Пути улучшения термоэлектрической добротности однородных материалов

Основные параметры, характеризующие термоэлектрические материалы. Традиционные термоэлектрические материалы, их совершенствование, пути улучшения добротности. Наноструктурированные материалы: классификация квантовой проволоки, функциональные особенности.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 13.06.2015
Размер файла 844,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рисунок 14. Зависимость фактора мощности нанопроволоки от ее толщины при оптимальном выборе уровня легирования для четырех материалов А35 при комнатной температуре

В описанных выше в этом разделе статьях внимание авторов было сосредоточено в основном на электронных свойствах нанопроволок. Ясно, однако, что, как и в сверхрешётках, наличие границ может приводить к повышенному рассеянию фононов, снижению теплопроводности проволок и увеличению их термоэлектрической добротности.

С помощью решения уравнения Больцмана была рассчитана решёточная теплопроводность свободной проволоки. Диффузное и зеркальное отражение фононов от поверхности проволоки учитывались с помощью соответствующих граничных условий на функцию распределения фононов. Это объясняется большим отношением поверхности к объёму у проволоки по сравнению со слоем, что ведёт к возрастанию поверхностного рассеяния фононов и понижению теплопроводности. При уменьшении диаметра проволок наблюдалось сильное уменьшение их теплопроводности и изменение её температурной зависимости [3]. Это было объяснено сокращением длины свободного пробега фононов за счёт поверхностного рассеяния, а также, возможно, и изменением фононного спектра в наиболее тонких проволоках за счёт квантового ограничения движения фононов.

Существенного падения теплопроводности можно ожидать и в нанопроволоках из других материалов, если их толщина становится меньшей длины свободного пробега фононов в однородном материале. Это подтвердили расчёты решёточной теплопроводности нанопроволок, выращенных из полупроводников типа АIIIV и АIIVI(рисунок 1.15).

Накопление данных об электронных и фононных свойствах нанопроволок позволило обратиться к изучению их термоэлектрических характеристик. Детальные теоретические исследования термоэлектрических свойств полупроводниковых нанопроволок состава III-V показали, что их фактор мощности возрастает при уменьшении толщины, но рост этот имеет ограниченный характер, аналогичный тому, который был получен для структур пониженной размерности на основе PbTe. Были рассчитаны тепловые и электронные свойства нанопроволок, причём основой расчёта служило кинетическое уравнение Больцмана, а приближение постоянного времени релаксации не использовалось. Свободные нанопроволоки, однако, неудобны для практических применений.

Рисунок 15. Зависимость рассчитанной добротности ZT от толщины квантовой проволоки при диффузионном рассеянии фононов на ее границах для проволок InSb, InAs, GaAs и InP. На вставке рост ZT показан в логарифмическом масштабе

Оказалось, что за счёт квантового размерного эффекта для электронов матрицы можно получить увеличение фактора мощности, если надлежащим образом выбрать параметры структуры, период сверхрешётки и толщину проволок. Расчётное увеличение фактора мощности по сравнению с материалом матрицы достигает 2,5 раз в композите на основе РbТе и 3,5 раз в композите на базе InSb при периоде структуры 5-10 нм и комнатной температуре. На основе измерений термоэдс, удельной проводимости и коэффициента Нернста-Эттингсгаузена для плёнок PbTe было предположено, что одним из таких нетрадиционных механизмов могло служить асимметричное рассеяние потенциальными барьерами, высота которых зависит от положения уровня Ферми, определяющего заряд некоторых неизвестных приграничных состояний. Микроскопическая модель этого типа рассеяния ещё не развита

Нанокомпозиты

Как ясно из изложенного выше, одно из важнейших изменений физических свойств гетероструктур и систем пониженной размерности, приводящее к увеличению термоэлектрической добротности ? это понижение их теплопроводности за счёт рассеяния фононов на поверхностях и гетерограницах. Однако задача уменьшения решёточной теплопроводности вещества может быть решена и другими путями, не связанными с дорогим и сложным процессом роста сверхрешётки или структуры с квантовыми ямами или проволоками. Выше уже упоминалось, что атомы замещения в сплавах эффективно рассеивают фононы, уменьшая тем самым теплопроводность кристаллических веществ до так называемого предельного значения в сплаве. Аналогичную роль, и еще более эффективно, могут выполнять и неоднородности нанометровых размеров.

Разумеется, в нанокомпозитах, содержащих такие неоднородности, могут изменяться не только фононные, но и электронные свойства, и изменения последних тоже отражаются на термоэлектрических характеристиках композитов. Начнём, однако, с теплопроводности.

Уже из формулы Рэлея для сечения рассеяния у ~a24. где a ? размер рассеивателя. а л? длина волны, видно, что если точечные дефекты в сплавах эффективно рассеивают коротковолновые фононы, то наночастицы будут дополнительно рассеивать фононы со средними и большими длинами волн, в результате чего может значительно уменьшиться теплопроводность. Это подтвердила и более подробная теоретическая модель. В ней же для In0,53Ga0,47As. содержащего включения частиц ЕrАs размером 1?4 нм, было экспериментально обнаружено почти двукратное уменьшение теплопроводности по сравнению с предельным значением в сплаве и двукратное увеличение термоэлектрической добротности этого материала.

При этом оказывается, что для уменьшения решёточной теплопроводности вовсе не нужно упорядоченного расположения нановключений. На рисунке 1.16 представлены результаты расчётов теплопроводности наноструктур Ge - Si с включениями различных размеров и формы. Из рисунка видно, что теплопроводность практически не зависит от конкретной структуры нанокомпозита и типа упорядочения включений, а только от площади границ раздела, содержащейся в единице объёма, которая определяется концентрацией и размерами включений. Из рисунка видно также, что теплопроводность нанокомпозита может оказаться значительно меньше минимальной теплопроводности сплава, состоящего из тех же компонентов. Это показывает, что использование нанокомпозитов с целью увеличения термоэлектрической добротности имеет хорошие перспективы.

Однако уменьшение теплопроводности решётки -- не единственное следствие введения нановключений в термоэлектрический материал: как отмечалось выше, в нанокомпозитах могут изменяться процессы распространения и рассеяния не только фононов, но и электронов.

Действительно, в описанных нанокомпозитах с частицами ZrO2 при увеличении их содержания возрастала абсолютная величина термоэдс. Сама термоэдс изменялась при этом от минус 155 до минус 170 мкВ • К-1, что было объяснено рассеянием носителей заряда на границах нановключений. В результате уменьшения теплопроводности и увеличения термоэдс термоэлектрическая добротность ZT композита при 800 К увеличивалась от значения 0,55 в отсутствие нановключений до 0,75 в образцах, содержащих 9% частиц ZrO2. Заметим, что возрастание термоэдс за счёт рассеяния электронов на гетерограницах -- важный механизм, в которых он проявляется особенно ярко.

Рисунок 16. Расчетная величина теплопроводности наноструктурированных материалов с неоднородностями различного размера и формы

Как уже отмечалось ранее, РbТе, легированный Аg. и Sb, образует четверные соединения АgРb2nSbTe2n+2, и выпадающие из них включения нанометровогоразмера, состоящие из второй фазы, обогащённой Аg и Sb, приводят к повышению ZT такого композита до величины 2,2 при 800 К. Влияние микро- и нанонеоднородностей на термоэлектрические свойства наблюдалось и в других нанокомпозитах на основе теллурида свинца.

Таким образом, существует несколько путей повышения термоэлектрической добротности материалов, но последнее слово остается за экспериментом. Учитывая вышесказанное, в работе была поставлена задача исследовать электрическое сопротивление и термовольтаический эффект системы [Cu2O]x[Cu2Se]1-x.

Список использованных источников

1 Thermoelectrics handbook: macro to nano / edited by D.M. Rowe. - New York: Taylor& Francis Group, LLC, 2006. - 954 c.

2 Иоффе А.Ф. Полупроводниковые термоэлементы / А.Ф. Иоффе. - Москва-Ленинград, 1956. - 188 с.

3 Дмитриев А.В. Современные тенденции развития физики термоэлектрических материалов / А.В. Дмитриев, И.П. Звягин - Успехи физических наук. - 2010. - №8. - С. 821 - 837.

4 Гриднев С.А., Калинин Ю.Е., Макагонов В.А., Шуваев А.С. Перспективные термоэлектрические материалы // Альтернативная энергетика и экология. - 2013, 1 часть 2 - С.117 - 125.

5 Анатычук Л.И., Семенюк В.А. Оптимальное управление свойствами термоэлектрических материалов и приборов. - Черновцы: Прут, 1992. - 364 с.

6 Cao Y.Q., Zhu T.J. and Zhao X.B. Low thermal conductivity and improvedfigure of merit in fine-grained binary PbTe thermoelectric alloys // J. Phys. D: Appl. Phys. 2009. V. 42. N 015406 (6pp).

7 Glatz A. and. Beloborodov I.S. Thermoelectric performance of weakly coupled granular materials // EPL, 2009. V. 87. N 57009 (pp.1-4).

8 Воронин А.Н., ГринбергР.З. //Труды 2-й Междунар. конф. по порошковой металлургии. // Прага. Чехословакия.1996. с 117.

9 Okamoto Y., Miyata A., Sato Y., Takiguchi H., Kawahara T. and Morimoto J. The Measurement of Annealing Cycle Effect of Si-Ge-Au Amorphous Thin Film with Anomalously Large Thermoelectric Power by Using Photoacoustic Spectroscopy // Jpn. J. Appl. Phys. 2003/ V.42. P. 3048-3051.  

10 Riffat S. and Ma X. Thermoelectrics: a Review of Present and Potential Applications // Applied Thermal Engineering, 2003. Vol. 23, pp. 913-935.

11 HeremansJ.P. Low-Dimensional Thermoelectricity // Acta Physica Polonica A, 2005. Vol. 108, №4, P. 609-634.

12 Ezzahri Y., Zeng G., Fukutani K., Bian Z. and Shakouri A. A Comparison of Thin Film Microrefrigerators Based on Si/SiGe Superlattice and Bulk SiGe //J. Microelectronics, 2008. V.39, pp. 981-991.

13 Venkatasubramanian R., Siivola E., Colpitts T. and O'Quinn B. Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit. // Nature, 2001. Vol. 431, pp. 597-602.

14 Venkatasubramanian R., Colpitts T., Watko E., Lamvik M. and El-Masry N. MOCVD of Bi2Te3, Sb2Te3 and Their Superlattice Structures for Thin-film Thermoelectric Applications. // Journal of Crystal Growth, 1997. Vol. 170, pp. 817-721.

15 Funahashi R., Matsubara I. Thermoelectric properties of Pb- and Ca-doped (Bi2Sr2O4)xCoO2 whiskers // Appl. Phys. Lett., 2001. V.79. №3. P. 362-365.

16 Булат Л.П., Пшенай-Северин Д.А. Влияние туннелирования на термоэлектрическую эффективность объемных наноструктурированных материалов // Физика твердого тела, 2010. T. 52, вып. 3. C. 452-458.

17 Lin H., Bozin E. S.,Billinge S. L., Quarez E., Kanatzidis M. G. Nanoscale clusters in the high performance thermoelectric AgPbmSbTem+2 // Phys. Rev. B, 2005. V. 72. N 174113 (pp1-7).

18 Harman T., Taylor P., Walsh M. and La Forge B. Quantum Dot Superlattice Thermoelectric Materials and Devices // Science, 2002. Vol. 297, pp. 2229-2232.

19 Avto Tavkhelidze. Large enhancement of the thermoelectric figure of merit in a ridged quantum well // Nanotechnology, 2009. V. 20. N 405401 (6pp).

20 Boukai A., Bunimovich Y., Tahir-Kheli J., Yu J-K, Goddard III. W. and Heath J. Silicon Nanowires as Efficient Thermoelectric Materials // Nature Letters, 2008. Vol. 451, pp. 168-171.

21 Hochbaum A., Chen R., Delgado R., Liang W., Garnett E., Najarian M., Majumdar A. and Yang P. Enhanced Thermoelectric Performance of Rough Silicon Nanowires // Nature Letters, 2008. Vol. 451, pp. 163-167.

22 Keyani J. and Stacy A.M. Assembly and Measurement of a Hybrid Nanowire-bulk Thermoelectric Device // Appl. Phys. Lett., 2006. Vol. 89, P. 233106.

23 Шевельков А.В. Химические аспекты создания термоэлектрических материалов // Успехи химии, 2008. Т. 77. № 1. С.3-21.

Размещено на Allbest.ru

...

Подобные документы

  • Магнитомягкие материалы для сильных токов и промышленных частот. Электротехнические стали, магнитомягкие материалы для постоянного тока и слабых токов низких и повышенных частот. Магнитострикционные материалы, материалы для высоких частот и СВЧ.

    курсовая работа [514,3 K], добавлен 23.04.2012

  • Материалы для электропечестроения. Огнеупорные растворы, бетоны, набивные массы и обмазки. Пористые огнеупоры. Теплоизоляционные и жароупорные материалы. Дешевизна и недефицитность. Материалы для нагревательных элементов электрических печей сопротивления.

    реферат [66,1 K], добавлен 04.01.2009

  • Современные клеи, свойства, виды и области применения клеящих материалов. Лакокрасочные материалы и их основные компоненты, классификация по виду, химическому составу, основному назначению. Основные свойства и использование лакокрасочных материалов.

    контрольная работа [31,3 K], добавлен 25.11.2011

  • Клеевые материалы на основе синтетических полимеров: понятие, структура, методика производства и степень использования в современном швейном производстве, пути улучшения их качества при производстве одежды. Плазмохимическая обработка материалов.

    контрольная работа [166,6 K], добавлен 25.03.2011

  • Пластические массы (пластмассы) как основной тип неметаллических материалов. Основные технологические и эксплуатационные свойства пластмасс. Термопластичные и термореактивные материалы. Классификация пластмасс в зависимости от их основного назначения.

    реферат [16,6 K], добавлен 10.01.2010

  • Виды теплоизоляционных материалов, которые предназначены для тепловой изоляции конструкций зданий и сооружений, а также различных технических применений. Классификация, свойства. Органические материалы. Материалы на основе природного органического сырья.

    презентация [5,0 M], добавлен 23.04.2016

  • Классификация композиционных материалов, их геометрические признаки и свойства. Использование металлов и их сплавов, полимеров, керамических материалов в качестве матриц. Особенности порошковой металлургии, свойства и применение магнитодиэлектриков.

    презентация [29,9 K], добавлен 14.10.2013

  • Классификация цветных металлов, особенности их обработки и области применения. Производство алюминия и его свойства. Классификация электротехнических материалов. Энергетическое отличие металлических проводников от полупроводников и диэлектриков.

    курсовая работа [804,3 K], добавлен 05.12.2010

  • Состав и свойства пластмасс. Композиционные материалы с неметаллической матрицей. Резиновые материалы: общая характеристика, свойства и назначение. Клеящиеся материалы и герметики. Сущность и виды каучуков. Понятие, виды и физические свойства древесины.

    реферат [27,1 K], добавлен 18.05.2011

  • Особенности поликристаллических и тонкопленочных металлов. Функции металлов в радио-, опто- и микроэлектронике. Проводники толстопленочных геоинформационная систем – стеклоэмали и пленочные материалы. Сверхпроводниковые материалы, их основные свойства.

    контрольная работа [529,4 K], добавлен 15.12.2015

  • Классификация цветных металлов, особенности применения и обработки. Эффективные методы защиты цветного металла от атмосферной коррозии. Алюминий и алюминиевые сплавы. Металлические проводниковые и полупроводниковые материалы, магнитные материалы.

    курсовая работа [491,9 K], добавлен 09.02.2011

  • Общие сведения о металлических (присадочных) материалах. Плавящиеся сварочные проволоки, стержни и пластины. Неплавящиеся электродные стержни. Материалы электродов для машин электрической контактной сварки. Требования к металлическим сварочным материалам.

    контрольная работа [30,2 K], добавлен 28.11.2009

  • Основные виды неметаллических конструкционных материалов. Древесные материалы, их общая характеристика и классификация. Антифрикционные сплавы на основе цветных металлов, их назначение, маркировка, основные области применения и условия эксплуатации.

    контрольная работа [80,7 K], добавлен 20.07.2012

  • Многообразие космических материалов. Новый класс конструкционных материалов – интерметаллиды. Космос и нанотехнологии, роль нанотрубок в строении материалов. Самоизлечивающиеся космические материалы. Применение "интеллектуальных" космических композитов.

    доклад [277,6 K], добавлен 26.09.2009

  • Физические принципы, используемые при получении материалов: сепарация, центрифугирование, флотация, газлифт. Порошковая металлургия. Получение и формование порошков. Агрегаты измельчения. Наноматериалы. Композиционные материалы.

    реферат [292,6 K], добавлен 30.05.2007

  • Основные типы сноубордов. Материалы, используемые для изготовления сноуборда. Три основных способа изготовления деревянной основы. Защита от внешних воздействий внутренних слоев доски. Экструдированный и спечёный скользяк. Новые композитные материалы.

    реферат [799,5 K], добавлен 19.02.2015

  • Общие сведения о композиционных материалах. Свойства композиционных материалов типа сибунита. Ассортимент пористых углеродных материалов. Экранирующие и радиопоглощающие материалы. Фосфатно-кальциевая керамика – биополимер для регенерации костных тканей.

    реферат [1,6 M], добавлен 13.05.2011

  • Нормативные материалы для нормирования труда, их применение. Сущность, разновидность, требования, разработка нормативных материалов. Методические положения по разработке нормативных материалов. Отраслевые нормативы. Классификация нормативов по труду.

    реферат [73,3 K], добавлен 05.10.2008

  • Изучение ассортимента, требований, свойств, назначения нетканых полотен типа тканей. Рассмотрение скрепляющих материалов: текстурированных, армированных и прозрачных швейных ниток; клеевые скрепляющие материалы. Определение групп материалов по артикулам.

    контрольная работа [85,2 K], добавлен 06.07.2015

  • Сварочные материалы и требования к их подготовке. Хранение и подготовка сварочных материалов. Основные технологические требования к подготовке сварочных материалов. Сварочные электроды, флюсы и порошковая проволока. Проверка сертификатов на материалы.

    курсовая работа [21,0 K], добавлен 19.04.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.