникальные свойства углеродного нанокомпозита, подкрепленные возможностью получения крупногабаритных изделий в промышленных масштабах, создали предпосылки для разработки и изготовления изделий медицинской техники и современного машиностроения, не имеющих аналогов в мировой практике. Свойства углеродного нанокомпозита, многократно превосходящие свойства углеродных материалов традиционной технологии, обеспечивают работоспособность как передовых конструкций новой техники - термоядерный реактор, искусственный клапан сердца - так и традиционных элементов современного машиностроения - торцевые уплотнения высокотемпературных агрессивных сред, антифрикционные вкладыши газодинамических подшипников.
По прочностным показателям углеродный нанокомпозит в 3 и более раз превосходит лучшие марки углеродных материалов традиционной технологии. Он хорошо обрабатывается механически. Высокая механическая прочность в сочетании с наноразмерными дискретными элементами структуры позволяет изготавливать из него детали сложной геометрической формы с острыми кромками, полированными до высокого класса чистоты поверхности.
Размещено на Allbest.ru
...Подобные документы
Основные типы сноубордов. Материалы, используемые для изготовления сноуборда. Три основных способа изготовления деревянной основы. Защита от внешних воздействий внутренних слоев доски. Экструдированный и спечёный скользяк. Новые композитные материалы.
реферат [799,5 K], добавлен 19.02.2015Свойства различных армирующих волокон. Требования к полимерным матрицам. Модифицирование эпоксиуглепластиков алмазными и алмазо-графитовыми углеродными наночастицами. Функционализация фуллеренов для непосредственного их встраивания в полимерную матрицу.
реферат [1,7 M], добавлен 09.01.2014Общие закономерности строения композитных наноматериалов, их виды: на основе керамической, слоистой, металлической и полимерной матрицы. Механические, электрические, термические, оптические, электрохимические, каталитические свойства нанокомпозитов.
реферат [377,0 K], добавлен 19.05.2015Применение повышенного и пониженного давления в химических технологиях как метод воздействия на структуру, свойства и форму материалов. Давление как фактор интенсификации газообразных процессов. Его воздействие на жидкофазные процессы, твердую фазу.
контрольная работа [13,3 K], добавлен 10.05.2009Направления и этапы исследований в сфере строения и свойств металлов, их отражение в трудах отечественных и зарубежных ученых разных эпох. Типы кристаллических решеток металлов, принципы их формирования. Основные физические и химические свойства сплавов.
презентация [1,3 M], добавлен 29.09.2013Виды теплоизоляционных материалов, которые предназначены для тепловой изоляции конструкций зданий и сооружений, а также различных технических применений. Классификация, свойства. Органические материалы. Материалы на основе природного органического сырья.
презентация [5,0 M], добавлен 23.04.2016Нанокомпозиты на основе природных слоистых силикатов и на основе монтмориллонита. Анализ методов синтеза полимерных нанокомпозитов. Перспективы производства полимерных нанокомпозитов. Свойства нанокомпозитов кремния. Структура слоистого силиката.
курсовая работа [847,7 K], добавлен 12.12.2013Состав и свойства пластмасс. Композиционные материалы с неметаллической матрицей. Резиновые материалы: общая характеристика, свойства и назначение. Клеящиеся материалы и герметики. Сущность и виды каучуков. Понятие, виды и физические свойства древесины.
реферат [27,1 K], добавлен 18.05.2011Физические принципы, используемые при получении материалов: сепарация, центрифугирование, флотация, газлифт. Порошковая металлургия. Получение и формование порошков. Агрегаты измельчения. Наноматериалы. Композиционные материалы.
реферат [292,6 K], добавлен 30.05.2007Основные характеристики кристаллической решетки. Скорость охлаждения при закалке и факторы влияющие на выбор скорости. Диаграмма состояния системы медь-серебро. Свойства сплавов в данной системе. Диаграмма состояния железо-углерод и ее описание.
курсовая работа [545,6 K], добавлен 13.11.2008Цели и задачи материаловедения наносистем. Предмет, цели и основные направления в нанотехнологии, ее особенности. Сканирующая туннельная микроскопия, наилучшее пространственное разрешение приборов. Виды и свойства, применение наноматериалов, технологии.
курсовая работа [2,4 M], добавлен 05.05.2009Классификация тары по выполняемым функциям, учитывающая механические свойства тары, по виду материала, из которого изготовлена тара. Функции упаковки и факторы, влияющие на ее выбор. Свойства продукта, которые необходимо учитывать при выборе тары.
презентация [5,6 M], добавлен 29.07.2013Физико-химические особенности наполнителей. Влияние распределения наполнителя в матрице на физико-механические параметры. Адсорбционные свойства и прочности связи наполнителей. Технология получения электроизоляционных резинотехнических материалов.
научная работа [134,6 K], добавлен 14.03.2011Характеристика, основные свойства и применение твердых смазочных материалов для обеспечения эффективного граничного и смешанного режима смазки механизмов. Общие сведения о пластичных смазках: эксплуатационные свойства, физическая структура и назначение.
реферат [3,0 M], добавлен 26.11.2010Общие положения и классификация видов термической обработки металлов, условия их практического использования. Основные превращения в стали, их характеристика и влияющие факторы. Выбор температуры и времени нагрева и его технологическое обоснование.
реферат [127,2 K], добавлен 12.10.2016Современные клеи, свойства, виды и области применения клеящих материалов. Лакокрасочные материалы и их основные компоненты, классификация по виду, химическому составу, основному назначению. Основные свойства и использование лакокрасочных материалов.
контрольная работа [31,3 K], добавлен 25.11.2011Материаловедение. Общие сведения о строении вещества. Классическое строение, дефекты. Материалы высокой проводимости. Алюминий, свойства, марки, применение. Изоляционные лаки, эмали, компаунды. Полупроводниковые химические соединения. Диэлектрики.
контрольная работа [23,8 K], добавлен 19.11.2008Физико-химические закономерности формирования; строение и свойства материалов. Типы кристаллических решёток металлов. Испытания на ударный изгиб. Термическая и химико-термическая обработка, контроль качества металлов и сплавов. Конструкционные материалы.
курсовая работа [3,7 M], добавлен 03.02.2012Общие сведения о композиционных материалах. Свойства композиционных материалов типа сибунита. Ассортимент пористых углеродных материалов. Экранирующие и радиопоглощающие материалы. Фосфатно-кальциевая керамика – биополимер для регенерации костных тканей.
реферат [1,6 M], добавлен 13.05.2011Основные климатические факторы, влияющие на атмосферную коррозию. Механизм ее возникновения. Старение неметаллических материалов в атмосферных условиях. Коррозионная устойчивость сталей и сплавов. Основные методы изучения коррозии металлов и старения.
дипломная работа [3,5 M], добавлен 02.03.2014