Производство пищевой и кальцинированной соды
Химические и физический свойства пищевой соды. Области применения пищевой, кальцинированной и кристаллической соды. Технологии получения кальцинированной соды по методу Сольве, Леблана и Хоу, аммиачным и нефелиновым способами, электролизный процесс.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 21.12.2014 |
Размер файла | 2,5 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Сода (натрон, бикарбонат натрия, гидрокарбонат натрия) - нейтрализующая кислоту натриевая соль. Питьевая сода - это гидрокарбонат натрия NaHCO3, двууглекислый натрий. В общем случае «сода» представляет собой техническое название натриевых солей угольной кислоты H2CO3. В зависимости от химического состава соединения различается питьевая сода (пищевая сода, бикарбонат натрия, двууглекислый натрий, гидрокарбонат натрия) - NaHCO3, кальцинированная сода (карбонат натрия, безводный углекислый натрий) - Na2CO3 и кристаллическая сода - Na2CO3*10H2O, Na2CO3*7H2O, Na2CO3*H2O. Искусственная пищевая сода (NaHCO3) - белый кристаллический порошок.
Современные содовые озёра известны в Забайкалье и в Западной Сибири; большой известностью пользуется озеро Натрон в Танзании и озеро Серлс в Калифорнии. Трона, имеющая промышленное значение, открыта в 1938 в составе эоценовой толщи Грин-Ривер (Вайоминг, США).
В США природная сода удовлетворяет более 40% потребности страны в этом полезном ископаемом. В России из-за отсутствия крупных месторождений сода из минералов не добывается.
Сода была известна человеку примерно за полторы-две тысячи лет до нашей эры, а может быть, и раньше. Ее добывали из содовых озер и извлекали из немногочисленных месторождений в виде минералов. Первые сведения о получении соды путем упаривания воды содовых озер относятся к 64 году нашей эры. Алхимикам всех стран вплоть до 18 века представлялась неким веществом, которое шипело с выделением какого-то газа при действии известных к тому времени кислот - уксусной и серной. Во времена римского врача Диоскорида Педания о составе соды никто не имел понятия. В 1736 году французский химик, врач и ботаник Анри Луи Дюамель де Монсо впервые смог получить из воды содовых озер очень чистую соду. Ему удалось установить, что сода содержит химический элемент «Натр». В России еще во времена Петра Первого соду называли «зодой» или «зудой» и вплоть до 1860 года ее ввозили из-за границы. В 1864 году в России появился первый содовый завод по технологии француза Леблана. Именно благодаря появлению своих заводов сода стала более доступной и начала свой победный путь в качестве химического, кулинарного и даже лекарственного средства.
Что такое пищевая сода.
В промышленности, торговле и в быту под названием сода встречаются несколько продуктов: кальцинированная сода - безводный углекислый натрий Na2СO3, двууглекислая сода - бикарбонат натрия NaНСO3, часто называемая также питьевой содой, кристаллическая сода Na2СO3*10Н2O и Nа2СO3*Н2O и каустическая сода, или едкий натр, NаОН. Обыкновенная сода, в зависимости от способа приготовления, бывает леблановская и аммиачная. Последняя представляет собой более чистый продукт.
Кроме того сода бывает либо в виде кальцинированной (безводной, прокаленной), либо кристаллической. Эта сода содержит 10 частей воды.
Современная пищевая сода - типичный промышленный продукт. Однако она была известна человечеству задолго до нашей эры в естественном состоянии и уже применялась в кулинарии Древнего Египта, на территории которого существовали содовые озера, выделявшие на жгучем солнце пустыни осадочную соду.
В природе сода встречается в твердом виде в небольших залежах в составе минерала трона Na2CO3 NaHCO3*2H2O, в виде раствора - в воде некоторых содовых озер и щелочных минеральных источников и в золе некоторых растений. До начала XIX в. использовалась почти исключительно природная сода, но с ростом потребления соды возникла необходимость производства соды в больших масштабах искусственным путем. В настоящее время добыча природной соды крайне мала. Имеются содовые озера (в Кулундинской степи), однако природная сода составляет небольшой процент в общем ее производстве. Промышленное производство очищенного продукта тесно связано с содовым производством, поскольку в качестве сырья для получения очищенной пищевой соды применяется карбонат (или сырой гидрокарбонат) натрия, а также диоксид углерода известковых печей.
В настоящее время в мире производится несколько миллионов тонн соды в год для промышленного производства, пищевой и медицинской промышленности.
Искусственно сода была получена лишь в конце XVIII века во Франции химиком Лебланом (1791 год). Секрет получения, как тогда водилось, долго держался в тайне, вследствие чего сода стала впервые активно применяться именно во французской кулинарии, особенно во французском кондитерском производстве, и в первую очередь при изготовлении бисквитов и других французских печений, в то время как кондитерское производство в других странах - например, в Австрии, в России - развивалось в ином направлении, с использованием других, преимущественно дрожжевых тестоподъемных средств. Вот почему во Франции, кроме бисквитов, доминировали сухие и слоеные печенья, а в Германии и Польше, где работали французские учителя-повара, получило развитие песочное содовое тесто, в то время как Вена вплоть до XX века оставалась центром пышных кондитерских изделий и знаменита превосходным дрожжевым «венским тестом» - верхом искусного применения дрожжей в кондитерском деле. Лишь в 1861 году бельгийский химик Э. Сольве разработал современный способ получения соды, на который во второй половине XIX - начале XX века перешли все европейские страны и США.
Лишь после Первой мировой войны и революции 1917 г. содовые кондитерские изделия получили развитие в СССР, в 20-30-х годах, в основном через сеть общественного питания, ибо содовое тесто дает возможность достигать стереотипности, стандарта выпечных изделий (одинаковости в их весе, виде, форме). А после Второй мировой войны содовые кондитерские изделия заняли в России основное место в домашнем приготовлении за счет утраты навыков новых поколений к созданию традиционных национальных русских сладостей, а также в связи с редким появлением в продаже дрожжей и разнообразных пряностей, применяемых ранее в русском кондитерском деле (бадьян, калган, корица, имбирь, черный перец, померанцевая цедра).
Характеристики пищевой соды.
Химические свойства.
Гидрокарбонат натрия - кислая натриевая соль угольной кислоты. Молекулярная масса (по международным атомным массам 1971 г.) - 84,00.
Реакция с кислотами.
Гидрокарбонат натрия реагирует с кислотами, с образованием соли и угольной кислоты, которая тут же распадается на углекислый газ и воду:
NaHCO3 + HCl > NaCl + H2CO3
H2CO3 > H2O + CO2^
в кулинарии чаще встречается такая реакция с уксусной кислотой, с образованием ацетата натрия:
NaHCO3 + CH3COOH > CH3COONa + H2O + CO2^
Сода хорошо растворяется в воде. Водный раствор питьевой соды имеет слабощелочную реакцию. Шипение соды - результат выделения углекислого газа CO2 в результате химических реакций.
Термическое разложение.
При температуре 60° C гидрокарбонат натрия распадается на карбонат натрия, углекислый газ и воду (процесс разложения наиболее эффективен при 200° C):
2NaHCO3 > Na2CO3 + H2O + CO2^
При дальнейшем нагревании до 1000° C (например при тушении пожара порошковыми системами) полученный карбонат натрия распадается на углекислый газ и оксид натрия:
Na2CO3 > Na2O + CO2.
Физико-химические показатели.
Бикарбонат натрия представляет собой кристаллический порошок белого цвета со средним размером кристал лов 0,05 - 0,20 мм. Молекулярная масса соединения равна 84,01, плотность составляет 2200 кг/мі, насыпная плотность - 0,9 г/смі. Теплота растворения бикарбоната натрия исчисляется 205 кДж (48,8 ккал) на 1 кг NaHCO3, теплоемкость достигает 1,05 кДж/кг*К(0,249 ккал/кг*°С).
Гидракарбонат натрия термически малоустойчив и при нагревании разлагается с образованием твердого карбоната натрия и выделением диоксида углерода, а также воды в газовую фазу:
2NaHCO3(тв.) - Na2CO3(тв.) + CO2(г.) + H2O(пар) - 126 кДж (- 30 ккал)
Аналогично разлагаются и водные растворы бикарбоната натрия:
2NaHCO3(р.) - Na2CO3(р.) + CO2(г.) + H2O(пар) - 20,6 кДж (- 4,9 ккал)
Водный раствор бикарбоната натрия имеет слабо выраженный щелочной характер, в связи с чем на животные и растительные ткани он не действует. Растворимость гидрокарбоната натрия в воде невелика и с повышением температуры она несколько повышается: с 6,87 г на 100 г воды при 0° С до 19,17 г на 100 г воды при 80° С.
Вследствие небольшой растворимости плотность насыщенных водных растворов бикарбоната натрия сравнительно мало отличается от плотности чистой воды.
Температура кипения (разлагается): 851° C;
Температура плавления: 270° C;
Плотность: 2,159 г/смі;
Растворимость в воде, г/100 мл при 20° C: 9.
Применение.
Двууглекислый натрий (бикарбонат), применяется в химической, пищевой, легкой, медицинской, фармацевтической промышленности, цветной металлургии, поставляется в розничную торговлю.
Зарегистрирован в качестве пищевой добавки E500.
Широко применяется в:
* химической промышленности - для производства красителей, пенопластов и других органических продуктов, фтористых реактивов, товаров бытовой химии, наполнителей в огнетушителях, для отделения двуокиси углерода, сероводорода из газовых смесей (газ поглощается в растворе гидрокарбоната при повышенном давлении и пониженной температуре, раствор восстанавливается при подогреве и пониженном давлении).
* легкой промышленности - в производстве подошвенных резин и искусственных кож, кожевенном производстве (дубление и нейтрализация кож).
* текстильной промышленности (отделка шелковых и хлопчатобумажных тканей). Применение бикарбоната натрия в производстве резиновых изделий также обусловлено выделением CO2 при нагревании, способствующем приданию резине необходимой пористой структуры.
* пищевой промышленности - хлебопечении, производстве кондитерских изделий, приготовлении напитков.
* медицинской промышленности - для приготовления инъекционных растворов, противотуберкулезных препаратов и антибиотиков.
* металлургии - при осаждении редкоземельных металлов и флотации руд.
Кулинария.
Основное применение питьевой соды - кулинария, где она применяется, преимущественно, в качестве основного или дополнительного разрыхлителя при выпечке (так как при нагревании выделяет углекислый газ), изготовлении кондитерских изделий, производстве газированных напитков и искусственных минеральных вод, самостоятельно или в составе комплексных разрыхлителей (например, пекарского порошка, в смеси с карбонатом аммония), например, в бисквитном и песочном тесте. Это связано с легкостью ее разложения при 50-100° С.
Пищевая сода, применяемая преимущественно при изготовлении мелкого печенья, кондитерских крошек, листов для тортов и слоеных пирожков. В последнюю четверть XIX в. началось ее применение в кондитерском деле, вначале только во Франции и Германии и лишь в самом конце XIX века и в начале XX столетия - также в России.
Применение соды открыло путь к фабричному производству современного печенья - штамповочного. Вместе с тем многие старые виды печенья - бисквитные, слоеные, битые, пряничные, вздувные, меренги - отошли в область прошлого, исчезли не только из общественного, но и из домашнего обихода.
Сода - необходимый повседневный помощник на кухне для мытья посуды, тары для консервирования, некоторых плодов и ягод перед сушкой. Она обладает свойством нейтрализовать и убивать запахи.
Ошибочно думать, что сода - специя только для кондитерского дела. Помимо кондитерского производства, сода применяется также для приготовления английских мармеладов, в мясные фарши для блюд молдавской, румынской и узбекской кухни (калийная сода) и при приготовлении напитков. Количества соды, вносимые во все перечисленные изделия, крайне малы - от "на кончике ножа" до щепотки и четверти чайной ложки. В напитках с содой доля ее гораздо выше - по половине и полной чайной ложке на литр жидкости. Для кондитерских и других целей соду кладут по предписанию рецептов, обычно это очень малые дозы. Хранят ее в герметичной таре, берут сухим предметом.
Получение соды промышленным способом дало широкие возможности в приготовлении многих видов современной кондитерской продукции в европейских странах. Россия долгое время шла традиционным путем, предпочитая дрожжевое и другие виды теста.
В России совершенно не применяли до второй половины XIX века соду в хлебопечении и кондитерском деле. Да и в самом конце XIX века изделия такого рода производились более всего на Украине и в Польше, а также в Прибалтике. У русского населения, привыкшего испокон веков к натуральным видам теста - либо дрожжевого, заквасочного, либо медово-яичного, где в качестве подъемного средства не применялись искусственные химические вещества, а использовались естественно возникавшие при печении газы, в результате взаимодействия таких продуктов, как мед (сахар), яйца, сметана, алкоголь (водка) или винный уксус, - содовое печенье имело крайне низкую популярность и невысокий спрос.
Кондитерские изделия на соде считались «немецкими» и игнорировались как из чисто кулинарно-вкусовых, так и из «патриотических» соображений.
Кроме того, русские национальные кондитерские изделия - медовые пряники и коврижки, глазированные жемки и вареные в меду орешки - имели столь неповторимо превосходный вкус, что успешно конкурировали с западно-европейскими, более утонченными по форме, но «хлипкими» с точки зрения сытости, добротности и вкуса французскими бисквитами, где привлекательность достигалась вовсе не особым характером теста, а применением экзотических пряностей, в основном ванили.
Кроме кондитерских изделий, сода в русской кухне никогда не применялась и не применяется фактически до сих пор. Между тем в Прибалтике, Молдове, Румынии, на Балканах соду применяют как разрыхляющее средство в ряде блюд, приготавливаемых путем жарения. Так, соду вносят в разнообразные полутестяные жареные блюда: оладьи из картофеля, куда входит и пшеничная мука; разнообразные блинчики, сметанные лепешки и пышки, сырники, приготовленные из сочетания творога и муки, а также в мясные фарши, если они состоят только из мяса и лука, без добавления мучных компонентов (муки, белого хлеба, панировочных сухарей). Такой сырой мясной фарш (говяжий, свиной) оставляют с содовой добавкой на выстойку в холодильнике на несколько часов, а затем легко формуют из этого фарша «сосиски», которые быстро (за 10-15 минут) гриллируют в духовом шкафу любой домашней плиты (газовой, дровяной или электрической).
Аналогичное использование соды в мясные фарши известно и в армянской кухне, с той только разницей, что в таких случаях фарш не выстаивается, а подвергается сразу же интенсивному взбиванию с добавлением нескольких капель (5-8) коньяка, и превращается фактически в мясное суфле, используемое для приготовления различных национальных блюд (в основном калолаков).
В англоязычных странах Европы и Америки (Англии, Шотландии, на Восточном побережье США и в Канаде) соду применяют как непременную добавку в варенье из цитрусовых (апельсинов, лимонов, грейпфрутов), а также для приготовления цукатов. В результате достигается особая развариваемость цитрусов, их жестких корок, превращение такого варенья в подобие густого мармелада, и одновременно снижается (но не исчезает совсем!) степень неприятной горечи, всегда присутствующей в кожуре цитрусовых плодов. Корки апельсинов, составляющих у нас своего рода балласт, отходы при употреблении этих фруктов, с помощью соды становятся ценным сырьем для получения ароматного, высокопитательного мармелада.
В среднеазиатских кухнях сода применяется при приготовлении некондитерских видов простого теста с целью придать ему особую эластичность и превратить в вытяжное тесто без применения для этого растительного масла, как это принято в южноевропейских, средиземноморских и балканских кухнях. В Средней Азии кусочки простого пресного теста после обычной получасовой выстойки смачивают небольшим количеством воды, в котором растворены 0,5 чайной ложки соли и 0,5 чайной ложки соды, а затем растягивают их руками в тончайшую лапшу (т. н. дунганская лапша), которая обладает нежным, приятным вкусом и идет на приготовление национальных блюд (лагмана, монпара, шимы и др.).
Соду в качестве мизерных добавок к любой пище в процессе приготовления, и именно во время тепловой обработки, добавляют во многих национальных кухнях, учитывая, что это дает в ряде случаев не только неожиданный вкусовой эффект, но и обычно очищает пищевое сырье и все блюдо от различных случайных побочных запахов и привкусов.
Вообще роль соды на кухне, даже помимо кулинарного процесса, - весьма значительна. Ведь без соды практически невозможна идеальная чистка столовой и кухонной эмалированной, фарфоровой, стеклянной и фаянсовой посуды, а также кухонного инструментария и оборудования от посторонних запахов и различных налетов и патины. Особенно незаменима и необходима сода при чистке чайной посуды - заварочных чайников и чашек от образующегося на их стенках чайного налета, пленки.
Столь же необходимо применение соды при мытье посуды, в которой приготавливалась рыба, чтобы отбить рыбный запах. Обычно поступают следующим образом: стойкий рыбный запах отбивают тем, что протирают посуду луком, а затем уничтожают (смывают) луковый запах, чистя эту посуду содой.
Словом, сода - непременный компонент кухонного производства, и на хорошей кухне без нее нельзя обойтись. Более того, ее отсутствие в арсенале повара или хозяйки немедленно становится заметным, ибо оно связывает того, кто работает у плиты или за разделочным столом, во многих его действиях.
Современные экологические обстоятельства вызвали еще одно новое применение соды на кухне как средства, повышающего качество овощного сырья. Можно, например, рекомендовать обмывать все обработанные, но еще не нарезанные овощи - перед их закладкой в котел или на сковородку - в растворе соды в воде. Или засыпать одной-двумя чайными ложками соды уже очищенный картофель, залитый холодной водой и предназначенный для отваривания или приготовления пюре. Это не только очистит картофель от химикатов, которые использовались при его выращивании, но и сделает сам продукт светлее, чище, красивее, снимет все побочные запахи, приобретенные при транспортировке или неправильном хранении, а также порче. Сам картофель станет после готовности рассыпчатым, вкусным. Таким образом, применение соды до приготовления, при холодной обработке (затем продукт тщательно промывается холодной водой), способно повысить качество овощного пищевого сырья, в частности у крахмалосодержащих овощей, у корнеплодов и листовых культур (капусты, салатов, шпината, петрушки и т. д.).
Сода столь прочно заняла место щелочного агента, что до сих пор ничем не удалось сдвинуть ее с этой позиции. Пищевая сода как разрыхлитель может действовать двояко. Во-первых, она разлагается при нагревании по реакции:
2NaHCO3 (сода) > Na2CO3 (соль) + H2O (вода) + CO2 (углекислый газ).
И в этом случае, если добавить в песочное тесто излишнее количество соды, за небольшое время выпечки она может не успеть термически разложиться без остатка и печенье или кекс получат неприятный «содовый» привкус.
Точно так же, как и поташ, сода реагирует с кислотами, содержащимися в тесте или добавленными туда искусственно:
NaHCO3 (сода) + R-COOH (кислота) > R-COONa (соль) + H2O (вода) + CO2 (углекислый газ)
Множество различных фирменных пакетиков и их доступность не отменяют развлечения для юных химиков - самостоятельно изготовить порошок для выпечки. Пропорциональный состав такого традиционного порошка:
2 части кислой виннокаменной соли,
1 часть пищевой соды,
1 часть крахмала или муки.
Медицина.
Как выглядит сода, прекрасно знают все - это белый порошок, который впитывает воду и отлично в ней растворяется. Но мало кто знает об удивительных целебных свойствах этого «простого» вещества. Между тем, сода - гидрокарбонат натрия - один из главных ингредиентов нашей крови. Результаты исследования влияния соды на организм человека превзошли все ожидания. Оказалось, что сода способна выравнивать кислотно-щелочное равновесие в организме, восстанавливать обмен веществ в клетках, улучшать усвоение кислорода тканями, а также препятствовать потере жизненно необходимого калия. Помогает сода при изжоге, при морской болезни, при простудах, при сердечных заболеваниях и головных болях, при кожных заболеваниях. Как видите, сода - лекарство первой помощи.
Раствор питьевой соды используется в качестве слабого антисептика для полосканий, а также как традиционное кислотонейтрализующее средство от изжоги и болей в желудке (современная медицина не рекомендует применять из-за побочных эффектов, в том числе, из-за «кислотного рикошета») или для устранения ацидоза и т. п.
Пищевая сода применяется для лечения заболеваний, связанных с повышенной кислотностью; раствор питьевой соды применяется для полоскания горла, для промывания кожи при попадании кислот.
Бикарбонат натрия (пищевая сода) может замедлять развитие хронического заболевания почек. К такому выводу пришли ученые из Королевской клиники Лондона (Royal London Hospital), Великобритания. Они исследовали 134 человека с запущенным хроническим заболеванием почек и метаболическим ацидозом.
Одна группа испытуемых проходила обычное лечение, а вторая помимо традиционного лечения ежедневно получала небольшое количество пищевой соды в виде таблеток. У тех больных, кто пил бикарбонат натрия, функции почек ухудшались на 2/3 медленнее, чем у прочих.
Быстрое прогрессирование заболевания почек наблюдалось только у 9% подопытных из «содовой группы» против 45% испытуемых, лечившихся традиционно. Кроме того, у принимавших соду реже развивалась терминальная стадия почечной недостаточности, которая требует диализа. Примечательно, что повышение содержания бикарбоната натрия в организме не вызывало у больных повышения кровяного давления.
Cода является недорогим и эффективным средством лечения хронического заболевания почек. Однако исследователи предостерегают: прием соды должен проходить под наблюдением врача, который должен правильно рассчитать дозировку для больного.
Лечебные свойства пищевой соды.
Раньше гидрокарбонат натрия применялся очень широко (как и другие щелочи) в качестве антацидного средства при повышенной кислотности желудочного сока, язвенной болезни желудка и 12-типерстной кишки. При приеме внутрь пищевая сода быстро нейтрализует соляную кислоту желудочного сока и оказывает выраженный антацидный эффект. Однако применение соды заключается не только в блестяще отмытой посуде и избавлении от изжоги. Пищевая сода занимает достойное место в домашней аптечке.
Как и древние египтяне, получавшие природную соду из озерных вод методом выпаривания, люди использовали и другие свойства соды. Она обладает нейтрализующими качествами, используется в медицинской практике для лечения гастритов с повышенной кислотностью. Способна убивать микробов, используется как дезинфицирующее средство: соду применяют для ингаляций, полосканий, очищения кожи.
Широкое применение сода имеет и в здравохранении.
Профилактика кариеса.
Кислоты, образующиеся во рту в результате жизнедеятельности бактерий, разрушают эмаль зубов. Эти кислоты можно нейтрализовать, несколько раз в день полоща рот раствором пищевой соды. Можно поступить иначе: смочите зубную щетку водой, опустите ее в соду и почистите зубы. Сода, кроме того, оказывает легкое абразивное действие: она отполирует зубы, не повреждая эмали.
От неприятного запаха ног.
Добавленная в воду для ножной ванны сода нейтрализует выделяемые бактериями кислоты, которые и придают ногам неприятный запах. Сода поможет также устранить резкий запах пота под мышками.
При укусах насекомых.
Не расчесывайте до крови укусы комаров и прочих кровососов. Лучше приготовьте кашеобразную смесь из воды и соды и нанесите на место укуса. Содовая кашица облегчит также зуд, вызванный ветряной оспой или контактом кожи с борщевиком, крапивой.
При опрелостях.
Содовые примочки значительно улучшают состояние малышей с опрелостями. Они уменьшают зуд и ускоряют заживление кожи.
При цистите.
Болезнетворные бактерии живут в мочевом пузыре в слегка кислой среде. Если ваш мочевой пузырь пал жертвой инфекции, идеальный послеобеденный напиток для вас - шипучий коктейль из пищевой соды с водой.
При солнечных ожогах.
Добавьте в теплую ванну немного пищевой соды: она смягчит воду, превратив ее в успокаивающую примочку для раздраженной кожи.
От боли в горле.
Размешайте 0,5 чайн. ложки соды в стакане воды и каждые 4 часа полощите горло приготовленным раствором: он нейтрализует кислоты, вызывающие боль. Полоскание таким раствором рта поможет снять и воспаление слизистой ротовой полости.
От неприятного запаха изо рта.
В сочетании с перекисью водорода пищевая сода дает мощный окислительный эффект и разрушает бактерии, порождающие неприятный запах во рту. Добавьте 1 стол. ложку соды в стакан раствора перекиси водорода (2-3%) и прополощите рот.
При простуде.
Полезно делать ингаляцию. Для этого можно взять небольшой чайник, вскипятить в нем 1 стакан воды с 1 чайн. ложкой соды. Сделать из твердой бумаги трубочку, надеть ее на носик чайника и вдыхать пар в течение 10-15 минут. Данная ингаляция очень помогает для отделения мокроты.
Для отхаркивания вязкой мокроты 2 раза в день выпивать натощак по 1/2 стакана теплой воды, в которой растворены 0,5 чайн. ложки соды и щепотка соли.
При частых мигренях.
Каждый день принимать раствор кипяченой воды с пищевой содой. В 1-й день за 30 минут до обеда выпивать 1 стакан раствора (0,5 чайн.ложки соды + вода), 2-й день - 2 стакана и т.д., доведя до 7 стаканов. После уменьшать дозу в обратном порядке.
Прочее.
При ринитах, стоматитах, ларингитах, конъюнктивитах применяют 0,5-2% раствор соды.
Для обеззараживания слизистой оболочки рта полезно полоскать рот некрепким раствором (сода - 85 г, соль - 85 г, мочевина - 2,5 г) после еды.
Средство от курения: полоскать рот раствором пищевой соды (1 столовая ложка на 200 мл воды).
При сухости кожи, сухих дерматитах, ихтиозе и псориазе полезны лечебные ванны (сода - 35 г, карбонат магнезии - 20 г, перборат магния - 15 г). Температура воды должна быть не выше 38-39° С, сначала нужно садиться просто в теплую ванну, потом постепенно увеличивать температуру. Длительность ванны 15 минут.
Пожаротушение.
Гидрокарбонат натрия входит в состав порошка, применяемого в порошковых системах пожаротушения, утилизируя тепло и оттесняя кислород от очага горения выделяемым углекислым газом.
Очистка оборудования. Технология абразивно-струйной очистки (АСО).
Производится очистка оборудования и поверхностей от различных покрытий и загрязнений с применением технологии абразиво-струйной очистки (АСО) оборудования. В качестве абразива используется бикарбонат натрия (пищевая сода, двууглекислый натрий, гидрокарбонат натрия, NaHCO3, кислый углекислый натрий).
Технология АСО с применением бикарбоната натрия - это новый эффективный способ очистки оборудования с помощью «мягкого» абразива. Абразив приведен в движение сжатым воздухом, производимым компрессором. Этот способ получил коммерческое признание и широко используется в Европе и США уже в течение 25 лет благодаря своей универсальности и экономической целесообразности.
Обработка поверхности оборудования подобна обычной пескоструйной очистке. Различие заключается в том, что частицы соды являются «мягким» абразивным материалом, то есть не повреждают саму поверхность.
Принцип:
Хрупкая частица кислого углекислого натрия при соприкосновении с очищаемой поверхностью взрывается.
Энергия, выпущенная этой вспышкой, и удаляет загрязнение от очищаемой поверхности. Абразивные частицы соды полностью разбиваются в тонкую пыль, которая легко разлетается в разные стороны перпендикулярно падению, увеличивая очистительный эффект. В целях пылеподавления содо-струйная очистка оборудования обычно выполняется с применением увлажнения, то есть гидро-абразиво-струйной очистки (ГАСО) оборудования. Углекислый натрий растворяется в воде. Поэтому использованный абразив будет растворен или может смываться после окончания чистки.
Это отличие от кварцевого песка, который срезает покрытие. Кварцевый песок также еще стирает часть очищаемой поверхности, которую сода оставляет фактически невредимой. Существует еще много различий между этими видами очистки оборудования, но они являются уже следствием свойств абразивов.
Растворимые абразивы на основе бикарбоната натрия специально разработаны для абразиво-струйной очистки оборудования. Сыпучие качества абразивов уменьшают плотность потока, связанную с плохой текучестью обычного углекислого натрия.
Технологии производства соды.
Сода впервые была получена в 1793 г. Лебланком, однако пищевая, очищенная сода была изготовлена в 1861 г. Сольвэ.
В конце XVIII и начале XIX в. для получения искусственной соды стали применять способ Леблана, сущность которого заключается в следующем: из поваренной соли действием на нее серной кислотой вначале получали сульфат натрия, затем сульфат натрия сплавляли при высокой температуре с углекислым кальцием и углем. Из полученного сплава соду выщелачивали водой. Раствор затем выпаривали.
Изобретение бельгийским ученым Э. Сольвэ в середине XIX столетия аммиачного способа получения соды способствовало интенсивному ее внедрению в первую очередь в кондитерское дело. Основной способ искусственного получения соды в настоящее время во всех странах - аммиачный способ производства кальцинированной соды, являющейся материалом для получения остальных содовых продуктов. Сначала Франция и Германия использовали соду как технологическую добавку для разрыхления теста с целью увеличения его объема, улучшения качества. Сода делает тесто мягким, пышным, легко усвояемым. С конца XIX-начала XX века соду стали применять другие страны, в том числе Россия.
Добывают соду сейчас промышленным аммиачным способом (способ Сольве). В насыщенный раствор хлорида натрия пропускают эквимолярные количества газообразных аммиака и диоксида углерода, то есть как бы вводят гидрокарбонат аммония NH4HCO3:
NH3 + CO2 + H2O + NaCl > NaHCO3 + NH4Cl.
Выпавший остаток малорастворимого (9,6 г на 100 г воды при 20° C) гидрокарбоната натрия отфильтровывают и кальцинируют (обезвоживают) нагреванием до 140 - 160° C, при этом он переходит в карбонат натрия:
2NaHCO3 >(t) Na2CO3 + CO2^ + H2O
Образовавшийся диоксид углерода и аммиак, выделенный из маточного раствора на первой стадии процесса по реакции:
2NH4Cl + Ca(OH)2 > CaCl2 + 2NH3^ + 2H2O
возвращают в производственный цикл.
Аммонизация раствора необходима для введения в него углекислого газа, малорастворимого в насыщенном растворе. Выпавший в виде кристаллов бикарбонат натрия отфильтровывают от раствора, содержащего хлористый аммоний и непрореагировавший NaCl, и прокаливают (кальцинируют). При этом происходит образование кальцинированной соды.
Выделяющиеся при кальцинации газы, содержащие углекислоту СO2, используют для карбонизации. Таким образом, часть затраченной углекислоты регенерируется.
Необходимую для процесса углекислоту получают обжигом известняка или мела. Обожженную известь СаО гасят водой.
Гашеная известь Са(ОН)2 замешивается с водой. Образовавшееся известковое молоко используют для регенерации аммиака из раствора (фильтровой жидкости), полученного после отделения бикарбоната и содержащего хлористый аммоний.
Для производства соды используют раствор поваренной соли (рассол) концентрации около 310 г/л, полученный в естественных условиях подземным выщелачиванием залежей поваренной соли. В естественном рассоле, помимо NaCl, обычно содержатся соли кальция и магния. При аммонизации и карбонизации рассола в результате взаимодействия этих примесей с NH3 и СО2 будут выпадать осадки, что приведет к загрязнению аппаратов, нарушению теплообмена и нормального хода процесса. Поэтому рассол предварительно очищают от примесей: осаждают их, добавив к рассолу строго определенное количество реактивов - суспензии соды в очищенном рассоле и известкового молока. Этот способ очистки называется содово-известковым. Выпавшие при этом осадки гидрата магния и карбоната кальция отделяют в отстойниках.
Очищенный и осветленный рассол поваренной соли направляют в барботажную абсорбционную колонну. Верхняя часть колонны служит для промывки рассолом газа, отсасываемого вакуум-насосом из вакуум-фильтров, и газа из карбонизационных колонн. В этих газах содержится небольшое количество аммиака и углекислоты, которые целесообразно отмыть свежим рассолом и, таким образом, более полно использовать их в производстве. Нижняя часть колонны служит для насыщения рассола аммиаком, поступающим из дистилляционной колонны. Полученный аммиачно-соляной рассол далее направляют в барботажную карбонизационную колонну, где происходит основная реакция превращения исходного сырья в бикарбонат натрия. Необходимая для этой цели углекислота СO2 поступает из шахтной известково-обжигательной печи и печи кальцинации бикарбоната натрия и нагнетается снизу в колонну.
Карбонизация аммиачно-соляного рассола является важнейшей стадией производства соды. Образование бикарбоната натрия при карбонизации происходит в результате протекания в карбонизационной колонне сложных химических процессов. В верхней части колонны идет образование углекислого аммония из аммиака, содержащегося в рассоле, и углекислоты, подаваемой в колонну.
По мере прохождения рассола в колонне сверху вниз углекислый аммоний, реагируя с избытком углекислоты, поступающей снизу колонны, переходит в двууглекислый аммоний (бикарбонат аммония).
Примерно в середине верхней неохлаждаемой части колонны начинается реакция обменного разложения, сопровождающаяся выпадением кристаллов бикарбоната натрия и образованием в растворе хлористого аммония. В средней части колонны, где идет образование кристаллов бикарбоната натрия за счет экзотермичности реакции, температура рассола несколько повышается (до 60 - 65° C), однако охлаждать его не надо, так как такая температура способствует формированию более крупных хорошо фильтрующихся кристаллов бикарбоната натрия. Внизу колонны охлаждение необходимо для уменьшения растворимости бикарбоната натрия и увеличения его выхода. В зависимости от температуры, содержания NaCl в рассоле, степени насыщения его аммиаком и углекислотой и других факторов выход бикарбоната составляет 65-75%. Практически невозможно полное превращение поваренной соли в осадок бикарбоната натрия. В этом заключается один из существенных недостатков производства соды аммиачным методом.
сода пищевой кальцинированный
Способы производства бикарбоната натрия.
Бикарбонат натрия выступает промежуточным продуктом промышленного получения кальцинированной соды по методу Сольве, предусматривающему пропускание через насыщенный раствор хлорида натрия эквимолярных (т.е. содержащих равные количества молей) количеств газообразных аммиака и диоксида углерода, что имитирует ввод в систему гидрокарбоната аммония NH4HCO3:
NH3 + H2O + CO2 + NaCl / NH4HCO3 > NaHCO3 + NH4Cl.
В образующемся растворе наименее растворимой солью является бикарбонат натрия, который выпадает в виде кристаллического осадка. При этом важно отметить, что товарным видом данной продукции выступает очищенный двууглекислый натрий.
Наиболее широко распространенным способом очистки солей от примесей в общем случае выступает их перекристаллизация из растворов, причем в качестве растворителя наиболее часто используется вода. В основе данного способа лежит свойство большинства солей увеличивать растворимость при повышении температуры.
Согласно методу перекристаллизации, очищаемая соль растворяется в воде при высокой температуре, после чего раствор доводится до насыщения, а затем охлаждается, причем началу последнего из перечисленных процессов предшествует удаление нерастворенных примесей посредством фильтрации. В ходе же охлаждения раствора растворимость соли уменьшается, она выпадает в осадок и отфильтровывается. Вследствие предпринимаемых мер, чистота соли повышается, поскольку все примеси, входящие в ее состав до осуществления процесса, растворяются в воде и переходят в фильтрат, представляющий собой маточную жидкость, возвращаемую на начальную стадию. По мере циркуляции маточной жидкости в ней накапливаются примеси, что, в конечном счете, негативно отражается на чистоте получаемой продукции и обуславливает необходимость периодического вывода из цикла части фильтрата.
Однако в том случае, если соль, подобно бикарбонату натрия, плохо растворима в воде, очищать ее методом перекристаллизации представляется экономически невыгодным, так как в системе для получения единицы массы чистого продукта должно циркулировать большое количество маточной жидкости, требующей попеременного нагревания и охлаждения. В связи с этим обстоятельством в промышленных масштабах очищенную пищевую соду получают не методом перекристаллизации, но карбонизацией содового раствора путем пропускания диоксида углерода под давление в насыщенном растворе карбоната натрия при температуре около 75° С согласно реакции:
Na2CO3(р.) + CO2(г.) + H2O(ж.) - 2NaHCO3(тв.) + 52,4 кДж (+ 12,5 ккал).
Практическое применение метода карбонизации позволяет значительно сократить объем жидкости, необходимой для получения единицы бикарбоната натрия, поскольку растворимость кальцинированной соды в несколько раз превышает соответствующий показатель гидрокарбоната натрия.
Содовый раствор для карбонизации получается путем растворения в воде твердой технической соды, образующейся при кальцинации сырого бикарбоната (этот процесс носит название «сухого» способа) или же разложением двууглекислого натрия в водной среде при нагревании («мокрый» способ), которое называется декарбонизацией, согласно реакции:
2NaHCO3(р.) - Na2CO3(р.) + CO2(г.) + H2O(пар) - 20,6 кДж (- 4,9 ккал).
Выпадающая при насыщении содового раствора диоксидом углерода чистая пищевая сода отделяется, а маточная жидкость, содержащая смесь карбоната и бикарбоната натрия, а также растворенных примесей (например, NaCl), возвращается в начало процесса для получения исходного раствора. Вследствие многократной циркуляции маточной жидкости в ней накапливаются примеси, способные засорить очищенный продукт. В результате этого часть маточной жидкости выводится из цикла и направляется в общем случае на рассолоочистку с целью разбавления крепкого содового раствора.
Для производства очищенного бикарбоната натрия используются так называемые «сухой» и «мокрый» способы. В основе процесса обычная реакция карбонизации, т.е. насыщение раствора углекислым газом. Происходит перекристаллизация. Способы отличаются приготовлением раствора. При сухом способе берется готовая кальцинированная сода и растворяется водой, а при мокром используется технический бикарбонат. Колонное оборудование по принципу действия почти идентично тому, что задействовано при производстве кальцинированной соды, но выполнено из высококачественной нержавеющей стали. Чистота в цехе и чистота готовой продукции находятся под постоянным контролем органов государственного санитарно-эпидемиологического надзора.
Нахождение в природе.
Вплоть до начала 19 в. главным источником для добывания соды служила зола некоторых морских водорослей и прибрежных растений.
Кальцинированная сода встречается в природе в больших количествах, главным образом в соляных пластах в виде подземных грунтовых рассолов, рапы в соляных озерах и минералов. Также карбонат натрия встречается в золе некоторых морских водорослей, а также в виде следующих минералов:
- нахколит NaHCO3;
- трона Na2CO3*NaHCO3*2H2O;
- натрон (сода) Na2CO3*10H2O;
- термонатрит Na2CO3*H2O.
На Земле известны более 60 таких месторождений.
Крупные запасы натрия карбоната сосредоточены в США, Канаде, Кении, Мексике, ЮАР и др. Современные содовые озёра известны в Забайкалье и в Западной Сибири; большой известностью пользуется озеро Натрон в Танзании и озеро Серлс в Калифорнии. Трона, имеющая промышленное значение, открыта в 1938 в составе эоценовой толщи Грин-Ривер (Вайоминг, США). Вместе с троной в этой осадочной толще обнаружено много ранее считавшихся редкими минералов, в том числе давсонит [NaAICO3(OH)2], который рассматривается как сырьё для получения соды и глинозёма. В США природная сода удовлетворяет более 40% потребности страны в этом полезном ископаемом. В нашей стране из-за отсутствия крупных месторождений карбонат натрия из минералов не добывается.
Исторические сведения о получении соды.
Сода была известна человеку примерно за полторы-две тысячи лет до нашей эры, а может быть и раньше. Ее добывали из содовых озер и извлекали из немногочисленных месторождений в виде минералов натрона Na2CO3*10H2O, термонатрита Na2CO3*H2O и троны Na2CO3*NaHCO3*2H2O.
Первые сведения о получении соды путем упаривания воды содовых озер относятся к 64 году и приведены в сочинении римского врача Диоскорида Педания о лекарственных веществах. И ему, и алхимикам всех стран вплоть до 18 в. сода представлялась неким веществом, которое шипело с выделением какого-то газа при действии на него известных к тому времени кислот - уксусной CH3COOH и серной H2SO4.
Теперь известно, что шипение - это результат выделения газообразного диоксида углерода (углекислого газа) CO2 в результате реакций: Na2CO3 + 2CH3COOH = Na(CH3COO) + CO2 + H2О и Na2CO3 + 2H2SO4 = 2NaHSO4 + CO2 + H2О, где образуются еще ацетат натрия Na(CH3COO) и гидросульфат натрия NaHSO4.
Во времена Диоскорида Педания о составе соды никто не имел понятия, ведь и диоксид углерода открыл голландский химик Ян ван Гельмонт (назвавший его «лесным газом») только через шестьсот лет.
Искусственную соду научились получать после долгих и мучительных поисков только в 18 в. Но сначала следовало определить состав этого вещества, выделив его в достаточно чистом виде. В 1736 французский химик, врач и ботаник Анри Луи Дюамель де Монсо, пользуясь водой содовых озер и применив метод перекристаллизации, впервые выделил чистую соду. Ему удалось установить, что сода содержит химический элемент «натр». Годом позже Дюамель и немецкий химик Андреас Сигизмунд Маргграф пришли к выводу, что сода Na2CO3 и поташ (карбонат калия K2CO3) - разные вещества, а не одно и то же, как считалось ранее.
Дюамель пытался получить соду, действуя уксусной кислотой CH3COOH на сульфат натрия Na2SO4. С точки зрения современного химика, это совершенно бессмысленно, но Дюамель не знал состава ни того, ни другого из взятых им исходных веществ. Ему было также неизвестно, что сильную кислоту (серную) нельзя вытеснить из солей слабой кислотой (уксусной). Тем не менее, Дюамель сделал интересное наблюдение: при нагревании смеси сульфата натрия с уксусной кислотой начали выделяться пары, которые загорелись от пламени свечи. Это была довольно летучая и горючая уксусная кислота.
История знает немало других, иногда и опасных попыток получить соду. Так, Маргграф с этой целью смешивал нитрат натрия с углем, а потом нагревал смесь. Опыт завершился вспышкой смеси, которая обожгла ему лицо и руки. Маргграф не учел, что достаточно к смеси нитрата натрия (натриевой селитры) и угля добавить серу, как получится один из видов пороха.
Правда, при проведении реакции
4NaNO3 + 5C = 2Na2CO3 + 3CO2 + 2N2
удалось получить немного соды, но какой ценой!
Первый промышленный способ получения соды зародился в России. В 1764 российский химик, швед по происхождению академик Эрик Густав Лаксман сообщил, что соду можно получить спеканием природного сульфата натрия с древесным углем. При этом протекает реакция:
2Na2SO4 + 3C + 2O2 = 2Na2CO3 + CO2 + 2SO2.
Здесь помимо карбоната натрия Na2CO3 образуются два газообразныx вещества - диоксид углерода CO2 и диоксид серы SO2.
Поскольку природный сульфат натрия часто содержит примесь карбоната кальция CaCO3 (известняка), то этой реакции сопутствует вторая:
CaCO3 + C + Na2SO4 = Na2CO3 + 4CO + CaS,
где выделяется газообразный монооксид углерода СО и получается малорастворимый сульфид кальция CaS, который при обработке смеси водой отделяется от карбоната натрия. Последняя стадия процесса - выпаривание раствора, отфильтрованного от осадка, и кристаллизация карбоната натрия.
Лаксман осуществил получение соды по своему способу в 1784 на собственном стекольном заводе в Тальцинске недалеко от Иркутска. К сожалению, дальнейшего развития этот способ не получил и вскоре был забыт. А ведь еще Петр I в 1720, отвечая на вопрос князя Голицына, зачем нужна «зода», писал: «Зодою умягчают шерсть». В 1780 российский академик Гильденштедт отмечал, что «зуду можно почесть важным товаром в российской торговле. Стекольщики и красильщики много ее издерживают, а впредь еще и больше оной расходиться будет, когда больше станут делать белых стекол».
«Зодой» или «зудой» называли в России соду. Несмотря на обилие собственного сырья для производства соды ее ввозили в Россию из-за границы вплоть до 1860.
В 1791 французский врач и химик-технолог Никола Леблан, ничего не зная о способе Лаксмана, получил патент на «Способ превращения глауберовой соли в соду» (глауберова соль - декагидрат сульфата натрия Na2SO4*10H2O). Леблан предложил для получения соды сплавлять смесь сульфата натрия, мела (карбоната кальция) и древесного угля. В описании изобретения он указывал: «Над поверхностью плавящейся массы вспыхивает множество огоньков, похожих на огни свечей. Получение соды завершается, когда эти огоньки исчезают».
При сплавлении смеси протекает восстановление сульфата натрия углем:
Na2SO4 + 4C = Na2S + 4CO.
Образовавшийся сульфид натрия Na2S взаимодействует с карбонатом кальция CaCO3:
Na2S + CaCO3 = Na2CO3+ CaS.
После полного выгорания угля и монооксида углерода CO («огоньки исчезают») расплав охлаждают и обрабатывают водой. В раствор переходит карбонат натрия, а сульфид кальция остается в осадке. Соду можно выделить упариванием раствора.
Свою технологию получения соды Леблан предложил герцогу Филиппу Орлеанскому, личным врачом которого он был. В 1789 герцог подписал с Лебланом соглашение и выделил ему двести тысяч серебряных ливров на строительство завода. Содовый завод в пригороде Парижа Сен-Жени назывался «Франсиада - Сода Леблана» и ежедневно давал 100-120 кг соды. Во время Французской революции в 1793, герцог Орлеанский был казнен, собственность его конфискована, а содовый завод и сам патент Леблана - национализированы. Лишь через семь лет Леблану вернули разоренный завод, восстановить который ему уже не удалось. Последние годы Леблана прошли в нищете, а в 1806 он покончил жизнь самоубийством.
Технологию производства соды по Леблану стали использовать во многих странах Европы. Первый содовый завод такого типа в России был основан промышленником М. Прангом и появился в Барнауле в 1864. Но уже через несколько лет в районе теперешнего города Березники был построен крупный содовый завод фирмы «Любимов, Сольве и К°», где выпускалось 20 тысяч тонн соды в год. Этот завод использовал новую технологию производства соды - аммиачный способ, изобретенный бельгийским инженером-химиком Эрнестом Сольве. С этого времени заводы в России и в других странах, использовавшие метод Леблана, не выдержав конкуренции, стали постепенно закрываться: технология Сольве оказалась более экономичной.
Промышленное производство карбоната натрия.
На диаграмме представлена структура мирового производства кальцинированной соды по странам.
До начала XIX века соду кальцинированную (карбонат натрия) получали преимущественно из золы некоторых морских водорослей и прибрежных растений. Производство соды в наши дни осуществляется четырьмя способами: - аммиачным (из хлорида натрия), - на основе природной соды, - переработкой нефелинов, - а также карбонизацией гидрооксида натрия. Главенство до сих пор принадлежит первому способу производства соды, хотя его удельный вес, еще недавно составлявший 100%, понемногу снижается.
Преимущества аммиачного способа производства соды: относительная дешевизна, широкая распространенность и доступность извлечения необходимого сырья; незначительность температур (до 100 градусов С), при которых осуществляются основные реакции процесса; достаточная отлаженность способа производства соды; невысокая себестоимость кальцинированной соды. В XX в. в Японии этот метод был модернизирован, и предложенный в результате способ Асахи позволил экономить энергию на протяжении всего производственного цикла и снизить расход сырья.
Производство кальцинированной соды из природного сырья - отрасль сравнительно новая, возникшая в конце 1940-х гг. и ставшая в настоящее время основным конкурентом аммиачного способа производства соды за счет большей экономической выгодности и высокой экологической чистоты.
Комплексная переработка нефелинов на глинозем, кальцинированную соду, поташ и цемент стала третьим по значимости способом производства соды, который был разработан в СССР и применяется только в нашей стране, позволяя экономить до 15% капиталовложений.
Карбонизация гидрооксида натрия как промышленный способ производства соды получила некоторое развитие в конце 1960-х - начале 1970-х гг., когда спрос на кальцинированную соду был высок, а каустическая сода имелась в избытке. В настоящее время этот способ производства соды потерял практическое значение.
Аммиачный способ получения кальцинированной соды.
Аммиачный способ получения соды был предложен еще в 1838-1840 английскими инженерами-химиками Г. Грей-Дьюаром и Д. Хеммингом. Они пропускали через воду газообразные аммиак NH3 и диоксид углерода CO2, которые при взаимодействии дают раствор гидрокарбоната аммония NH4HCO3:
NH3 + CO2 + H2O = NH4HCO3,
а затем добавляли к этому раствору хлорид натрия NaCl, чтобы выделить малорастворимый на холоде гидрокарбонат натрия NaHCO3:
NH4HCO3 + NaCl = NaHCO3? + NH4Cl.
Гидрокарбонат натрия отфильтровывали и нагреванием превращали в соду:
2NaHCO3 = Na2CO3 + CO2 + H2O.
Диоксид углерода CO2, необходимый для проведения процесса, получали из карбоната кальция СаСO3 - мела или известняка - при прокаливании:
CaCO3 = CaO + CO2,
а оксид кальция CaO, который при этом получался, после обработки водой давал гидроксид кальция Ca(OH)2:
CaO + H2O = Ca(OH)2,
необходимый для получения аммиака NH3 из хлорида аммония NH4 Cl:
2NH4Cl + Ca(OH)2 = 2NH3 + CaCl2 + 2H2O.
Таким образом, аммиак все время находился в обращении и не расходовался, отходом производства оставался только хлорид кальция CaCl2.
Аммиачный способ (способ Сольве).
Схема аммиачного способа получения кальцинированной соды по методу Сольве.
В 1861 году бельгийский инженер-химик Эрнест Сольве запатентовал метод производства соды, который используется и по сей день. Способ основан на реакции взаимодействия гидрокарбоната аммония с хлоридом натрия, в результате которой получаются хлорид аммония и гидрокарбонат натрия. На практике процесс проводят, вводя в почти насыщенный раствор хлорида натрия эквимолярные количества газообразных сначала аммиака, а потом диоксида углерода, , то есть как бы вводят гидрокарбонат аммония NH4HCO3. Гидрокарбонат натрия выпадает в осадок, когда диоксид углерода вводится в раствор:
...Подобные документы
Изучение процесса обжига известняка в производстве кальцинированной соды, для чего выбрана вертикальная шахтная известково-обжигательная печь, обладающая большими преимуществами по сравнению с другими печами. Расчет материального баланса производства.
курсовая работа [511,6 K], добавлен 20.06.2012Прогресс в области технологии содового производства, проблема получения соды искусственным путем, использование морских растений для добычи берилла. Производство соды по схеме Леблана. Перспективные направления утилизации отходов содового производства.
реферат [745,9 K], добавлен 31.05.2010Автоклавно-содовый способ разложения вольфрамовых концентратов. Пути совершенствования выщелачивания методом выведения избыточной соды из автоклавных щелоков. Методы очистки вольфрамата натрия от кремния, фторид-ионов и молибдена для получения ангидрида.
курсовая работа [203,5 K], добавлен 30.01.2011Стандарты, применимые к пищевой промышленности. Преимущества, получаемые компанией в результате сертификации по стандарту GFSI. Обзор публикаций, посвященных сертификации продукции и СМК в пищевой промышленности. Процессы жизненного цикла продукции.
курсовая работа [514,9 K], добавлен 30.03.2014Промышленные способы получения глинозема. Основы способа Байера. Взаимодействие органических веществ с растворами NaOH. Материальный баланс производства глинозема из бокситов. Расчет состава и количества оборотного раствора. Методы каустификации соды.
курсовая работа [357,9 K], добавлен 22.11.2013Общие понятия о стандартизации в пищевой отрасли. Применение международных стандартов в России. Маркировка продукции знаком соответствия государственным стандартам. Органы и службы контроля и надзора за соблюдением требований государственных стандартов.
курс лекций [498,4 K], добавлен 29.01.2011Характеристика технологических процессов пищевой промышленности: ферментации, тепловой обработки, обезвоживания и дистилляции. Исследование специфики подбора оборудования. Изучение структуры пищевого предприятия и задач управления данным предприятием.
контрольная работа [24,0 K], добавлен 02.10.2013Организационная структура испытательного центра "Ярославский государственный институт качества сырья и пищевой продукции". Методы контроля изготовления пищевой продукции. Принцип работы приборов "Анализатор качества молока" и "Лабораторный иономер".
курсовая работа [661,6 K], добавлен 30.09.2014Описание особенностей основных процессов пищевой технологии. Теплофизические методы обработки продовольственного сырья и пищевых продуктов. Классификация и характеристика теплового оборудования. Описание и расчет теплообменного аппарата - аэрогриля.
курсовая работа [776,7 K], добавлен 04.01.2014Производство основных видов пищевой продукции пищевой промышленности (по данным Росстата России). Нормативно-техническая документация на мясные продукты. Технологическая схема производства "свинины прессованной" высшего сорта. Требования к сырью.
реферат [42,1 K], добавлен 03.05.2009Нормативно-законодательная основа безопасности пищевой продукции, принципы системы НАССР. Биологические, химические, микробиологические и физические опасные факторы, их оценка и анализ при производстве пищевых продуктов. Технология производства кефира.
курсовая работа [598,6 K], добавлен 07.06.2011Нормативно-законодательная основа безопасности пищевой продукции в России, биологические, химические и физические факторы, угрожающие ее безопасности. Оценка и анализ факторов риска при производстве пищевых продуктов. Технология производства кефира.
курсовая работа [788,7 K], добавлен 21.06.2011Технофизические методы обработки продовольственного сырья и пищевой продукции. Изменения свойств продуктов в кулинарии при тепловой обработке. Классификация, характеристика и описание теплового оборудования. Технологический и тепловой расчеты аппарата.
курсовая работа [1,8 M], добавлен 22.01.2011Использование нанотехнологий в пищевой промышленности. Создание новых пищевых продуктов и контроль за их безопасностью. Метод крупномасштабного фракционирования пищевого сырья. Продукты с использованием нанотехнологий и классификация наноматериалов.
презентация [4,6 M], добавлен 12.12.2013Характеристика продукции, полуфабрикатов. Технология производства вареной колбасы. Устройство и принцип действия линии. Проектирование устройства для измерения расхода газов стандартными сужающими устройствами на предприятиях пищевой промышленности.
курсовая работа [282,3 K], добавлен 22.11.2013Задача, стоящая перед предприятиями пищевой отрасли - выпуск качественной продукции, соответствующей стандартам. Проблема сохранения качества - первоочередное задание при выпуске пищевой продукции. Увеличение сроков хранения за счет термообработки.
контрольная работа [146,0 K], добавлен 12.05.2009Сущность и назначение процесса нагревания продукта под вакуумом (сублимации). Материальный и энергетический баланс процесса выпаривания. Навесные, валковые, просыпные или жидкостные магнитные сепараторы. Схема сушилки для сублимационной сушки продуктов.
контрольная работа [1020,3 K], добавлен 11.09.2010Анализ способов стабилизации и консервирования крови, ее применение в пищевой, текстильной, полиграфической отраслях промышленности. Пищевая ценность крови. Использование пищевой и технической крови. Контроль за соблюдением условий и режимных параметров.
курсовая работа [49,8 K], добавлен 19.10.2013Общие аспекты качества машин. Структурная схема технологического процесса товарной обработки плодоовощной продукции. Технические характеристики применяемого оборудования. Структурная схема пищевых аппаратов. Классификация и действие тепловых котлов.
контрольная работа [23,0 K], добавлен 26.08.2013Особенности ассортимента и пищевой ценности бараночных изделий. Требования к сырью и готовой продукции. Технологическая схема производства бараночных изделий. Расчет и подбор технологического оборудования, энергетических затрат и количества работников.
курсовая работа [54,0 K], добавлен 04.02.2014