Модернизация рабочего органа скрепера

Послойное срезание грунта, транспортирование и его разгрузка, производимая в большинстве случаев с последующими разравниванием и предварительным уплотнением. Конструкции и устройство управления рабочим органом скрепера. Мировое производство скреперов.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 30.11.2014
Размер файла 3,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Силовая установка тягача состоит из дизельного двигателя и обслуживающих его систем питания, подачи воздуха, смазки, охлаждения, выпуска газа и пуска.

В самоходных скреперах используются механические, гидромеханические и электрические трансмиссии.

В состав механической трансмиссии (скрепер ДЗ-11П) входят сцепление, коробка передач и раздаточная коробка тягача, которые выполнены в одном блоке (рис. 4.9) и установлены на раме тягача отдельно от двигателя.

Крутящий момент от коробки отбора мощности к сцеплению передается при помощи карданного вала.

В самоходных скреперах часто используют автомобильные узлы и агрегаты. В первую очередь это относится к коробкам передач. В ряде случаев для достижения такой возможности в трансмиссию вводят дополнительные передачи, снижающие нагруженность коробок передач в работе. Характерными в этом отношении являются трансмиссии одноосных тягачей МоАЗ-529, в которых использованы автомобильные коробки передач с присоединенными к ним дополнительными коробками. Помимо демультипликаторов дополнительные коробки служат раздаточными редукторами для передачи крутящего момента от коробок передач к ведущим мостам.

Карданная передача тягача состоит из двух карданных валов: промежуточного, служащего для передачи крутящего момента от коробки отбора мощности к сцеплению, и основного, передающего крутящий момент от раздаточной коробки к ведущему мосту.

При использовании гидромеханической трансмиссии у отчественных машин (Д3-13) гидротрансформатор и механический редуктор выполняются в едином блоке, применяются коробки передач с неподвижными осями валов (вальные).

Характерна конструкция унифицированной коробки передач для одно-и двухосных тягачей мощностью 160-- 180 л. с. Коробка имеет четыре ступени, разбитые на рабочий и транспортный диапазоны, каждый из которых состоит из двух реверсивных передач. Переключение диапазонов осуществляется посредством пластинчатого синхронизатора, установленного на выходном валу. Переключение передач внутри диапазонов осуществляется под нагрузкой с помощью четырех масляных многодисковых фрикционных муфт, попарно расположенных на первичном и промежуточном валах. Гидротрансформатор соединяется с коробкой передач посредством переходного картера, прикрепленного к крышке корпуса.

Применение в гидромеханических трансмиссиях в качестве механизмов переключения передач фрикционных муфт позволяет значительно уменьшить длительность процесса переключения и свести к минимуму необходимое при этом усилие водителя.

Рис. 4.8 Самоходный скрепер ДЗ-11: 1 -- одноосный тягач; 2 -- седельно-сцепное устройство; 3 -- рама скрепера; 4 -- гидроцилиндры подъема и опускания ковша; 5 -- заслонка ковша; 6 -- ковш; 7 -- задняя стенка ковша; 8 -- гидроцилиндры подъема заслонки; 9 -- задние колеса; 10 -- гидроцилиндры задней стенки ковша

Рис. 4.9 Блок трансмисси»: 1 -- сцепление; 2 -- коробка передач; 3 -- раздаточная коробка

В гидромеханических передачах используются фрикционные муфты с вращающимся корпусом.

Электрическая трансмиссия постоянного тока включает в себя генератор, два (или более) мотор-колеса и вспомогательное оборудование: возбудитель или вспомогательный генератор, системы управления и регулирования электрической трансмиссии и вентиляционные установки для охлаждения мотор-колес.

Применение мотор-колес позволяет создать скрепер со всеми ведущими колесами с одной силовой установкой. В качестве тягового генератора и электродвигателей мотор-колес применяют электрические машины специального исполнения.

Мотор-колесо состоит из пневматической шины, стального обода, тягового электродвигателя с тормозом и механического редуктора. Мотор-колесо крепится к раме машины: упругие элементы в подвеске обычно отсутствуют. По расположению электродвигателя относительно обода различают мотор-колеса со встроенными (скрепер ДЗ-67) и вынесенными за габариты обода электродвигателями.

Ведущий мост является одним из основных и тяжелонагруженных узлов машины. Он состоит из следующих основных элементов: главной передачи, дифференциала, полуосей и несущих балок. Наиболее распространены главные передачи с коническими шестернями со спиральным зубом (скреперы ДЗ-11П и Д3-13), которые имеют меньший шум при работе.

Установка в ведущих мостах дифференциалов вызвана необходимостью обеспечить вращение ведущих колес тягача с различными угловыми скоростями. Наиболее простым по конструкции является симметричный дифференциал с цилиндрическими или коническими шестернями (скреперы ДЗ-11П и Д3-13).

Между дифференциалом и ведущими колесами устанавливают полуоси, служащие для передачи крутящего момента от главной передачи на фланцы полуосей или ведущие шестерни колесных редукторов. Как правило, в тяжелонагруженных ведущих мостах одноосных тягачей применяют полуоси разгруженного типа, передающие только крутящий момент.

Балки (картеры) мостов служат для соединения всех элементов ведущих мостов и передачи тяговых усилий от ведущих колес на раму машины. В отличие от автомобильных балки мостов подвешиваются к раме безрес-сорно и отличаются большей жесткостью и повышенной прочностью.

Тягач имеет рулевое управление с гидравлическим приводом и может поворачиваться на 90° в обе стороны относительно продольной оси скрепера. Рулевое управление состоит из рулевого механизма, распределителя, золотниковой коробки, левого и правого гидроцилиндров поворота, насоса, масляного бака, фильтра, запорного клапана, следящего устройства, трубопроводов и шлангов (рис. 4.11).

Золотниковая коробка служит для изменения направления потоков рабочей жидкости, поступающих в рабочие полости гидроцилиндров поворота при прохождении ими положений мертвых точек, и для распределения этих потоков по рабочим полостям цилиндров.

Для нагнетания рабочей жидкости в распределитель, золотниковую коробку, гидроцилиндры поворота и для обеспечения ее циркуляции в гидравлической системе рулевого управления на тягаче установлен шестеренный насос.

Следящее устройство рулевого управления служит для согласования поворота рулевого колеса с поворотом тягача относительно продольной оси скрепера путем возвращения золотника распределителя в нейтральное положение при неподвижном рулевом колесе, а также для фиксирования любого заданного угла поворота тягача относительно скрепера и предотвращения самопроизвольных его поворотов.

Седельно-сцепное устройство соединяет тягач со скрепером и передает вертикальную нагрузку от скрепера на тягач. Это устройство имеет две степени свободы и допускает поворот тягача относительно скрепера и качание обоих звеньев поезда (тягача и скрепера) в вертикальной плоскости, перпендикулярной к его продольной оси. Седельно-сцепное устройство представляет собой кронштейн с приваренной консолью, на которой закреплены гидроцилиндры поворотов и золотниковая коробка.

Рис. 4.10 Ведущий мост: 1 -- колесная передача; 2 -- колесо с шиной в сборе; 3 -- ступица колеса; 4 -- тормозной барабан; 5 -- тормозная колодка; 6 -- цапфа; 7 -- переходной фланец; 8 -- картер ведущего моста; 9 -- полуось; 10 -- редуктор

Рис. 4.11 Рулевой механизм с распределителем скрепера ДЗ-11: 1 -- гайка; 2 -- крышка; 3 -- золотник распределителя; 4 -- корпус золотника; 5 -- пружина; 6 -- ползун; 7 --. шайба; 8 -- картер рулевого механизма; 9 -- вал руля; 10 -- рулевое колесо; 11 -- шарик предохранительного клапана: 12 -- пружина предохранительного клапана; 13 -- рулевая сошка; 14 -- сектор рулевого механизма

Угол качания скрепера относительно тягача ограничивается специальными площадками, которыми кронштейн опи-ческим. Наиболее распространен последний. Он включает в себя управление подъемом и опусканием заслонки ковша, подъемом и опусканием ковша, выдвижением и обратным кодом задней стенки или опрокидыванием днища ковша.

Различают схемы механизма подъема и опускания заслонки (рис. 4.12) рается на верхнюю накладку поперечины при достижении предельного угла качания (20° в каждую сторону от среднего положения).

Рис. 4.12 Схемы механизмов управления заслонкой: а -- с непосредственным воздействием цилиндра; б -- рычажное управление; в 1-- рычажно-канатное управление

На скреперы устанавливают, как правило, односкатные большегрузные ковша непосредственным воздействием гидроцилиндра и с рычажным управлением. В первом случае (скреперы ДЗ-11П и Д3-13) управление осуществляется двумя гидроцилиндрами, расположенными на боковых стенках шины низкого давления высокой проходимости (скреперы ДЗ-11П и Д3-13).

Рис. 4.13 Схемы механизмов управления ковшом

К рабочему оборудованию самоходного скрепера относятся ковш, механизмы загрузки и выгрузки, заслонка и привод управления рабочими органами. Конструкция ковша, заслонки и механизмов загрузки и выгрузки принципиально не отличается от конструкции этих узлов у прицепных скреперов. Наиболее распространена загрузка посредством тягового усилия, а выгрузка -- принудительная.

Управление рабочими органами осуществляется в основном двумя типами привода -- электрическим и гидравли-ковша и воздействующими непосредственно на заслонку. Рычажная (скрепер ДЗ-67) и рычажно-канатная системы управления заслонкой имеют один гидроцилиндр, размещенный на тяговой раме в удалении от рабочей зоны ковша, так что его шток защищен от попадания грязи.

Подъем и опускание ковша (рис. 4.13) производится непосредственно воздействием гидроцилиндра или рычажным управлением. В первом случае (скреперы ДЗ-11П и Д3-13) подъем ковша осуществляется штоковой полостью. При этом штоки гидроцилиндров находятся в рабочей зоне ковша и подвержены загрязнению. При рычажном управлении (скрепер ДЗ-67) эти недостатки устранены.

Рис. 4.14 Схема гидравлической системы самоходного скрепера: 1 -- насосы и их привод; 2 -- обратный клапан; 3 -- предохранительный клапан; 4 -- масляный бак; 5 -- масляный фильтр; 6 -- гиддравлический распределитель; 7 -- гидравлический замок: 8 -- дроссель; 9 -- трубопроводы и рукава; 10 -- гидроцилиндор

Разгружается ковш с помощью гидроцилиндров, воздействующих непосредственно на заднюю стенку или опрокидное днище ковша.

Гидравлическая система скрепера (рис. 4.14) состоит из насосов и их привода, гидравлического распределителя, гидроцилиндров, масляного бака, фильтра, дросселей, обратных клапанов, предохранительного клапана, гидравлического замка, трубопроводов и рукавов.

Для питания гидравлической системы управления рабочими органами применяют насосы постоянной подачи. Приводятся насосы непосредственно от двигателя тягача. Часто устанавливают параллельно несколько насосов; в чтом случае они приводятся от редуктора отбора мощности, устанавливаемого на тягаче.

На скреперах применяют трехсекционные распределители. При установке распределителя в кабине им управляют с помощью рукояток или рычажного механизма. Часто распределитель устанавливают на тяговой раме, и тогда для управления используют различные системы дистанционного привода.

2. Конструкции и устройство управления рабочим органом скрепера

Основными элементами конструкции самозагружающихся скреперов являются ковш с заслонкой, выдвижной задней стенкой и подвижным днищем (у соответствующих моделей машины), тяговая рама, сцепное и буферное устройства, ходовое оборудование. Для скреперов с принудительной загрузкой к основным элементам конструкции относится также загрузочный элеватор.

Ковш -- рабочий орган скрепера -- непосредственно взаимодействует с грунтом при производстве земляных работ, поэтому его форма и размеры должны соответствовать комплексу технологических и грунтовых условий рабочего процесса данной машины. Он представляет собой емкость, открытую спереди и сверху, с режущей частью для отделения от массива и захвата грунта. Боковые стенки, режущая часть и остальные элементы конструкции, неподвижные относительно друг друга, соединены вместе посредством каркаса, который служит также для соединения ковша с заслонкой и другими подвижными элементами конструкции, ходовым и сцепным устройствами, исполнительными механизмами рабочего оборудования.

Исследования Е. Р. Петерса, К. А. Артемьева и Ю. Б. Дейнего показали, что эффективность заполнения скреперного ковша зависит от его формы. Необходимая для заполнения ковша сила тяги значительно возрастает с увеличением его высоты. Поэтому ковш, с одной! стороны, целесообразно делать возможно широким, но коротким, чтобы набираемый грунт проходил наименьший путь и были уменьшены силы трения при его продвижении. С другой стороны, ширина ковша скреперов большой вместимости ограничивается условиями перевозки машин (железнодорожными габаритами).

В результате исследований предложена форма ковша. Так как высота ковша должна быть минимальной, требуемая вместимость может быть получена за счет его ширины и длины, которые Также ограничены рядом условий.

Ширина ковша, по условиям проходимости скрепера, зависит от ширины колеи тягача.

Поперечное сечение ковша, как правило, прямоугольное, но исследования А. И. Демиденко показали, что расширение ковша кверху позволяет повысить его заполнение на 15--20%.

Режущая часть ковша должна иметь минимально допускаемый угол резания -- не более 30°, задний угол -- не менее 10°. Режущая кромка должна быть острой, так как площадка износа и затупления скреперных ножей очень влияет на рабочее сопротивление.

Нож с прямолинейной кромкой нерационален с точки зрения энергоемкости резания и степени заполнения ковша; его следует применять лишь при планировочных работах. Энергоемкость резания ножами с выступающей средней частью меньше, а толщина среза грунта в средней части ковша больше, что улучшает условия продвижения стружки сквозь грунт в ковше и способствует его заполнению.

Постановка зубьев затрудняет продвижение стружки в ковше, но снижает энергоемкость резания. Их рекомендуется ставить в скреперах с элеваторной загрузкой, когда отрицательное влияние измельчения грунта зубьями не влияет на заполнение ковша, снижает энергоемкость резания и при том же тяговом усилии ускоряется загрузка ковша. Зубьями целесообразно оснащать режущую часть ковша также при разработке грунтов с твердыми включениями (например, гальки).

Заслонка ковша увеличивает его вместимость и обеспечивает направленный напор грунтовой стружки, которая поступает в ковш сквозь щель между заслонкой и ножом. Заслонка состоит из корпуса (обычно цилиндрического очертания), боковых стенок и рычагов с проушинами для прикрепления к боковым стенкам ковша.

Заслонки бывают самооткрывающиеся (плавающие) и управляемые.

Самооткрывающаяся заслонка поднимается под действием усилия со стороны призмы волочения. При канатно-блочном управлении ковшом подъем и фиксирование положения управляемой заслонки осуществляется с помощью механизма, который может быть связан с механизмом поворота днища и задней стенки или механизмом подъема и опускания ковша. Полуприцепные и самоходные скреперы оснащаются, как правило, заслонками, управляемыми гидроцилиндрами.

Выдвижная задняя стенка ковша (в скреперах с принудительной разгрузкой) выполняется как щит, который под действием усилий в гидроцилиндрах может двигаться вдоль ковша, выталкивая находящийся в нем грунт.

Тяговая рама скрепера соединяет тягач с ковшом, воспринимает нагрузку от веса ковша и передает ему усилия от тягача. Тяговая рама -- один из наиболее ответственных элементов конструкции скрепера, который должен обладать высокими прочностью и надежностью. Основные элементы тяговой рамы -- стойка, хобот, поперечная балка и упряжные тяги. Стойка (обычно из стального литья) имеет две проушины для пальцев оси вращения шкворня сцепного устройства. Хобот представляет собой криволинейный брус коробчатого сечения.

Сцепное устройство служит для передачи тягового усилия от тяговой части скрепера и обеспечения его поворота.

Самоходные скреперы выполняют, как правило, по конструктивной схеме шарнирно-сочлененных машин. В большинстве случаев это двухсекционная конструкция, каждая секция которой имеет свою колесную ось. Соединительный шарнир должен обладать двумя степенями свободы.

Особенность скреперов как шарнирно-сочлененных машин заключается в отсутствии управляемых колес. Поворот машины производится поворотом в плане одной секции относительно другой вокруг вертикальной оси сочленяющего шарнира посредством специальной системы поворота (например, гидравлических цилиндров).

Для самоходных скреперов характерен принцип сочленения одноосного тягача с ковшовой частью. Сочленяющий шарнир находится над колесной осью тягача с небольшим смещением внутрь базы. Одноосный тягач обычно выполняется как базовая конструкция, которая может агрегатироваться с различными полуприцепными орудиями.

Объединенный, как правило, в одном узле шарнир имеет две взаимно перпендикулярные оси. Горизонтальная ось шарнира связана с тягачом, параллельна его продольной оси симметрии и обеспечивает боковые крены тягача по отношению к полуприцепу применительно к микрорельефу опорной поверхности. Вертикальная ось шарнира монтируется в оголовке хобота и обеспечивает поворот в плане передней секции относительно задней для изменения направления движения машины в целом.

Сцепное устройство прицепных скреперов допускает поворотные движения как в серьге сцепления, так и в шкворневом устройстве шарнирного типа. Механизма принудительного поворотного движения, как и в самоходных скреперах, нет. Поворот скрепера производится только при изменении направления движения тягача.

Буферное устройство служит для восприятия толкающего усилия от толкача в период заполнения ковша и имеет вид упора, выступающего в задней части скрепера за габариты ходового устройства.

Для предотвращения резких ударов в момент контакта толкача с буфером скрепера и смягчения динамических нагрузок скрепера и толкача в буферных устройствах применяют амортизаторы, например, барабан на подшипниковых опорах, обеспечивающий постоянное направление толкающего усилия и уменьшающий износ отвала на толкаче.

Ходовое оборудование скреперов пневмоко-лесное, и только в тягачах прицепных скреперов используется гусеничное.

Элеватор состоит из привода, рамы, валов и двух цепей. На каждой цепи с определенным шагом расположены плоские скребки. Рама элеватора шарнирно подвешена в верхней части к металлоконструкции ковша. Подвеска обеспечивает качание элеватора и изменение толщины стружки (плавающее положение). Пределы качания рамы задаются ограничителями погружения элеватора в грунт. На раме элеватора установлены поддерживающие ролики и натяжные устройства для цепей.

Привод осуществляется как от основного двигателя, так и от дополнительного в задней части ковша скрепера. Распространен также привод элеватора с помощью гидродвигателя, установленного на ведущем валу элеватора.

Использование: в землеройно-транспортных машинах. Сущность изобретения: скреперный аппарат содержит базовую машину и толкач, первый датчик частоты вращения, установленный на ведущем колесе скрепера, второй датчик частоты вращения, установленный на ведомом колесе скрепера, элемент сравнения, суммирующий вход которого соединен с выходом первого датчика частотым вращения, а вычитающий с выходом второго датчика частоты вращения, делитель, выполненный в виде логометра, первая обмотка которого подключена к выходу элемента сравнения, вторая обмотка к выходу первого датчика частоты вращения, преобразователь трансформаторный, поворотная катушка которого механически соединена с осью стрелки логометра, выпрямитель, подключенный на электрические выводы поворотной катушки преобразователя трансформаторного, второй элемент сравнения, выполненный на двух транзисторах с обратной связью, подключенный к выпрямителю, усилитель и фильтр низших частот. При этом обмотка электромагнитного золотникового устройства подключена в цепь коллектора второго транзистора второго элемента сравнения. 3 ил.

Изобретение относится к землеройно-транспортным машинам, а именно к скреперному агрегату, и может быть использовано в конструкциях других землеройных машин.

Известен скрепер, снабженный амортизирующим устройством, включающим гидравлические цилиндры, гидроаккумулятор, гидравлический дроссель [1] Недостатком данного скрепера является недостаточная надежность из-за остановки обеих машин агрегата при превышении буксования выше предельных значений и последующего вывода обеих машин из этого состояния посредством удара трактора в раму скрепера.

Наиболее близким к изобретению по технической сущности и достигаемому результату является устройство управления рабочим органом скрепера содержащее электромагнитный золотниковый гидрораспределитель управления гидроприводом рабочего органа скрепера, и регулятор величины буксования, включающий датчики частоты вращения ведущего и ведомого колес, элемент сравнения, усилитель и переключающий элемент, причем выходы датчиков частоты вращения ведущего и ведомого колес подключены к входам элемента сравнения, выход которого через усилитель подключен к переключающему элементу, который соединен с обмоткой электромагнитного гидрораспределителя [2] Недостатком такого скреперного агрегата является его невысокая надежность.

Задача изобретения позволит повысить надежность скреперного агрегата.

Сущность изобретения заключается в том, что в устройстве управления рабочим органом скрепера, содержащем электромагнитный золотниковый гидрораспределитель управления гидроприводом рабочего органа скрепера и регулятор величины буксования, включающий датчики частоты вращения ведущего и ведомого колес, элемент сравнения, усилитель и переключающий элемент, в котором выходы датчиков частоты вращения ведущего и ведомого колес подключены ко входам элемента сравнения, выход которого через усилитель подключен к переключающему элементу, который соединен с обмоткой электромагнитного гидрораспределителя, регулятор величины буксования снабжен делителем, выполненным в виде логометра, трансформаторным преобразователем, выпрямителем и фильтром низких частот, а переключающий элемент выполнен на двух транзисторах с обратной связью, причем первая обмотка логометра подключена к выходу элемента сравнения, вторая обмотка соединена с выходом датчика частоты вращения ведущего колеса, а с осью стрелки логометра механически соединена поворотная катушка трансформаторного преобразователя, к электрическим выводам которой подключен выпрямитель, выход которого соединен со входом переключающего элемента, выход которого посредством фильтра низкой частоты подключен ко входу усилителя, выход которого соединен со входом переключающего элемента, а выход последнего подключен к обмотке электромагнитного золотника.

С помощью первого датчика частоты вращения измеряется частота вращения ведущего колеса скрепера, с помощью второго датчика частоты вращения частота вращения ведомого колеса, причем в случае появления буксования ведущее колесо вращается с большей частотой, чем ведомое. В результате на выходе первого элемента сравнения формируется сигнал, пропорциональный разности частот вращения ведущего и ведомого колес. Этот сигнал поступает на первую обмотку логометра, на вторую обмотку которого поступает сигнал от первого датчика частоты вращения. Угол поворота стрелки логометра пропорционален буксованию скрепера, поэтому выходное напряжение выпрямителя, подключенного на электрические выводы поворотной катушки преобразователя трансформаторного, механически соединенной с осью стрелки логометра, также пропорционально буксованию скрепера. Наличие второго элемента сравнения, выполненного на двух транзисторах с обратной связью, подключенного к выпрямителю, позволяет сравнивать действительные значения буксования с заданными, усиливать сигналы, и при превышении буксования заданного значения подавать ток в обмотку электромагнита, включенного в цепь коллектора второго транзистора, наличие фильтра низших частот позволяет формировать выдержку времени, в течение которой электромагнит находится во включенном состоянии. За это время рабочий орган выглубляется, поэтому скрепер продолжает работать с меньшим буксованием. Полное буксование машин и их остановка исключена, исключены ударные нагрузки, надежность скреперного агрегата повышается.

На фиг.1 изображена общая схема управления скреперным агрегатом; на фиг. 2 зависимость касательной силы тяги от величины буксования; на фиг.3 -дана характеристика управления второго сравнивающего элемента, выполненного на двух транзисторах с обратной связью.

Скреперный агрегат содержит (фиг.1) базовую машину 1, толкач 2, первый датчик 3 частоты вращения, установленный на ведущем колесе 4 скрепера, второй датчик 5 частоты вращения, установленный на ведомом колесе 6 скрепера, элемент 7 сравнения, суммирующий вход которого соединен с выходом первого датчика 3 частоты вращения, а вычитающий с выходом второго датчика 5 частоты вращения, делитель 8, выполненный в виде логометра, первая обмотка 9 которого подключена к выходу элемента 7 сравнения, вторая обмотка 10 к выходу первого датчика 3 частоты вращения, преобразователь 11 трансформаторный, поворотная катушка 12 которого механически соединена с осью стрелки 13 логометра, выпрямитель 14, подключенный на электрические выводы поворотной катушки 12 преобразователя 11 трансформаторного, второй элемент 15 сравнения, выполненный на двух транзисторах 16 и 17 с обратной связью, выполненной на резисторе 18, подключенный к выпрямителю 14, при этом второй элемент 15 сравнения подключен посредством фильтра 19 низших частот к усилителю 20, выход которого соединен со входом второго элемента сравнения 15, а обмотка 21 электромагнитного золотникового устройства 22 подключена в цепь коллектора второго транзистора 17 второго элемента 15 сравнения.

Преобразователь 11 трансформаторный имеет сердечник 23, обмотку рабочую 24, поворотную катушку 12.

При наличии буксования машины 1 ведущее колесо 4 скрепера вращается с большей частотой, чем ведомое колесо 6. В результате на выходе элемента 7 сравнения формируется сигнал, пропорциональный разности частот вращения этих колес. Этот сигнал поступает на обмотку 9 делителя 8, выполненного в виде логометра, на вторую обмотку 10 которого поступает сигнал с выхода датчика 3 частоты вращения колеса 4. Стрелка логометра поворачивается, поворачивая при этом поворотную катушку 12 преобразователя 11 трансформаторного. При повороте катушки 12 на ее выводах наводится ЭДС, величина которой пропорциональна углу поворота стрелки 13 логометра, а следовательно, величине буксования скрепера. После выпрямления полученный электрический сигнал о величине буксования в данный момент времени подается на вход второго элемента 15 сравнения.

Если буксование скрепера (фиг.2) превысило предельное значение, транзистор 16 закрывается, транзистор 17 открывается, электрический ток подается в обмотку 21 электромагнитного золотникового устройства 22. Рабочий орган скрепера начинает выглубляться, скрепер продолжает работать с меньшим буксованием. Продолжительность выглубления задается постоянной времени фильтра 19 низших частот, после чего транзистор 16 открывается сигналом с выхода усилителя 20, а транзистор 17 закрывается. Процесс выглубления рабочего органа прекращается. Полное буксование машин при этом исключено, исключены ударные нагрузки, надежность скреперного агрегата повышается.

Формула изобретения

Устройство управления рабочим органом скрепера, содержащее электромагнитный золотниковый гидрораспределитель управления гидроприводом рабочего органа скрепера и регулятор величины буксования, включающий датчики частоты вращения ведущего и ведомого колес, элемент сравнения, усилитель и переключающий элемент, причем выходы датчиков частоты вращения ведущего и ведомого колес подключены к входам элемента сравнения, выход которого через усилитель подключен к переключающему элементу, который соединен с обмоткой электромагнитного гидрораспределителя, отличающееся тем, что регулятор величины буксования снабжен делителем, выполненным в виде логометра, трансформаторным преобразователем, выпрямителем и фильтром низких частот, а переключающий элемент выполнен на двух транзисторах с обратной связью, причем первая обмотка логометра подключена к выходу элемента сравнения, вторая обмотка соединена с выходом датчика частоты вращения ведущего колеса, а с осью стрелки логометра механически соединена поворотная катушка трансформаторного преобразователя, к электрическим выводам которой подключен выпрямитель, выход которого соединен с входом переключающего элемента, выход которого посредством фильтра низкой частоты подключен к входу усилителя, выход которого соединен с входом переключающего элемента, а выход последнего подключен к обмотке электромагнитного золотника.

3. Мировое производство скреперов

Цикл создания машины длится от 3 до 5 лет, а по соображениям экономики машиностроения серийное производство машин должно продолжаться не менее 5 лет. Таким образом, машина, создаваемая сегодня, должна быть прогрессивной еще в течение 10--12 лет. Значительную помощь в разработке совершенных конструкций машин и перспективных планов развития новой техники оказывает знание истории развития машин.

Рассмотрим, например, кратко этапы развития ходового оборудования строительных машин.

Первые землеройно-транспортные машины выполнялись на катках, позже -- на деревянных и металлических колесах (рис. 5). По мере увеличения мощности и массы машин давление на грунт возрастало. Для перемещения машин на металлических колесах требовались настилы, много времени тратилось на передвижку путей. Использование железнодорожного хода нормальной колеи не смогло существенно изменить этого положения. Появление гусеничного хода (1910--1912 гг.), более маневренного, пригодного для бездорожья, способствовало развитию гусеничных машин.

Развитие грузового автотранспорта на массивных шинах снова привело к использованию колесного хода для землеройных машин. Однако большие нагрузки на колеса, затруднявшие движение машин на таких шинах по плохим дорогам, явились предпосылкой к созданию гусеничного хода более совершенной конструкции, попыткам применить быстроходные гусеничные.системы, частично заимствованные у танков и тягачей. Но из-за усложнения конструкции и высокой стоимости эксплуатации это оборудование также не получило распространения.

Требования маневренности, повышения скорости движения землеройно-транспортных машин, а также появление пневматических шин вызывали необходимость в дальнейшем усовершенствовании колесного хода. Однако из-за высокого давления пневматические шины оказались почти неприемлемыми для передвижения по рыхлому грунту.

С 1918 г. начинается массовое использование гусениц на тихоходных землеройных машинах.

Появление шин низкого регулируемого давления до 100 кн/м2 (1 кГ/см2), а затем и бескамерных с допускаемой нагрузкой до 150 и даже до 250 кн на колесо дало значительные преимущества колесным машинам. В настоящее же время гусеничные землеройно-транспортные машины постепенно заменяются колесными универсальными машинами с унифицированными узлами. Таким образом, почти за 200 лет колесный ход 4 раза получал новое применение и дальнейшее развитие.

Во второй половине XIX в. был создан колесный грейдер с управляемым отвалом, который мог устанавливаться под углом к направлению движения для перемещения срезаемого грунта в сторону.

Усовершенствование пол-зункового скрепера, получившего распространение в конце XIX в., шло по линии улучшения его формы, облегчающей управление ковшом так, чтобы по мере наполнения скрепер под действием силы тяжести грунта в ковше выглуб-лялся и на салазках, являвшихся продолжением зубьев, скользил к месту разгрузки. На разгрузке рабочий подъемом ручек вызывал врезание скрепера в грунт и опрокидывание его ручками вперед.

Обращает внимание рациональная форма полукруглой ступенчатой режущей кромки, снабженной плоскими зубьями с закругленной кромкой (рис. 6), благодаря которой, очевидно, достигалось хорошее врезание и плавное возрастание усилия при заглублении, а также уменьшалась величина усилия.

Тяга скрепера осуществлялась обычно двумя, реже четырьмя лошадьми, что давало возможность получить емкость скрепера соответственно 0,08--0,2 м3. Такие скреперы применялись при разработке неглубоких выемок и сооружении невысоких насыпей, особенно при линейных работах. При дальности перемещения грунта 15--50 м и высоте подъема до 2 ж в грунтах I--III групп производительность скрепера емкостью 0,12 ж3 составляла соответственнно от 8 до 2 ж3 в час. До разработки грунты II--III групп подвергались рыхлению плугами.

Рис. 6 Ползунковый скрепер на салазках (1871 г.)

Средняя производительность рабочего с учетом рыхления составляла 5--б ж3 грунта в смену, что в 2--2,5 раза превышало производительность работы вручную в данных условиях.

У нас массовое применение конные скреперы получили на строительстве Туркестано-Сибирской дороги (1928 г.), Башжел-дорстрое и на других объектах. Использование трактора позволило увеличить дальность возки до 100 ж, а емкость до 0,75 м3 при тракторе мощностью 22 кет (30 л. с.) и до 1,25 ж3 при тракторе 36,7 кет (50 л. с).

В 1875 г. был создан первый грейдер-элеватор с конной тягой и механизированным ручным управлением. Машина представляла собой деревянную раму, обшитую металлом и опиравшуюся на четыре колеса. С левой стороны на управляемой раме закрепдялся дисковый плуг диаметром около 0,5 м. Срезаемый грунт отваливался на ленточный наклонный конвейер, подвешенный перпендикулярно продольной оси повозки. Привод конвейера осуществлялся шарнирной цепью от колес повозки. Этот принцип действия позднее был использован для управления ковшом скрепера и применялся в течение более 60 лет даже после перевода скреперов на тракторную тягу. Вся машина приводилась в действие восемью лощадьми, что позволяло получить тяговое усилие порядка 4 кн (400 кГ), и обслуживалась двумя рабочими. Грунт с конвейера ссыпался в повозки, подъезжавшие одна за другой. Производительность машины в легком грунте достигала 90 м3 в час.

Только в 1883 г. полностью металлические скреперы были установлены на одноосный ход с металлическими колесами и управлением от ходовых колес скрепера. Оно осуществлялось цепной передачей, включаемой ручным рычагом кулачковой муфты, сблокированной с тормозом. При включении ее ковш поднимался в транспортное положение, а для разгрузки опрокидывался или раскрывался. Опускался ковш на тормозе под действием собственной массы. Это позволяло довести экономически целесообразную дальность тракторной возки до 400 м при двукратном увеличении производительности по сравнению с волокушными скреперами.

Трактор мощностью 48 кет (65 л. с.) транспортировал поезд из 4--6 конных скреперов емкостью 0,75 м3 каждый, причем два скрепериста, переходившие на ходу с одного скрепера на другой, одновременно заполняли два скрепера. Такой способ транспортирования довольно хорошо разрешал противоречие между большой по тому времени мощностью трактора и незначительной емкостью скреперов. Кроме того, он позволял маневрировать в зависимости от условий числом скреперов в поезде. Однако при этом увеличилась длина заполнения и разгрузки, что было очень неудобно при малых расстояниях перемещения грунта.

В 1910 г. Т. Шмейзер (США) создал скрепер емкостью 5,4 м3 с тягой*трактором мощностью 55 кет (75 л. с.) и гидравлическим управлением ковшом с приводом от колес трактора. Агрегат массой 14 т обслуживался двумя рабочими. Спустя 9 лет появился скрепер с механизированным управлением от трактора.

В 1917 г. были сделаны первые попытки применить колесную машину (автомобиль Форда модели Т с широкими покрышками) для тяги скрепера.

В 1922 г. был построен первый четырехколесный скрепер «Гон-Дола», механизмы которого приводились семью электродвигателями.

Скреперы того времени представляли собой открытый спереди ковш на двух или четырех колесах. По мере заполнения скрепера, срезаемый грунт поднимался под действием образуемой перед ковшом так называемой призмы волочения А (рис. 7, а). Это резко увеличивало необходимое тяговое усилие, достигавшее при емкости ковша 6 м3 в средних грунтах 180--200 кн (18--20 г), что превышало усилия ПО--120 кн (11 --12 т), развиваемые гусеничными тракторами мощностью 70--73 кет (95--100 л: с). Поэтому стремления изобретателей были направлены на снижение тяговых усилий, необходимых для заполнения скрепера.

Рис. 7 Заполнение открытого ковша скрепера (а) и ковша с передней заслонкой (б)

Была сконструирована поднимающаяся передняя шарнирная управляемая трактористом, заслонка образующая как бы переднюю стенку ковша. Теперь заполнение происходило при заслонке, поднятой в положение (рис. 7,6), а когда начинала образовываться призма волочения, заслонка опускалась в положение 2, препятствуя поднимающемуся грунту высыпаться из ковша вперед и образовывать призму волочения. При подъеме ковша заслонка опускалась, смыкаясь с днищем и прорезая стружку, запирала в ковше почти весь разрушенный грунт, тогда как в открытом ковше не только вся призма волочения, но и часть грунта в ковше, ограниченная углом естественного откоса (см. пунктирную линию на рис. 7, а), высыпалась из ковша после его подъема.

Наличие заслонки способствовало тому, что после заполнения ковша на 30--40% срезаемая стружка как бы фонтанировала, поднимаясь между относительно мало изменяющими свое положение массами грунта в задней части ковша и в заслонке (см. пунктирные линии на рис. 7, б).

Конечно, не следует упрощенно понимать этот процесс как подъем сплошной массы стружки. Это бывает далеко не всегда, так как в зависимости от рода и состояния грунта и толщины струж1ки может иметь место подъем целых кусков, что возможно при работе в глинистых грунтах и особенно, когда режущая кромка образует по бокам уступы, увеличивающие в этих местах толщину стружки.

Постепенно заслонка из плоской подвижной стенки в первых конструкциях приняла более выпуклые очертания (рис. 4) и в отдельных случаях стала вмещать до 40% объема ковша, формы которого напоминали грейферный ковш. Передние заслонки сохранились в скреперах до настоящего времени.

В 1933 г. был создан телескопический скрепер, ковш которого состоял из двух частей: передней, неподвижно укрепленной в раме, и задней, перемещавшейся по раме с помощью канатного механизма, действовавшего от лебедки трактора. Перед заполнением задняя часть вдвигалась в переднюю (рис. 8, а). По мере заполнения она отодвигалась назад и начиналось заполнение внешней части ковша, расположенной впереди (рис. 8,6). После заполнения заслонка опускалась и ковш поднимался в транспортное положение (рис. 8, в). Разгрузка происходила при перемещении вперед канатным механизмом задней части ковша (рис. 8, г, д), а затем его задней стенки (рис. 8, е).

При такой конструкции общая длина и емкость ковша могли быть в 1,5 раза больше, а величина тягового усилия, отвечающего емкости скрепера обычной конструкции, почти в 1,5 раза меньше. В связи с этим оказалось возможным увеличить емкость скрепера с 8 до 12--13 мг при мощности трактора 70--75 кет (95--100 л. с.).

Телескопические скреперы получили широкое распространение в 1935--1940 гг. Хотя габариты их были велики, они оказались более маневренными, чем поезд, составленный из двух скреперов (тандемная возка -- способ тандем). Применение способа тандем с тягой трактором 70 кет (95 л. с.) позволило увеличить емкость скрепера до 26 м3, получив производительность порядка 80 м3/ч. Сравнительно малая транспортная скорость компенсировалась емкостью скреперов, в результате дальность возки увеличилась до 1,6 км, тогда как до сих пор наибольшая экономически оправданная дальность возки не превышала 1 км. Всеми движениями скрепера управлял тракторист, в основном с помощью канатной полиспастной системы, действовавшей от лебедки трактора.

В 1933 г. был создан первый одноосный скрепер к трактору 70 кет (95 л. с.) емкостью 7,6 ж3 с гидравлическим приводом, управление которым осуществлялось из кабины тракториста. Этот скрепер, как бы повторивший в части одноосности конструкции первых колесных скреперов, отличался большой маневренностью. Он был снабжен двумя заслонками, образовывавшими его переднюю и заднюю стенки, что обеспечивало разгрузку вперед и назад (см. рис. 4, е). Последнее позволило использовать его при непосредственной разгрузке грунта под откос, т. е. для засыпки котлованов, отсыпки насыпи «с головы» без применения вспомогательных бульдозеров, необходимых при работе обычных скреперов с разгрузкой вперед.

Рис. 8 Заполнение и разгрузка телескопического скрепера

Гидроуправление при высоком качестве изготовления аппаратуры, насосов и бронированных гибких-шлангов оказалось более надежным и долговечным, чем канатное, давало возможность принудительно опускать ковш для заглубления; однако оно было более сложным в работе, чем канатное, и требовало наличия различных запасных частей точного изготовления. Кроме того, с помощью гидравлической системы управления оказалось невозможным быстро перемещать ковш (например, при встрече неожиданного препятствия).

В дальнейшем для снижения тягового усилия при заполнении скрепера средние и тяжелые грунты перед разработкой стали рыхлить многозубыми рыхлителями.

В 1937 г. была сделана попытка создать скрепер с подвижным днищем, выполненным в виде ленточного реверсивного конвейера с приводом от электродвигателя, что давало возможность разгрузки как вперед, так и назад. Электродвигатели были установлены и для всех остальных механизмов скрепера и питались постоянным током от генератора, расположенного на тракторе. Но так как основные сопротивления заполнению скрепера вызываются необходимостью подъема грунта вверх, эта конструкция не получила распространения.

Другим направлением резкого повышения тяги скрепера, необходимой для заполнения, было применение толкачей. Резервные тракторы, снабженные специальным толкающим буфером или отвалом бульдозера, располагались на месте загрузки скреперов и по мере их подхода пристраивались сзади, упираясь буфером или отвалом в задний буфер скрепера, и толкали его, увеличивая силу тяги в 1,5--1,7 раза.

Окончив заполнение, толкач либо задним ходом возвращался в исходное положение для встречи нового скрепера, либо передним ходом нагонял второй скрепер, подходивший к месту заполнения. Так один толкач обслуживал 3--5 скреперов.

С 1925 г. тракторные фирмы США начали выпускать скреперы (в 1938 г. производство их стало серийным).

В эти же годы в СССР были созданы скреперы емкостью 5 ж3 с гидравлическим управлением и емкостью б м3 с канатным управлением для работы с тракторами мощностью 48 кет (65 л. с), выпускаемыми Челябинским заводом. До этого времени у нас выпускались скреперы емкостью 0,75 и 1,1 ж3 для поездной возки с трактором 48 кет (65 л. с.). Был изготовлен образец телескопического скрепера емкостью 8 ж3 к трактору С-65.

Небольшие скорости гусеничных тракторов привели к попыткам заменить гусеничные тракторы мощными колесными тягачами автомобильного типа, а также использовать седельные автомобильные тягачи с полуприцепным скрепером. Эти попытки успеха не имели в силу малой маневренности, недостаточной устойчивости и непригодности тягачей, снабженных шинами высокого давления, для работы в условиях бездорожья.

В 1937 г. был создан первый полуприцепной телескопический скрепер большой емкости на базе одноосного тягача на шинах с пониженным до 200 кн/м2 (2атм) давлением. Эта машина могла транспортировать 12 м3 грунта со скоростью до 25 км/ч. Дальность возки составляла 2--3 км. В 1938 г. был изготовлен скрепер емкостью 23 м3 с одноосным тягачом 118 кет (160 л. с.) с шинами низкого давления диаметром 2 м и шириной 0,6 м, развивающий скорость до 34 км/ч и наибольшее тяговое усилие 170 кн (17 г).

В этот же период появились и другие сменные полуприцепные устройства к одноосным тягачам--большегрузные саморазгружающиеся повозки с задней, боковой и донной разгрузкой.

Основное направление при современном состоянии техники -- создание универсальных колесных самоходных строительных машин путем агрегатирования узлов, выпускаемых автомобильной и тракторной промышленностью, и применения сменного полуприцепного и навесного рабочего оборудования.

Развитие этой идеи открыло возможности для повышения емкости, скорости и производительности скреперов, расширяя область их применения.

В 1947 г. был создан полуприцепной скрепер с электрическим приводом емкостью 20 м3 для работы с тягачом мощностью 225 л. с, развивающий скорость до 24 км/ч при массе агрегата 19 т. При полезной массе перевозимого грунта 32 т коэффициент тары составлял 0,6, т. е. был меньше, чем у лучших конструкций автосамосвалов.

Чтобы повысить силу тяги колесных тягачей, было уменьшено давление в шинах с 300 до 250 кн/м2 (с 3 до 2,5 атм) и ниже, увеличена высота протектора и разработаны типы его рисунка, отвечающие различным грунтовым условиям. Это позволило повысить силу тяги на 20--30%- Однако основные усилия конструкторов были направлены на увеличение силы тяги путем создания привода на ось скрепера -- полуприцепа. Для этой цели устанавливали дополнительный двигатель, мощность которого обычно не превышала 0,75 мощности двигателя тягача. Так были созданы самоходные скреперы емкостью до 42 ж3 мощностью до 720 кет (410 + 310 кет), т. е. 980 л. с. (560 + + 420 л. с).

Создание дизель-электрического привода (с установкой электродвигателей постоянного или переменного тока на каждом колесе скрепера и тягача) в 1957' г. позволило увеличить емкость скрепера до 46 м3 при мощности тягача 440 кет (600 л. с).

Применение столь мощных скреперов повлекло за собой работу по созданию толкачей массой до 170 г, мощностью до 1200 кет (1650 л. с.) с приводом по типу мотор-колесо (рис. 9).

Серийные машины с дизель-электрическим приводом по типу мотор-колесо пока еще не получили широкого применения из-за трудности обеспечения достаточной надежности машин при работе в тяжелых условиях, а также хорошей управляемости. В СССР созданы конструкции полуприцепных скреперов к одноосным тягачам мощностью 180 и 220 кет (240 и 360 л. с.) емкостью 9 и 15 м3. Осваивается самоходный скрепер с мотор-колесами емкостью 20--25 м3 на базе тягача мощностью 290-- 380 кет (520 л. с). Серийно выпускаются прицепные скреперы емкостью 3,6 и 10 м3.

Массовое применение прицепных скреперов емкостью 6 и 10 мг имело место на постройке канала Волго-Дон им. В. И. Ленина в 1948--1950 гг. Часовая производительность их на 1 м3 составляла соответственно 7 и 7,5 м3 при максимальной производительности 52 и 80 м3/ч.

Рис. 9 Толкач-тягач массой 170 га, мощностью 1200 кет (1650 л. с.) с электрическим приводом на каждое -колесо

Одноосные тягачи придают скреперам высокие маневренные качества. Однако получить скорость скрепера с одноосным тягачом выше 50 км/ч пока еще не удается* Поэтому для перевозок на дальние расстояния используют полуприцепные скреперы с двухосными седельными тягачами (рис. 10), развивающими скорость до 70 км/ч. По маневренности последние значительно уступают скреперам с одноосными тягачами.

Стремление увеличить производительность и эффективность работы скреперов привело к возвращению поездной возки, применявшейся 25 лет назад при скреперах малой емкости.

В 1958 г. был создан одноосный тягач мощностью 880 кет (1200 л. с.) с двумя скреперами емкостью по 46 м3, загружающимися поочередно или одновременно (рис. 11).

Продолжается работа по уменьшению сопротивлений при работе скрепера. Неудавшаяся в 1937 г. попытка резко снизить сопротивление заполнению с помощью подвижного днища оказалась успешной при установке в ковше наклонного скребкового конвейера, приводимого от двигателя, который питается 410 кет (560 л. с.) и активной задней осью с двигателем мощностью 310 кет (420 л. с), скорость до 70 км/ч током от генератора, установленного на тягаче (рис. 12).

Рис. 10 Полуприцепной скрепер с двухосным седельным тягачом мощностью

Рис. 11 Скреперный агрегат емкостью 92 м3 с мотор-колесами и двумя двигателями по 440 кет (600 л. с), скорость до 30 км/ч

Рис. 12 Скрепер со скребковым конвейером для загрузки ковша: о --загрузка; б -- разгрузка

В СССР разработан скрепер, в котором привод скребкового конвейера осуществляется при помощи гидромотора. Как показывает опыт, с установкой скребкового конвейера наибольшее тяговое усилие при*заполнении скрепера снижается на 20--25%.

В настоящее время ведутся работы по созданию скреперов емкостью 75 и 100 мг. В табл. 2 приведены некоторые технико-экономические данные современных скреперов. За последние 20 лет удельные мощности скреперов возросли в 1,5--1,7 раза для гусеничных тягачей и более чем в 2 раза для колесных. Почти в 1,5 раза увеличилась производительность, отнесенная к 1 м3 емкости скрепера. Наибольшая часовая производительность скрепера возросла в 3 с лишним раза и при дальности возки 500 м достигает 600--700 мъ/ч, т. е. близка к производительности экскаватора с ковшом емкостью 8--10 м3.

Значительные работы проводятся по изысканию наилучшей компоновки скреперов путем различного агрегатирования узлов и изменения положения кабины управления. Расположение кабины водителя впереди удобно для передвижения, но затрудняет наблюдение за наполнением ковша. При расположении кабины сзади в поле зрения находятся как ковш, так и дорога впереди. Однако необходимы еще специальные конструктивные меры, чтобы уменьшить в этом случае «мертвое пространство» дороги перед скрепером.

Принимаются конструктивные решения, увеличивающие универсальность машин. Так, ковш скрепера устанавливают как сменное оборудование автогрейдера, тягач скрепера и автогрейдер снабжают отвалом бульдозера или рыхлителем (рис. 13). Создана оригинальная конструкция полупридепного скрепера к обычному короткобазовому двухосному тягачу с гидроуправлением. Увеличенный сцепной вес тягача позволяет развивать тяговое усилие 10 т при скорости 4,4 км/ч. Транспортная скорость достигает 54 км/ч. Тягач снабжается отвалом бульдозера.

В связи со значительным сокращением числа строительных объектов с крупными объемами земляных работ и объектов горной промышленности, ведущих добычу полезных ископаемых открытым способом, на которых можно бы использовать скреперы, произошло заметное падение спроса на эти машины. Это послужило основанием для прекращения производства или сокращения номенклатуры и объемов выпуска скреперов во всем мире. Скреперы - специализированные машинами циклического действия, способные выполнять землеройные операции с последующей транспортировкой набранного грунта в места его отсыпки. Полный рабочий цикл скрепера включает процесс резания и накопления грунта в ковше, его транспортировку к местам отсыпки (выгрузки), возвращение к месту набора грунта. Дальность транспортировки обычно составляет 0,5…1 км для прицепных скреперов и 1,5…3 км для самоходных скреперов.

Скреперы обычно используются в дорожном, гидротехническом и прочих видах строительства, в горной промышленности. Классификация скреперов производится по различным показателям: вместимость скреперного ковша (малая до 5 куб.м, средняя 5…15 куб.м и высокая свыше 15 куб.м), способ агрегатирования (самоходный, прицепной, полуприцепной), способ загрузки ковша (подпором грунта, с помощью загрузочного устройства элеваторного или шнекового типа), способ выгрузки (путем опрокидывания ковша, выдвижной задней стенкой ковша), а также способ привода исполнительных органов (канатный или гидравлический).

...

Подобные документы

  • Назначение и область применения скреперов, особенности их классификации. Обзор конструкции скрепера, расчет его параметров. Определение типа тягача, используемого для привода прицепного скрепера. Проведение расчета гидравлической системы скрепера.

    курсовая работа [518,5 K], добавлен 17.12.2013

  • История создания скреперов, их назначение, применение и классификация. Устройство рабочего органа и технологические схемы работы. Определение конструктивных параметров ковша и тяговый расчет. Техническая и эксплуатационная производительность оборудования.

    курсовая работа [2,8 M], добавлен 07.11.2014

  • Определение основных параметров скрепера. Расчет скрепера на устойчивость. Расчет механизма подъема-опускания ковша, механизма сдвижного днища, механизма подъема заслонки, задней стенки. Направления совершенствования рабочего процесса скреперов.

    курсовая работа [2,3 M], добавлен 20.12.2014

  • Назначение, область применения и виды скреперов. Выбор основных параметров скрепера, тяговый расчет и баланс мощности. Определение нагрузок, действующих на скрепер и усилий в гидроциклах подъема ковша и заслонки. Охрана труда, метрология и стандартизация.

    курсовая работа [523,5 K], добавлен 17.12.2013

  • Скрепер - землеройно-транспортная машина цикличного действия для послойного резания грунта, транспортирования к месту укладки и разгрузки. Выбор прототипа, параметры и производительность скрепера. Экономический эффект от внедрения проектируемой машины.

    курсовая работа [873,0 K], добавлен 23.11.2011

  • Обзор назначения и принципа действия гидропривода опрокидывания ковша скрепера. Выбор рабочей жидкости с учетом климатических условий эксплуатации гидросистемы. Определение проходных сечений и диаметров всех трубопроводов, толщины стенки и размеров труб.

    курсовая работа [255,7 K], добавлен 09.06.2016

  • Обзор способов копания грунтов скреперами, его современные отечественные и зарубежные конструкции. Выбор основных геометрических параметров. Расчет сопротивления копанию. Описание узла модернизации, определение эффекта от применения новой техники.

    дипломная работа [247,1 K], добавлен 25.07.2011

  • История завода ЗАО "Железобетон". Организация технологического процесса. График пропарки изделий на портландцемент. Требования к качеству поверхностей и внешнему виду колонн многоэтажных зданий. Погрузка, транспортирование, разгрузка и хранение колонн.

    отчет по практике [843,9 K], добавлен 17.05.2015

  • Ленточный конвейер как транспортирующее устройство непрерывного действия с рабочим органом в виде ленты. Методы определения мощности электродвигателя. Принципы выбора автоматического выключателя силовой цепи. Электробезопасность проектируемой установки.

    дипломная работа [1,9 M], добавлен 07.04.2015

  • Исходные данные для проектирования. Определение мощности гидропривода и подачи насоса. Подбор гидравлического оборудования и расчёт гидролиний гидродвигателя и таблиц его действительных характеристик. Построение статической характеристики гидропривода.

    курсовая работа [98,6 K], добавлен 06.12.2011

  • Конструкция прицепного скрепера, предназначенного для послойного копания, транспортирования, послойной отсыпки, разравнивания и частичного уплотнения грунтов. Расчет и проектирование основных параметров машины, отдельных узлов и рабочих органов.

    курсовая работа [3,0 M], добавлен 11.04.2015

  • Анализ энергоносителей при выпечке. Способы передачи теплоты от нагревательных элементов к продукту. Описание конструкции и электрической схемы шкафа. Расчет основных теплотехнических и эксплуатационных характеристик аппарата. Модернизация узлов аппарата.

    курсовая работа [2,1 M], добавлен 23.09.2011

  • Проект модернизации фрезерного станка модели ГФ2171С3 с целью совершенствования системы управления. Устройство числового программного управления. Рынок устройств числового программного управления. Технические характеристики программного обеспечения.

    дипломная работа [1,7 M], добавлен 20.03.2013

  • Принцип действия ленточного конвейера, общая схема устройства. Основные параметры рабочего органа. Особенности расчета тягового усилия, необходимой мощности привода конвейера. Выбор двигателя, алгоритм его кинематического расчета. Выбор элемента передач.

    курсовая работа [186,3 K], добавлен 02.05.2016

  • Методы, средства и погрешности измерений. Разработка конструкции лабораторного стенда, выбор и комплектация электрооборудования и материалов, монтаж. Назначение, устройство и прицеп работы мегаомметра. Устройство и прицип работы поверочной установки.

    дипломная работа [3,0 M], добавлен 20.02.2010

  • Флотационная очистка сточных вод; характеристика и конструкция флотатора очистных сооружений комбината. Структура автоматизированной системы управления технологическим процессом флотационной очистки. Модернизация узла дозирования раствора флокулянта.

    дипломная работа [2,1 M], добавлен 30.04.2012

  • Требования к качеству заданной марки стали. Порядок завалки шихтовых материалов. Расчет основных геометрических размеров рабочего пространства. Проектирование строения подины, выбор конструкции и материалов стен и свода. Эскиз рабочего пространства печи.

    курсовая работа [209,6 K], добавлен 23.02.2014

  • Землеройно-транспортные машины с ножевым рабочим органом, их назначение. Обзор и анализ существующих конструкций бульдозеров. Организация и технология производства работ. Мировые производители и марки бульдозеров. Составные части и системы бульдозеров.

    контрольная работа [232,5 K], добавлен 26.03.2015

  • Описание изделия "Крышка лабиринта с сотовым уплотнением" и требований к нему. Оценка свариваемости материала. Перечень возможных способов сварки изделия, выбор ее проектных вариантов. Сварочные материалы, основное и вспомогательное оборудование.

    дипломная работа [1,0 M], добавлен 20.04.2017

  • Обзор научно-технической литературы, медико-биологические основы фактора разделения. Разработка, проектирование и расчёт центрифуги лабораторной клинической. Описание конструкции и принципа действия центрифуги, вывод уравнения движения рабочего органа.

    курсовая работа [435,7 K], добавлен 20.10.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.