Геометрические характеристики поперечных сечений стержня
Испытание конструкционных материалов на растяжение и сжатие. Анализ напряженного и деформированного состояния в точке. Основные расчеты стержней на прочность и жесткость. Особенность зависимостей между моментами инерции при параллельном переносе осей.
Рубрика | Производство и технологии |
Вид | методичка |
Язык | русский |
Дата добавления | 23.12.2015 |
Размер файла | 1,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования и науки
Уральский государственный лесотехнический университет
Кафедра «Сопротивление материалов и теоретическая механика»
КОМПЛЕКТ ТЕСТОВЫХ ЗАДАНИЙ С РЕШЕНИЯМИ
Методические указания для студентов очной и заочной форм обучения.
Дисциплина - Сопротивление материалов
Екатеринбург 2010
Печатается по рекомендации методической комиссии лесоинженерного факультета. Протокол № от 2010 г.
Рецензент, доктор технических наук,
Профессор кафедры
«Техническая механика» УГГУ Д.Т.Анкудинов
Редактор РИО
Компьютерная верстка
Подписано в печать |
Формат 60х84 1/16 |
Поз. |
|
Плоская печать |
Печ. л. |
Тираж |
|
Экз. |
|||
Заказ |
Цена |
Редакционно-издательский отдел УГЛТУ
Отдел оперативной полиграфии УГЛТУ
Оглавление
1. Основные понятия, определения, допущения и принципы
1.1 Модели прочностной надежности
1.2 Внутренние силы и напряжения
1.3 Перемещения и деформации
2. Растяжение и сжатие
2.1 Продольная сила. Напряжения и деформации
2.2 Испытание конструкционных материалов на растяжение и сжатие
2.3 Механические свойства материалов
2.4 Расчеты стержней на прочность и жесткость
3. Сдвиг. Кручение
3.1 Чистый сдвиг. Расчет на сдвиг (срез)
3.2 Крутящий момент. Деформации и напряжения
3.3 Расчет на прочность при кручении
3.4 Расчет на жесткость при кручении
4. Напряженное и деформированное состояние в точке
4.1 Напряженное состояние в точке. Главные площадки и главные напряжения
4.2 Виды напряженного состояния
4.3 Оценка прочности материала при сложном напряженном состоянии. Теории прочности
4.4 Деформированное состояние в точке. Связь между деформациями и напряжениями
5. Геометрические характеристики поперечных сечений стержня
5.1 Статические моменты. Центр тяжести плоской фигуры
5.2 Осевые моменты инерции. Зависимость между моментами инерции при параллельном переносе осей
5.3 Главные оси и главные моменты инерции
5.4 Моменты инерции простых и сложных сечений
1. Основные понятия, определения, допущения и принципы
Задание 1.1.1: Утверждение, что напряжения и перемещения в сечениях, удаленных от места приложения внешних сил, не зависят от способа приложения нагрузки, называется…
Варианты ответов:
1) принципом независимости действия сил;
2) гипотезой плоских сечений;
3) принципом начальных размеров; 4) принципом Сен-Венана.
Решение: Верный ответ - 4). Нагрузим стержень прямоугольного поперечного сечения, изготовленного из резины, силами F, приложенными в центре тяжести сечения. На поверхность стержня предварительно нанесена равномерная сетка из вертикальных линий. Стержень будет деформироваться, как показано на рисунке.
Сечения, примыкающие к месту приложения сил, искривляются тем больше, чем ближе они расположены к силе F. Неравномерная картина деформирования вертикальных линий имеет место в ограниченной области. По мере удаления сечений от места приложения сил вертикальные линии не искривляются. Поэтому заключаем, что особенности приложения внешних сил к стержню проявляются, как правило, на расстояниях, не превышающих характерных размеров поперечного сечения стержня.
Задание 1.1.2: Сопротивление материалов - это наука о методах расчета элементов инженерных конструкций на…
Варианты ответов:
1) жесткость; 2) прочность; 3) устойчивость;
4) прочность, жесткость и устойчивость.
Решение: Верный ответ - 4). В процессе эксплуатации материал инженерных конструкций не должен разрушаться; перемещения отдельных точек конструкции не должны превосходить определенных, наперед заданных величин; форма конструкции не должна существенно изменяться. Если эти требования не выполняются, конструкция перестает нормально функционировать.
Задание 1.1.3: Способность конструкции, элементов конструкции сопротивляться внешним нагрузкам в отношении изменения формы и размеров называется…
Варианты ответов:
1) упругостью; 2) устойчивостью; 3) твердостью; 4) жесткостью.
Решение: Верный ответ - 4). Твердые тела в той или иной мере способны до определенного предела воспринимать воздействие внешних сил без разрушения и без существенного изменения первоначальных геометрических размеров.
Задание 1.1.4: Свойство материала тела восстанавливать свои первоначальные размеры после снятия внешних сил называется…
Варианты ответов:
1) твердостью; 2) однородностью; 3) упругостью; 4) изотропностью.
Решение: Верный ответ - 3). Под действием внешних сил реальное тело меняет геометрические размеры. После снятия внешних сил размеры тела полностью или частично восстанавливаются.
Задание 1.1.5: В соответствии с принципом независимости действия сил (принцип суперпозиции) …
1) механические характеристики материала в окрестности заданной точки не зависят от угловой ориентации выделенного из тела образца;
2) результат действия системы сил равен сумме результатов действий каждой силы в отдельности;
3) при снятии нагрузки форма и размеры тела полностью восстанавливаются;
4) большинство расчетов в сопротивлении материалов производится по недеформированной схеме.
Решение: Верный ответ - 2). Рассмотрим пример. Один и то же упругий стержень нагружается системой сил F1, F2, а затем поочередно силами F1 и F2.
Прогиб д - результат действия системы сил F1 и F2, прогиб д1 - результат действия силы F1, прогиб д2 - результат действия силы F2.
Если перемещения малы, то можно записать д = д1 + д2. Принцип независимости действия сил применим для большинства задач, решаемых в курсе сопротивление материалов. Он позволяет сложную задачу разделить на ряд простых, решить их по отдельности, а результаты решений сложить и таким образом получить решение исходной сложной задачи.
Задание 1.1.6: Механическое свойство, характеризующее способность материала сопротивляться его разрушению под действием внешних сил, называется…
1) твердостью; 2) упругостью; 3) изотропностью; 4) прочностью.
Решение: Верный ответ - 4). Элементы конструкции должны проектироваться и создаваться таким образом, чтобы они были прочными, т.е. могли воспринимать все силовые воздействия, не разрушаясь в течение времени эксплуатации конструкции.
1.1 Модели прочностной надежности
Задание 1.2.1: Если свойства материала образца, выделенного из тела, не зависят от его угловой ориентации, то такой материал называется…
Варианты ответов:
1) однородным; 2) изотропным; 3) идеально - упругим;
4) анизотропным.
Решение: Верный ответ - 2). Элементы конструкций изготавливаются из различных материалов. Их структура и физические свойства могут быть весьма разнообразны. Например, металлы имеют поликристаллическую структуру и состоят из множества кристаллов расположенных в объеме тела случайным образом. Отдельно взятый кристалл металла анизотропен. Но если в объеме содержатся весьма большое количество хаотически ориентированных кристаллов, то материал можно рассматривать как изотропный, т.е. предполагать, что свойства материала тела, выделенного из данного объема, во всех направлениях одинаковы.
Задание 1.2.2: В сопротивлении материалов относительно структуры и свойств материала принимаются гипотезы…
Варианты ответов:
1) устойчивости и жесткости;
2) сплошности, однородности, изотропности и идеальной упругости материала;
3) изотропности и идеальной упругости;
4) сплошности и однородности материала.
Решение: Верный ответ - 2). Строго говоря, любой материал нельзя рассматривать как сплошную, однородную среду. Отдельно взятый кристалл металла анизотропен. Все реальные тела обнаруживают отступление от свойств идеальной упругости. Решение задач с учетом всех свойств реального материала невозможно в силу их очевидной неисчерпаемости.
Гипотезы сплошности, однородности, изотропности и идеальной упругости позволяют упростить задачи, решаемые в курсе «Сопротивления материалов», и довести их до числового результата.
Задание 1.2.3: Разделение тела на части под действием внешних нагрузок называется…
Варианты ответов:
1) разрушением; 2) пластичностью; 3) прочностью;
4) идеальной упругостью.
Решение: Верный ответ - 1). Разделение тела на части под действием внешних нагрузок называется разрушением.
Задание 1.2.4: Объект, освобожденный от особенностей, несущественных при решении данной задачи, называется…
Варианты ответов:
1) реальной конструкцией; 2) расчетной схемой;
3) абсолютно твердым телом; 4) математической моделью.
Решение: Верный ответ - 2). Решение задачи с учетом всех свойств и особенностей реального объекта невозможно в силу их очевидной неисчерпаемости. Для того чтобы решить задачу и довести ее до числового результата, от реального объекта переходят к расчетной схеме.
Задание 1.2.5: Положение, согласно которому материал полностью заполняет весь объем тела, называется …
1) гипотезой изотропности; 2) гипотезой сплошности;
3) гипотезой однородности; 4) принципом Сен-Венана.
Решение: Верный ответ - 2). Данное положение называется гипотезой сплошности. В реальных условиях в материале всегда имеются различные дефекты (инородные включения, газовые пузыри, микротрещины), которые невозможно учесть в расчетах. Гипотеза сплошности позволяет построить теорию без учета этих дефектов и использовать в сопротивлении материалов аппарат высшей математики с его понятиями о бесконечно малых величинах и непрерывности функций.
Задание 1.2.6: Тело, один размер которого намного превышает два других, называется…
1) стержнем; 2) массивом; 3) пластиной; 4) оболочкой.
Решение: Верный ответ -1). На рисунках показаны тела, называемые стержнями.
1.2 Внутренние силы и напряжения
Задание 1.3.1: Векторная величина, которая характеризует интенсивность распределения внутренних сил по сечению тела, называется…
Варианты ответов:
1) касательным напряжением; 2) напряженным состоянием в точке;
3) полным напряжением в точке; 4) нормальным напряжением.
Решение: Верный ответ - 3). Числовой мерой внутренних сил, действующих по сечению тела, является напряжение. Рассмотрим произвольное сечение тела. В окрестности точки выделим элементарную площадку ?A, в пределах которой внутреннюю силу обозначим ?F. За среднее напряжение на площадке ?A принимаем отношение. Будем уменьшать размеры площадки ?A, стягивая ее в точку. На основании предположения, что среда сплошная, возможен предельный переход при ?A >0. В пределе получаем
.
Векторная величина р называется полным напряжением в точке.
Задание 1.3.2: Полное напряжение в точке сечения, в общем случае, раскладывается на…
Варианты ответов:
1) нормальное напряжение; 2) среднее напряжение;
3) касательное напряжение; 4) нормальное и касательное напряжения.
Решение: Верный ответ - 4). Полное напряжение в точке сечения, в общем случае, раскладывается на нормальное и касательное напряжения.
Задание 1.3.3: Для определения внутренних силовых факторов, действующих в сечении тела, используется…
Варианты ответов:
1) метод сил; 2) принцип независимости действия сил;
3) гипотеза плоских сечений; 4) метод сечений.
Решение: Верный ответ - 4). Внутренние силовые факторы (три силы и три момента) уравновешивают внешние силы, приложенные к отсеченной части, и определяются из уравнений равновесия статики.
Задание 1.3.4: Проекции главного вектора и главного момента всех внутренних сил в данном сечении на три взаимно перпендикулярные оси, расположенные в этом же сечении по определенному правилу, называются…
Варианты ответов:
1) поперечными силами и изгибающими моментами;
2) сосредоточенными силами и моментами;
3) компонентами напряженного состояния;
4) внутренними силовыми факторами.
Решение: Верный ответ - 4). В каждой точке поперечного сечения тела возникает внутренняя сила, которая имеет свое направление и значение. Поэтому определить характер распределения внутренних сил по сечению тела нельзя. Можно определить, используя правила статики, только их равнодействующие, приведенные к центру тяжести сечения, т.е. главный вектор и главный момент системы внутренних сил. Проектируя главный вектор и главный момент на три взаимно перпендикулярные оси, получаем три силы и три момента. Эти составляющие - внутренние силовые факторы.
Задание 1.3.5: В системе СИ напряжение измеряется в …
1) Н/м3, кН/м3, МН/м3; 2) Па, кПа, МПа; 3) Н, кН; 4) Н·м, кН·м, МН·м.
Решение: Верный ответ - 2). Напряжение можно рассматривать как силу, приходящуюся на единицу площади сечения тела. В системе СИ сила измеряется в Н, кН, МН; площадь измеряется в м2; следовательно,
.
Задание 1.3.6: Силы взаимодействия между частями рассматриваемого тела называются…
1) внешними; 2) объемными; 3) внутренними; 4) поверхностными.
Решение: Верный ответ - 3). Рассмотрим тело, имеющее, например, форму стержня. Пусть к нему приложена система внешних сил, под действием которой оно находится в равновесии. Мысленно рассекаем тело на две части. Связи между частями тела устранены. Действие правой части на левую или левой на правую необходимо заменить системой внутренних сил.
1.3 Перемещения и деформации
Задание 1.4.1: Упрощение, на основании которого при составлении уравнений равновесия тело, после нагружения внешними силами рассматривают как недеформированное, называется…
Варианты ответов:
1) принципом независимости действия сил;
2) принципом начальных размеров;
3) условием неразрывности деформаций; 4) твердостью.
Решение: Верный ответ - 2). Все твердые тела под действием внешних сил деформируются, то есть меняют свои размеры. Для подавляющего большинства тел перемещения точек являются малыми по сравнению с геометрическими размерами тела. На основании малости перемещений в методику анализа внутренних сил в теле вводят следующее упрощение. При составлении уравнений равновесия тело рассматривают как недеформированное, имеющее те же геометрические размеры, какие оно имело до нагружения.
Задание 1.4.2: Первоначальная длина стержня равна l. После приложения растягивающей силы длина стержня стала l1. Величина называется.
Варианты ответов:
1) абсолютным удлинением; 2) средним удлинением; 3) напряжением;
4) абсолютным укорочением в направлении оси x ;
Решение: Верный ответ - 1). Первоначальная длина стержня равна l. После приложения растягивающей силы длина стержня стала l1. Величина называется абсолютным удлинением
Задание 1.4.3: Угловым перемещением сечения является величина.
Варианты ответов:
1) ?; 2)ц; 3) F; 4) L.
Решение: Верный ответ - 2). При плоском изгибе поперечное сечение стержня, в общем случае, имеет два перемещения: линейное (прогиб ?) и угловое (угол поворота ц). Угловым перемещением является величина ц.
Задание 1.4.4: Количественная мера изменения геометрических размеров в окрестности точки называется…
Варианты ответов:
1) полным перемещением точки; 2) абсолютным удлинением стержня;
3) линейной деформацией; 4) деформированным состоянием в точке.
Решение: Верный ответ - 3). Рассмотрим точки В и С в недеформированном теле, которые расположены на расстоянии S друг от друга. После нагружения тела внешними силами они займут новое положение Вм и См, а расстояние между ними изменится на величину ?S. Отношение приращения длины отрезка ?S к начальной длине S называется средним удлинением на данном отрезке
.
Будем уменьшать длину отрезка ВС, приближая точку С к точке В. В пределе получим. Величина является количественной мерой изменения геометрических размеров в окрестности точки В по направлению ВС и называется линейной деформацией.
Задание 1.4.5: В результате действия внешних сил на деформируемое тело точка К заняла новое положение К1. Вектор называется…
1) полным перемещением; 2) угловой деформацией;
3) проекцией вектора перемещения; 4) линейной деформацией.
Решение: Верный ответ - 1). В результате действия внешних сил на деформируемое тело точка К заняла новое положение К1. Вектор называется полным перемещением точки.
2. Растяжение и сжатие
2.1 Продольная сила. Напряжения и деформации
Задание 2.1.1: Для стержня, схема которого изображена на рисунке, продольная сила N в сечении 2-2 будет…
Варианты ответов:
1) равной нулю; 2) равномерно распределенной по сечению;
3) растягивающей; 4) сжимающей.
Решение: Верный ответ - 2). Для определения продольной силы следует рассмотреть равновесие отсеченной правой части стержня , откуда .
Задание 2.1.2: Сплошной однородный стержень круглого поперечного сечения диаметром d нагружен так, как показано на рисунке. Нормальные напряжения в сечении 1-1 равны…
Варианты ответов:
1) ; 2) 0; 3) ; 4) F.
Решение: Верный ответ - 2). Нормальные напряжения при растяжении ? сжатии определяются по формуле . Продольная сила N определяется из условия равновесия для отсеченной части стержня
; .
Откуда N=0. В результате .
Задание 2.1.3: Из гипотезы плоских сечений следует, что вдали от мест нагружения, резкого изменения формы и размеров поперечного сечения нормальные напряжения при растяжении ? сжатии прямолинейных стержней распределяются по площади поперечного сечения …
Варианты ответов:
1) по закону квадратной параболы, достигая максимума на нейтральной линии;
2) по линейному закону, достигая минимума на нейтральной линии;
3) неравномерно, в зависимости от формы поперечного сечения;
4) равномерно.
Решение: Верный ответ - 4). Гипотеза плоских сечений (Я. Бернули, 1654 ? 1705) гласит: поперечные сечения стержня, плоские и нормальные до деформации к его оси, остаются плоскими и нормальными к оси и после деформации.
Задание 2.1.4: Распределение нормальных напряжений при растяжении ? сжатии вдали от мест нагружения, резкого изменения формы и размеров поперечного сечения существенно зависит от…
Варианты ответов:
1) величины и способа приложения внешних сил;
2) величины приложенных внешних сил;
3) способа приложения внешних сил;
4) от формы поперечного сечения
Решение: Верный ответ - 2). Согласно принципу Сен-Венана, если тело нагружается статически эквивалентными системами сил и размеры области их приложения невелики (по сравнению с размерами тела), то в сечениях, достаточно удаленных от мест приложения нагрузок, величина напряжений весьма мало зависит от способа нагружения. Т.е. на достаточном удалении от места нагружения распределение напряжений зависит только от статического эквивалента приложенных внешних сил. От способа приложения внешних сил распределение напряжений зависит существенно лишь вблизи места нагружения. Кроме того, вблизи мест резкого изменения формы, перепадов размеров поперечного сечения наблюдается распределение напряжений, существенно отличающееся от характерного для данного вида нагружения. Явление возникновения значительных местных напряжений называется концентрацией напряжений, а причина, вызвавшая концентрацию, ? концентратором напряжений.
Задание 2.1.5: Для стержня круглого поперечного сечения, схема которого изображена на рисунке, абсолютное удлинение ?L равно…
Варианты ответов:
1) ; 2) ; 3) ; 4) 0
Решение: Верный ответ - 1).
Удлинение стержня
.
В нашем случае , , . Площадь сечения . Окончательно .
Задание 2.1.6: Стержень нагружен системой сил. Модуль упругости материала Е, площадь поперечного сечения А, размер а, значение силы F заданы. Продольная деформация на участке СК равна …
1) ; 2) ; 3) ; 4) .
Решение: Верный ответ - 1). Сделаем произвольное поперечное сечение на участке СК и рассмотрим равновесие правой отсеченной части.
Уравнение равновесия имеет вид: . Откуда . Далее определяем нормальное напряжение:
.
Из закона Гука вычислим значение продольной деформации:
.
Второй способ определения величины . Сначала определяем абсолютное удлинение участка СК: , а затем продольную линейную деформацию на этом участке:
.
2.2 Испытание конструкционных материалов на растяжение и сжатие
Задание 2.2.1: При испытании на растяжение нормального образца (диаметр d0 =10мм, длина расчетной части до разрыва l0 =100мм) относительное остаточное удлинение составило ?=25%. Длина расчетной части образца после разрыва составляет…
Варианты ответов:
1) 50 мм; 2) 25 мм; 3) 100,25 мм; 4) 125 мм.
Решение: Верный ответ - 4). Относительное остаточное удлинение при разрыве равно . Отсюда находим искомую длину расчетной части
мм.
Задание 2.2.2: Для образца из некоторого материала получили диаграмму растяжения и определили все основные механические характеристики. Деталь из этого материала будет работать при статической нагрузке как на растяжение, так и на сжатие. В этом случае…
Варианты ответов:
1) необходимо провести испытания на сдвиг и сжатие;
2) необходимо провести испытания на сжатие;
3) необходимо провести испытания на кручение;
4) дополнительные испытания не требуются.
Решение: Верный ответ - 4). Согласно диаграмме материал является пластичным. Пластичные материалы одинаково работают как на растяжение, так и на сжатие вплоть до предела текучести, поэтому никаких дополнительных испытаний проводить не требуется.
Задание 2.2.3: Образец из хрупкого материала испытали на сжатие. Вид образца после испытания (сплошная линия) изображен на рисунке…
Варианты ответов:
Решение: Верный ответ - 3). Хрупкие материалы (чугун, бетон, камень, кирпич и т.п.) разрушаются при сжатии с образованием трещин по наклонным или продольным плоскостям.
Задание 2.2.4: Диаграммой растяжения образца является диаграмма…
Варианты ответов:
1) 2)
3) 4)
Решение: Верный ответ - 1). Диаграмма растяжения - это график, автоматически вычерчиваемый испытательной машиной, на котором по оси абсцисс откладывается удлинение образца, а по оси ординат - сила.
Задание 2.2.5: Материал является хрупким, если образец из него …
Варианты ответов:
1) разрушается при достаточно небольшой нагрузке;
2) разрушается только при достаточно большой нагрузке;
3) разрушается при очень малых остаточных деформациях (до 5%);
4) разрушается при больших остаточных деформациях (свыше 5%).
Решение: Верный ответ - 3). Хрупкие материалы (чугун, бетон, камень, кирпич и т.п.) разрушаются при сравнительно малых деформациях. В зависимости от величины относительного остаточного удлинения при разрыве ? различают хрупкие (д<5%) и пластичные (д>5%) материалы.
Задание 2.2.6: Стальной образец, предназначенный для испытания на растяжение при статическом нагружении, имеет вид …
Решение: Верный ответ - 2). На рисунке показан вид стального образца, предназначенного для испытания на растяжение при статическом нагружении. Утолщения по концам служат для помещения их в захваты испытательной машины. Для испытания листовых материалов изготавливаются плоские образцы.
2.3 Механические свойства материалов
Задание 2.3.1: При испытании на растяжение и сжатие образца из данного материала получены следующие механические характеристики:
предел пропорциональности ?пц=250 МПа, предел текучести на растяжение и сжатие ?тр=?тс=310 МПа, предел прочности на растяжение и сжатие ?ппр= ?ппс=510 МПа, относительное остаточное удлинение ?=21%. При значении нормативного коэффициента запаса прочности [n] = 2, допускаемое напряжение [?] для материала будет равно…
Варианты ответов:
1) 255 МПа; 2) 510 МПа; 3) 155 МПа; 4) 125 МПа;
Решение: Верный ответ - 3). Допускаемое напряжение материала . В качестве предельного напряжения ?пред принимается:
- для пластичных материалов предел текучести ?т;
- для хрупких материалов предел прочности ?ппр.
Поскольку относительное остаточное удлинение ?=21%>5%, данный материал является пластичным. Поэтому ?пред=?т=310 МПа. Следовательно, .
Задание 2.3.2: На представленной диаграмме зависимости напряжения от деформации для конструкционной стали точка D соответствует пределу…
Варианты ответов:
1) упругости; 2) прочности; 3) текучести; 4) пропорциональности.
Решение: Верный ответ - 2). Точка D соответствует пределу прочности (или временному сопротивлению) - отношению максимальной силы, которую способен выдержать образец, к начальной площади его поперечного сечения.
Задание 2.3.3: Пусть l0 и А0, l1 и А1 - соответственно начальная длина и площадь поперечного сечения, конечная длина и площадь поперечного сечения образца по результатам испытаний на разрыв; Fmax - максимальная сила, которую способен выдержать образец. Конструкционные материалы делятся на хрупкие и пластичные в зависимости от величины…
Варианты ответов:
1) предела прочности при разрыве;
2) относительного остаточного удлинения при разрыве
;
3) удлинения стержня при разрыве;
4) предела пропорциональности при разрыве.
Решение: Верный ответ - 2). Способность материала сохранить некоторую часть деформации после снятия нагрузки называется пластичностью. Если разрушению материала предшествуют большие пластические деформации, то материал классифицируют как пластичный. Хрупкий материал разрушается при сравнительно малых пластических деформациях. В зависимости от величины относительного остаточного удлинения при разрыве ? различают хрупкие (д<5%) и пластичные (д>5%) материалы.
Задание 2.3.4: Коэффициентом Пуассона называется…
Варианты ответов:
1) отношение максимальной силы, которую способен выдержать образец, к начальной площади его поперечного сечения;
2) отношение нормального напряжения к величине относительной деформации в законе Гука;
3) отношение относительной поперечной деформации к относительной продольной деформации, взятое по абсолютной величине;
4) остаточное сужение при разрыве
,
где А0 и А1 - начальная и конечная площади поперечного сечения образца
Решение: Верный ответ - 3). Коэффициент Пуассона - это абсолютная величина отношения относительной поперечной деформации к относительной продольной деформации. Для изотропных материалов он изменяется от 0 до 0,5. Для металлов - в пределах от 0,25 до 0,35.
Задача 2.3.5: Наклеп (нагартовка) - это…
Варианты ответов:
1) изменения напряжений и деформаций в нагруженной детали;
2) соединение материала клепками или заклепками;
3) повышение упругих свойств материала в результате предварительного пластического деформирования;
4) уменьшение удлинения при разрыве и незначительное возрастание предела прочности при длительном пребывании в нагретом состоянии.
Решение: Верный ответ - 3). Если образец нагрузить до напряжений, больших предела пропорциональности ?пц, но меньших предела прочности ?ппр, то после разгрузки деформация образца уменьшится, но полностью не исчезнет. После промежуточной разгрузки появился как бы новый материал с более высоким пределом пропорциональности, но меньшей пластичностью.
Задание 2.3.6: Образец диаметром d=10мм испытывают на растяжение. Диаграмма растяжения имеет вид, показанный на рисунке. Масштаб нагрузки, 1 деление - 0,008 МН. Предел прочности материала равен __ МПа.
1) 408; 2) 611; 3) 306; 4) 153.
Решение: Верный ответ - 2). Предел прочности материала - это напряжение, соответствующее максимальной нагрузке. Поэтому
МПа.
2.4 Расчеты стержней на прочность и жесткость
Задание 2.4.1: Допускаемое напряжение [у] = 160 МПа. Диаметры круглых поперечных сечений стержней d1 и d2 в мм будут равны …
Варианты ответов:
1) 18,08 и 19,37; 2) 10,17 и 10,93; 3) 11,74 и 16,60; 4) 20,4 и 21,85.
Решение: Верный ответ - 4). Усилия в стержнях определяются методом сечений путем вырезания узла А.
Из уравнений проекций всех сил на оси у, х получим:
Диаметры стрежней определяются из условий прочности: . Площади поперечных сечений .
Тогда м=20,4мм;
м=21,85мм.
Задание 2.4.2: Допускаемое напряжение материала листа [?] = 160 МПа, толщина t = 10мм, ширина b=200 мм. Значение допускаемой нагрузки для растягиваемого стального листа, ослабленного двумя отверстиями диаметром d=20 мм, равно …
Варианты ответов:
1) 288 МПа; 2) 219,5 МПа; 3) 320 кН; 4) 256 кН.
Решение: Верный ответ - 4). Допускаемую нагрузку определяем из расчета на прочность по сечению, ослабленному отверстиями, так как здесь прежде всего может произойти разрушение. Полная площадь сечения листа А=20см2. Ослабление двумя отверстиями ?А=4см2.
Рабочая площадь сечения Араб =А??А=16см2=16?10-4м2.
Допустимая нагрузка .
Задание 2.4.3: Стержень с квадратным поперечным сечением нагружен силой F=1000 кН. Модуль упругости материала Е=200 ГПа. Допускаемое напряжение [у]=100 МПа. Допустимое минимальное перемещение верхнего сечения [д]=0,0001 L. Допустимый размер поперечного сечения стержня из условия жесткости равен…
Варианты ответов:
1) 22,36 см; 2) 22 см; 3) 5 см; 4) 10 см.
Решение: Верный ответ - 2).
По условию жесткости
.
Отсюда
Задание 2.4.4: Допускаемое напряжение на растяжение ? сжатие для материала стержня равно 150 МПа. Для стержня круглого поперечного сечения наименьший размер D из условия прочности равен…
Варианты ответов:
1) 10 см; 2) 8,9 см; 3) 8,34 см; 4) 13.
Решение: Верный ответ - 1). Наибольшее значение продольной силы по модулю равно . Из условия прочности стержня на растяжение ? сжатие находим искомый размер
.
Задание 2.4.5: К стержню квадратного поперечного сечения приложены одинаковые растягивающие силы. Если одновременно увеличить в 2 раза длину стержня и размер стороны, абсолютное удлинение стержня…
Варианты ответов:
1) увеличится на 0,25l; 2) уменьшится в 2 раза;
3) увеличится в 2 раза; 4) уменьшится на 0,25l.
Решение: Верный ответ - 2). Абсолютное удлинение стрежня при растяжении равно . При увеличении длины и размера стороны в 2 раза числитель увеличивается в 2 раза, а знаменатель - в 4 раза. Следовательно, удлинение уменьшится в 2 раза.
Задание 2.4.6: Прямой стержень изготовлен из хрупкого материала и нагружен осевыми силами. Условие(-я) прочности имеет(-ют) вид …
1); 2) ; 3) , ; 4) .
Решение: Верный ответ - 3). За опасное (предельное) напряжение для хрупкого материала принимается предел прочности. Предел прочности на сжатие хрупкого материла значительно больше предела прочности на растяжение. Таким образом, хрупкий материал по-разному работает на растяжение и сжатие, поэтому условия прочности для стержня из хрупкого материала состоят из двух выражений: , , где , - максимальные растягивающее и сжимающее напряжения в стержне;, - допускаемые напряжения на растяжение и сжатие. определяемые по формулам , , где , - пределы прочности на растяжение и сжатие, - коэффициент запаса прочности.
3. Сдвиг. Кручение
3.1 Чистый сдвиг. Расчет на сдвиг (срез)
Задание 3.1.1: Правило, согласно которому на взаимно перпендикулярных площадках элемента, выделенного из тела, касательные напряжения равны по величине и направлены к общему ребру (или от него), называют…
Варианты ответов:
1) масштабным эффектом;
2) законом парности касательных напряжений;
3) законом Гука при сдвиге; 4) условием неразрывности деформаций.
Решение: Верный ответ - 2). Выделим из тела бесконечно малый элемент с размерами dx, dy, dz. Предположим, что на двух гранях элемента возникают только касательные напряжения. Покажем данное напряженное состояние через плоский элемент.
Касательные напряжения, действующие по нижней и верхней грани элемента, образуют пару сил, которая вызывает вращение элемента. Поэтому на боковых гранях элемента возникают такие касательные напряжения, которые должны создавать пару сил противоположного направления.
Задание 3.1.2: При расчете заклепки на срез величина площади среза равна…
Варианты ответов:
1) ; 2) ; 3) ; 4) .
Решение: Верный ответ - 3). Площадь среза заклепки (в двух сечениях, перпендикулярных оси)
.
Задание 3.1.3: Закон Гука при сдвиге выражается зависимостью…
Варианты ответов:
1) ; 2) ; 3) ; 4) .
Решение: Верный ответ - 2). Опытные данные показывают, что при небольших напряжениях зависимость между и линейная.
Задание 3.1.4: Из расчета на срез минимальная высота головки болта при заданных значениях d и равна…
Варианты ответов:
1) ; 2) ; 3) ; 4)
Решение: Верный ответ - 3). При малой высоте головки болта происходит ее срез по цилиндрической поверхности диаметром d. Примем, что касательные напряжения постоянны по высоте h головки
, тогда .
Задание 3.1.5: Напряженное состояние, когда на гранях выделенного элемента возникают только касательные напряжения, называют…
Варианты ответов:
1) линейным; 2) объемным;
3) двухосным растяжением; 4) чистым сдвигом.
Решение: Верный ответ - 4). В зависимости от ориентации секущих площадок на гранях элемента, выделенного из тела, возникают как нормальные, так и касательные напряжения. В частном случае на гранях элемента могут быть только касательные напряжения.
Задание 3.1.6: Труба скручивается внешними моментами. Квадрат abcd, выделенный на поверхности трубы двумя поперечными и двумя продольными осевыми сечениями, трансформируется в ромб . Углом сдвига при этом является угол …
1); 2) ; 3) или ; 4) .
Решение: Верный ответ - 3).
При деформации кручения на гранях элементарного объема действуют только касательные напряжения (напряженное состояние - чистый сдвиг). Если условно закрепить грань ad, то перемещение точки b (отрезок ) является абсолютным сдвигом. Отношение называется углом сдвига или угловой деформацией.
3.2 Крутящий момент. Деформации и напряжения
Задание 3.2.1: Угол закручивания стержня круглого поперечного сечения определяется по формуле…
Варианты ответов:
1) ; 2) ; 3) ; 4) .
Решение: Верный ответ - 1). Угол закручивания стержня круглого поперечного сечения при постоянном крутящем момента определяется по формуле:
,
где - жесткость сечения при кручении.
Задание 3.2.2: При кручении угол взаимного поворота двух сечений, отнесенный к расстоянию между ними, называется…
Варианты ответов:
1) углом сдвига; 2) угловым перемещением;
3) относительным углом закручивания;
4) депланацией поперечного сечения.
Решение: Верный ответ - 3). Выделим из стержня круглого сечения элемент длиной dz. Предположим, что под действием крутящего момента правое сечение повернется на угол относительно левого.
Величина обозначается обычно через и называется относительным углом закручивания. Это угол взаимного поворота двух сечений, отнесенный к расстоянию между ними.
Задание 3.2.3: Напряжение в точке С поперечного сечения определяется по формуле…
Варианты ответов:
1) 0; 2); 3) ; 4) .
Решение: Верный ответ - 2). Для определения максимального касательного напряжения используем выражение
,
где - полярный момент сопротивления круглого сечения при кручении,
.
Задание 3.2.4: Деформацию стержня, при которой в поперечных сечениях возникает только крутящий момент, называют…
Варианты ответов:
1) чистым изгибом; 2) поперечным изгибом;
3) кручением; 4) чистым сдвигом.
Решение: Верный ответ - 3). Система внутренних сил в поперечном сечении стержня, на основании положений статики, приводится к центру тяжести сечения. В результате получается главный вектор и главный момент всех внутренних сил. Спроектировав главный вектор и главный момент на оси прямоугольной системы координат, расположенные определенным образом (одна ось направлена по нормали к сечению, а другие, расположены в плоскости сечения), получим шесть составляющих: три силы и три момента. Эти составляющие называются внутренними силовыми факторами и имеют определенные наименования. Момент всех внутренних сил относительно оси, перпендикулярной плоскости сечения, называется крутящим моментом.
Задание 3.2.5: При увеличении момента в два раза наибольшие касательные напряжения…
Варианты ответов:
1) уменьшатся в два раза; 2) не изменятся;
3) увеличатся в четыре раза; 4) увеличатся в два раза.
Решение: Верный ответ - 2). При увеличении момента в два раза величина максимального крутящего момента не изменяется, поэтому не изменятся.
Задание 3.2.6: Труба испытывает деформацию кручение. Эпюра распределения касательных напряжений в поперечном сечении трубы имеет вид …
Решение: Верный ответ - 1). Касательные напряжения в круглом и кольцевом сечениях определяются по формуле , где - расстояние от центра тяжести поперечного сечения до точки, в которой определяется касательное напряжение. Зависимость от - линейная. Для кольцевого сечения область изменения лежит в пределах , где и - внутренний и наружный радиусы поперечного сечения трубы.
3.3 Расчет на прочность при кручении
Задание 3.3.1: Стержень круглого поперечного сечения диаметром d работает на кручение. Касательное напряжение в точке, которая расположена на расстоянии d/4 от оси стержня, равно . Наибольшее касательное напряжение в данном поперечном сечении стержня равно…
Варианты ответов:
1) ; 2) 2; 3) 4; 4) 8.
Решение: Верный ответ - 2). Эпюра распределения касательных напряжений в поперечном сечении круглого стержня имеет вид, показанный на рисунке.
Закон изменения - линейный. Следовательно, . При решении задачи также можно воспользоваться формулой для определения касательного напряжения в произвольной точке круглого поперечного сечения
,
где ? крутящий момент в данном сечении;
? полярный момент инерции сечения; ? расстояние от оси стержня до точки, в которой определяется касательное напряжение.
На расстоянии d/4 имеем , а на расстоянии d/2
.
Задание 3.3.2: Условие прочности при кручении стержня круглого поперечного сечения с неизменным по длине диаметром имеет вид…
Варианты ответов:
1) ; 2) ; 3); 4) .
Решение: Верный ответ - 2).
Вдоль любого радиуса касательные напряжения изменяются по линейному закону, достигая максимальных значений в точках у поверхности. Поэтому условие прочности при кручении стержня круглого поперечного сечения с неизменным по длине диаметром имеет вид
, где , ,
d - диаметр стержня.
Задание 3.3.3: Из условия прочности, при заданном значении , наименьший допускаемый диаметр вала равен… Принять .
Варианты ответов:
1) ; 2) ; 3) ; 4) .
Решение: Верный ответ - 3). Так как вал постоянного диаметра, условие прочности имеет вид
, где . Тогда
.
Задание 3.3.4: При кручении максимальное касательное напряжение возникает в точке…
Варианты ответов:
1) В; 2) Д; 3) А; 4) С.
Решение: Верный ответ - 2). Для определения максимального касательного напряжения используем выражение
, .
Точка Д - самая удаленная от центра, поэтому именно в этой точке действует максимальное касательное напряжение.
Задание 3.3.5: Ступенчатый стержень скручивается моментами М. Наибольшее касательное напряжение на участке диаметром d равно . Значение наибольшего касательного напряжения на участке с диаметром 2d равно…
Варианты ответов:
1) ; 2) ; 3) ; 4) .
Решение: Верный ответ - 3). При определении максимального касательного напряжения в поперечном сечении круглого стержня диаметром d воспользуемся формулой где ? крутящий момент в данном сечении; ? полярный момент сопротивления, который определяется по формуле . На обоих участках крутящие моменты одинаковы и равны М. На участке диаметром d имеем
.
На участке диаметром 2d получим
.
Задание 3.3.6: Труба испытывает деформацию кручение. Касательное напряжение в точке С поперечного сечения трубы равно 20 МПа. Предел текучести материала трубы при чистом сдвиге МПа. Коэффициент запаса прочности равен …
1) 0,33; 2) 12; 3) 6; 4) 3.
Решение: Верный ответ - 4). Максимальное касательное напряжение возникает в точках у внешней поверхности трубы и его значение в два раза больше напряжения в точке С. Поэтому коэффициент запаса прочности
.
3.4 Расчет на жесткость при кручении
Задание 3.4.1: Жесткостью поперечного сечения круглого стержня при кручении называется выражение…
Варианты ответов:
1) EA; 2) GJP; 3) GA; 4) EJ
Решение: Верный ответ - 2).
Относительный угол закручивания стержня круглого поперечного сечения определяется по формуле . Чем меньше , тем больше жесткость стержня. Поэтому произведение GJP называется жесткостью поперечного сечения стержня на кручение.
Задание 3.4.2: Стержень круглого сечения диаметром d нагружен, как показано на рисунке. Максимальное значение относительного угла закручивания равно…
Модуль сдвига материала G, значение момента М, длина l заданы.
Варианты ответов:
1) ; 2) ; 3) ; 4) .
Решение: Верный ответ - 1). Построим эпюру крутящих моментов.
При решении задачи воспользуемся формулой для определения относительного угла закручивания стержня с круглым поперечным сечением
,
в нашем случае получим
.
Задание 3.4.3: Из условия жесткости при заданных значениях и G, наименьший допускаемый диаметр вала равен… Принять .
Варианты ответов:
1) ; 2) ; 3) ; 4) .
Решение: Верный ответ - 1). Так как вал постоянного диаметра, условие жесткости имеет вид
, где . Тогда
.
Задание 3.4.4: Стержень круглого сечения диаметром d нагружен, как показано на рисунке. Модуль сдвига материала G, длина l, значение момента М заданы. Взаимный угол поворота крайних сечений равен…
Варианты ответов:
1); 2) ; 3) нулю; 4) .
Решение: Верный ответ - 3). Обозначим сечения, где приложены внешние пары сил B, C, D соответственно, и построим эпюру крутящих моментов. Угол поворота сечения D относительно сечения B может быть выражен как алгебраическая сумма взаимных углов поворота сечения С относительно сечения B и сечения D относительно сечения С, т.е. . материал деформированный стержень инерция
Взаимный угол поворота двух сечений для стержня с круглым сечением определяется по формуле. Применительно к данной задаче имеем
.
Задание 3.4.5: Условие жесткости при кручении стержня круглого поперечного сечения, с неизменным по длине диаметром имеет вид…
Варианты ответов:
1) ; 2) ; 3) ; 4) .
Решение: Верный ответ - 4). Валы машин и механизмов должны быть не только прочными, но и достаточно жесткими. В расчетах на жесткость ограничивается величина максимального относительного угла закручивания, которая определяется по формуле
.
Поэтому условие жесткости для вала (стержня, испытывающего деформацию кручения) с неизменным диаметром по длине имеет вид
,
где - допускаемый относительный угол закручивания.
Задание 3.4.6: Схема нагружения стержня показана на рисунке. Длина L, жесткость поперечного сечения стержня на кручение , - допускаемый угол поворота сечения С заданы. Из расчета на жесткость максимально допустимое значение параметра внешней нагрузки М равно.
1); 2) ; 3) ; 4) .
Решение: Верный ответ - 2). Условие жесткости в данном случае имеет вид , где - действительный угол поворота поперечного сечения С. Строим эпюру крутящего момента.
Определяем действительный угол поворота сечения С. . Подставляем выражение действительного угла поворота в условие жесткости
,
Откуда
.
4. Напряженное и деформированное состояние в точке
4.1 Напряженное состояние в точке. Главные площадки и главные напряжения
Задание 4.1.1: Совокупность напряжений, возникающих на множестве площадок, проходящих через рассматриваемую точку, называют …
1) напряженным состоянием в точке; 2) полным напряжением;
3) нормальным напряжением; 4) касательным напряжением.
Решение: Верный ответ - 1). Напряженное состояние в точке полностью определяется шестью компонентами тензора напряжений: уx, уy, уz, фxy, фyz, фzx. Зная эти компоненты, можно определить напряжения на любой площадке, проходящей через данную точку. Совокупность напряжений, действующих по множеству площадок (сечений), проходящих через данную точку, называется напряженным состоянием в точке.
Задание 4.1.2: Площадки в исследуемой точке напряженного тела, на которых касательные напряжения равны нулю, называют …
...Подобные документы
Преобразование геометрических характеристик при параллельном переносе осей. Геометрические характеристики простейших фигур и сложных составных поперечных сечений. Изменение моментов инерции при повороте осей. Главные оси инерции и главные моменты инерции.
контрольная работа [192,8 K], добавлен 11.10.2013Площадь поперечного сечения стержня. Изменение статических моментов площади сечения при параллельном переносе осей координат. Определение положения центра тяжести сечения, полукруга. Моменты инерции сечения. Свойства прямоугольного поперечного сечения.
презентация [1,7 M], добавлен 10.12.2013Расчеты на прочность статически определимых систем растяжения-сжатия. Геометрические характеристики плоских сечений. Анализ напряженного состояния. Расчет вала и балки на прочность и жесткость, определение на устойчивость центрально сжатого стержня.
контрольная работа [1,5 M], добавлен 29.01.2014Геометрические характеристики плоских сечений, зависимость между ними. Внутренние силовые факторы; расчеты на прочность и жесткость при растяжении-сжатии прямого стержня, при кручении прямого вала. Определение прочности перемещений балок при изгибе.
контрольная работа [1,9 M], добавлен 20.05.2012Изучение методики испытаний на растяжение и поведение материалов в процессе деформирования. Определение характеристик прочности материалов при разрыве. Испытание механических характеристик стальных образцов при сжатии. Определение предела упругости.
лабораторная работа [363,0 K], добавлен 04.02.2014Выбор материала, его характеристик и допускаемых напряжений. Расчет прочности и жесткости балок и рам, ступенчатого стержня и стержня постоянного сечения, статически неопределимой стержневой системы при растяжении-сжатии и при кручении. Построение эпюр.
курсовая работа [628,4 K], добавлен 06.12.2011Проверка прочности ступенчатого стержня при деформации растяжение и сжатие. Расчет балки на прочность при плоском изгибе. Определение статически определимой стержневой системы, работающей на растяжение. Сравнение прочности балок различных сечений.
контрольная работа [1,4 M], добавлен 18.05.2015Анализ поведения материала при проведении испытания на растяжение материала и до разрушения. Основные механические характеристики пропорциональности, текучести, удлинения, прочности, упругости и пластичности материалов металлургической промышленности.
лабораторная работа [17,4 K], добавлен 12.01.2010Понятие прикладной механики. Эпюры внутренних усилий при растяжении-сжатии и кручении. Понятие о напряжениях и деформациях. Свойства тензора напряжений. Механические характеристики конструкционных материалов. Растяжение (сжатие) призматических стержней.
учебное пособие [1,5 M], добавлен 10.02.2010Напряжения и деформации при сдвиге. Расчет на сдвиг заклепочных соединений. Статический момент сечения. Моменты инерции сечений, инерции прямоугольника, круга. Крутящий момент. Определение деформаций при кручении стержней с круглым поперечным сечением.
реферат [3,0 M], добавлен 13.01.2009Расчет стержня на кручение. Механизм деформирования стержня с круглым поперечным сечением. Гипотеза плоских сечений. Метод сопротивления материалов. Касательные напряжения, возникающие в поперечном сечении бруса. Жесткость стержня при кручении.
презентация [515,8 K], добавлен 11.10.2013Определение геометрических характеристик поперечного сечения бруса. Расчет на прочность и жесткость статических определимых балок при плоском изгибе, построение эпюры поперечных сил. Расчет статически не определимых систем, работающих на растяжение.
контрольная работа [102,8 K], добавлен 16.11.2009Определение главных напряжений в опасной точке, необходимые расчеты и порядок проверки их истинности. Расчет на прочность конструкций типа кронштейнов, подвесок, валов, элементы которых работают на равномерное растяжение, сжатие. Проектирование балки.
курсовая работа [311,9 K], добавлен 08.11.2009Изгиб вызывается внешними силами, направленными перпендикулярно продольной оси стержня, а также парами внешних сил, плоскость действия которых проходит через эту ось. Внутренние силы в поперечных сечениях изгибаемых стержней определяются методом сечений.
реферат [1,1 M], добавлен 13.01.2009Зависимость свойств материалов от вида напряженного состояния. Критерии пластичности и разрушения. Испытание на изгиб. Изучение механических состояний в зависимости от степени деформирования. Задачи теорий пластичности и прочности. Касательное напряжение.
презентация [2,7 M], добавлен 10.12.2013Техническая характеристика стана ХПТ-55. Расчет станины рабочей клети. Моменты инерции сечений. Расчет валков на прочность и жесткость. Схема действия сил на рабочий валок и эпюры изгибающих и крутящих моментов. Расчет подушек валков, напряжение изгиба.
курсовая работа [332,7 K], добавлен 26.11.2012Изучение свойств материалов, установления величины предельных напряжений. Условный предел текучести. Механические характеристики материалов. Испытание на растяжение, сжатие, кручение, изгиб хрупких материалов статической нагрузкой. Измерение деформаций.
реферат [480,5 K], добавлен 16.10.2008Схематизация свойств материала и геометрии объекта. Построение эпюр продольных сил и крутящих моментов. Центральное растяжение-сжатие. Напряжения и деформации. Неопределимые системы при растяжении сжатии. Основные сведения о расчете конструкций.
курс лекций [3,3 M], добавлен 30.10.2013Методика, содержание и порядок выполнения расчетно-графических работ. Расчеты на прочность при растяжении, кручении, изгибе. Расчет бруса на осевое растяжение. Определение размеров сечений балок. Расчет вала на совместное действие изгиба и кручения.
методичка [8,4 M], добавлен 24.11.2011Назначение и описание конструкции аппарата емкостного ВКЭ1–1–5–1,0. Выбор основных конструкционных материалов для производства данного аппарата, прядок расчета на прочность, жесткость и устойчивость, подбор болтов и опор, конструкционных частей.
курсовая работа [428,3 K], добавлен 31.05.2010