Методические печи

Методические нагревательные печи как наиболее распространенный тип нагревательных печей. Сведения о температурном режиме. Наблюдение за температурой металла. Количественное значение угара (способы определения). Методы повышения производительности.

Рубрика Производство и технологии
Вид реферат
Язык русский
Дата добавления 20.09.2016
Размер файла 2,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Украины

Приазовский государственный технический университет

Реферат на тему

"Методические печи"

Выполнил Василенко А.А.

Принял Шаламов Ю.Н.

Мариуполь 2016

Содержание

  • 1. Сведения о температурном режиме
  • 2. Наблюдение за температурой металла
  • 3. Процесс горения (краткие сведения)
  • 4. Количественное значение угара (способы определения)
  • 5. Очистка пода
  • 6. Безокислительный нагрев металла
  • 7. Показатели производительности
  • 8. Методы повышения производительности
  • 9. Удельный расход топлива
  • 10. Давление в печи, борьба с подсосом воздуха и выбиванием продуктов сгорания
  • 11. Тепловой контроль и автоматическое регулирование
  • 12. Стойкость элементов печи
  • 13. Водоохлаждаемые элементы печей

1. Сведения о температурном режиме

Методические нагревательные печи относятся к наиболее распространенному типу нагревательных печей. В зависимости от распределения температур в печи различали двухзонные или трехзонные методические печи, причем в методической зоне этих печей, как правило, не было сожигательных устройств. Построенные в последнее время многозонные методические печи называются четырехзонными, пятизонными - в зависимости от количества участков печи, оборудованных топливосжигательными устройствами.

Стремление к обеспечению высокопроизводительной работы печи ведет к повышению температуры, которая определяется тем, что к моменту выдачи металл должен быть соответствующим образом прогрет по всему сечению.

Чтобы не происходило оплавления поверхности металла, температуру в сварочной зоне в ряде случаев поддерживают на уровне 1300-1350° С.

При относительно длинной сварочной зоне, поддерживая температуру по длине зоны примерно на одинаково высоком уровне, можно ускорить нагрев металла, не прибегая к чрезмерному повышению температуры в ней.

Для повышения производительности печи и ускорения нагрева в ней относительно толстых заготовок без чрезмерного повышения температуры применяют двусторонний нагрев металла. В этом случае температура в нижней камере сварочной зоны печи обычно составляет 1250-1300° С, но бывает и выше.

Наиболее форсированный нагрев массивных тел происходит, если их нагревают с максимальной интенсивностью до заданной температуры поверхности с последующей выдержкой (томлением) при этой температуре.

Практически при нагреве рядовой стали температуру ее поверхности приходится ограничивать, чтобы не допустить оплавления окалины. Вследствие этого часто при форсированной работе печи температура поверхности металла в сварочной зоне превышает заданную температуру выдачи металла, а затем при выдержке происходит одновременно некоторое подостывание поверхности металла и выравнивание температуры по сечению (прогрев). Описанный режим осуществляется в трехзонных, а в последние годы и в многозонных печах, где после сварочной зоны металл продвигается в томильную зону.

Поскольку при таком режиме нагрев металла не заканчивается в сварочной зоне и прогрев его по сечению происходит в томильной зоне, в сварочной зоне представляется возможным поддерживать повышенную температуру. В результате нагрев поверхности металла в сварочной зоне до конечной температуры ускоряется, что повышает производительность печей. Наличие томильной зоны в трехзонных печах повышает производительность печей на 15-20%.

Как правило, в томильной зоне поддерживается постоянная температура продуктов сгорания, что легко достигается применением существующих средств автоматизации теплового режима печей.

В печах с томильной зоной температура поверхности металла несколько ниже, чем в методических печах без этой зоны, но металл лучше прогревается по сечению во время томления в печи.

Топливосжигающие устройства томильной и сварочной зон располагают на торцовых стенках печи, но есть методические печи, где топливосжигающие устройства расположены на боковых стенах сварочной зоны. Это позволяет обеспечить постоянную высокую температуру по длине зоны и интенсифицировать работу печи. Однако при этом затрудняются обслуживание печи и ее автоматизация.

В большинстве случаев в трехзонных методических печах наблюдались следующие температуры,°С: в томильной зоне 1250-1300, в верхней камере сварочной зоны 1280-1380 и выше (при форсированной работе), в нижней камере 1250-1340.

методическая печь нагревательная металл

Широкий диапазон колебания температур в сварочной зоне наблюдается при неравномерной работе стана и резко меняющейся производительности печи. При установившейся нормальной работе поддерживаются промежуточные температуры, причем температурный режим выбирают, исходя из необходимости обеспечения: заданной температуры нагрева металла с допустимым перепадом температур по сечению, требуемой производительности печи при отсутствии брака по нагреву, предотвращения или сведения к минимуму оплавления окалины и образования жидкого или тестообразного шлака на поде печи.

Методические трехзонные печи часто работают с температурой в томильной зоне выше температуры в верхней камере сварочной зоны или равной ей; например, когда нельзя обеспечить необходимую повышенную производительность печи без продолжения интенсивного нагрева металла в томильной зоне. Бывает, что трехзонные печи с боковой выдачей металла приспосабливают для удаления шлака в жидком виде (особенно в тех случаях, когда греют слитки спокойной стали с необрезанной прибыльной частью).

В этом случае температура в томильной зоне повышается до 1400° С и выше, что необходимо для образования жидкого шлака. Имеются методические печи относительно короткие и с односторонним нагревом металла (так как в них греются тонкие заготовки), обслуживающие непрерывные мелкосортные и проволочные станы. Каждая из этих печей оборудована камерой, в которой может происходить томление металла, но работают они с температурой в томильной зоне выше, чем в сварочной, так как этот режим при малом значении томильной зоны для нагрева тонких заготовок при умеренных температурах в печи обеспечивает большую ее производительность. В рассматриваемых печах поддерживают следующие температуры: в томильной зоне 1250-1350° С; в сварочной зоне 1150-1250° С и в конце печи 900-1100° С. Чтобы с достаточной производительностью греть аналогичные заготовки небольшого сечения в двухзонных печах, не имеющих томильной камеры, в них поддерживают температуру 1400° С и выше.

При нагреве легированных и высоколегированных сталей при неправильном температурном режиме (здесь эти режимы не рассматриваются) наиболее вероятно возникновение брака по нагреву. В этом случае для поддержания должного режима нагрева более пригодны трехзонные методические печи с нижним отоплением, чем двухзонные.

В связи с ростом производительности прокатных станов возникла необходимость в повышении производительности печей. Это привело к постройке многозонных методических печей. В построенных четырехзонных печах дополнительная сварочная зона

расположена в верхней части печи, в пятизонных - также и в нижней части печей. Эти печи оборудованы томильной зоной и в них при поддержании соответствующих температур в отдельных зонах возможно обеспечить трехступенчатый режим нагрева металла, как и в трехзонных печах; топливосжигательные устройства устанавливают также на боковых стенах в конце методической зоны, увеличивая таким образом число отапливаемых зон печи и повышая тем самым ее производительность. Естественно, что при этом возрастает температура продуктов сгорания, уходящих из печи, что требует повышенного внимания к использованию тепла этих продуктов. Так как в этих печах сварочная зона занимает относительно большую часть длины печи, повышенная производительность может быть достигнута без чрезмерного повышения температуры в этой зоне. С этим обстоятельством особенно приходится считаться, когда дело касается нижних камер, так как высокая температура в них существенно влияет на рост пода томильной зоны, обусловленный накоплением шлака.

Созданию необходимого температурного режима в печи способствует должная конструкция ее профиля: на границе между сварочной и методической зонами свод печи выполняют с пережимом для уменьшения прямого излучения тепла из сварочной зоны в методическую; поддержанию пониженной температуры в томильной зоне (чтобы не перегреть поверхность металла) способствует наличие пережима в ее своде, уменьшающего прямое излучение на нее из сварочной зоны. Наличие пережима между томильной и сварочной зонами дает также возможность поддерживать положительное давление в томильной зоне, что особенно важно в печах с торцовой выдачей металла, где подсос воздуха в эту зону может быть особенно значителен. При эксплуатации печей наблюдались случаи, когда в месте пережима рабочего пространства между томильной и сварочной зонами происходили следующие ненормальности в работе: некоторое остывание металла в связи с пониженной теплоотдачей от кладки к металлу в этом месте, а также от подсоса воздуха из-за повышенной скорости продуктов сгорания в этом участке, и наоборот, перегрев металла при наличии в продуктах сгорания элементов химического недожога, сгорающих интенсивно под сводом в месте пережима при смешении с подсосанным воздухом; затрата значительных физических усилий на раскантовку металла в случаях его кострения, если высота рабочего пространства печи в месте пережима недостаточна для прохода закострившегося металла.

При некотором росте пода в результате образования шлака требуется, чтобы высота рабочего пространства в месте пережима была несколько больше суммы максимальной толщины двух заготовок (слитков). Встречаются печи с завышенной высотой рабочего пространства в месте пережима, что затрудняет одновременное обеспечение необходимого давления в томильной зоне и в конце печи.

2. Наблюдение за температурой металла

В ряде случаев температуру металла во время прокатки контролируют оптическим пирометром, визируемым на поверхность металла, свободную от окалины.

Для определения истинной температуры металла нужно вводить поправки к показаниям пирометра на неполноту излучения, так как показания пирометра получаются несколько заниженными. Однако поправки зависят еще и от других факторов, учитывать которые практически трудно; а потому, как правило, измеренную температуры поверхности металла записывают без поправок.

Замер температуры оптическим пирометром требует от пирометриста большой опытности и добросовестности. Если пирометрист этими качествами не обладает, то измерения, проведенные им, не могут претендовать на достаточную точность.

Для измерения температуры металла в процессе прокатки пользуются более надежным способом, а именно фотоэлектрическим пирометром (ФЭП), изготовляемым Центральной лабораторией автоматики.

Неточности получаются также и при измерении температуры поверхности металла в печи оптическим пирометром. При этом возникают дополнительные ошибки, потому что измерение выполняют через лучепоглощающую газовую среду и фактически измеряют температуру не металла, а окалины, освещенной к тому же пламенем или более горячей кладкой печи. Пирометр визируют часто на поверхность торца металла, где влияние пламени сказывается меньше, однако не всегда можно измерять температуру в этом месте. Случается, что торцы заготовок, воспринимающие тепло относительно большой поверхностью, бывают настолько нагреты, что для предотвращения их оплавления отключают или значительно уменьшают расход топлива через крайние горелочные устройства, способствующие интенсивному нагреву торцов. Не редки также случаи, когда под влиянием близости рабочих окон торцы заготовок остывают.

Несмотря на искажение показателей при измерении температуры в печи такие замеры при наладочных работах полезны, так как они позволяют получить относительные данные, характеризующие нагрев металла и температуры в печи на различных ее участках в зависимости от темпа работы и тепловой мощности. Необходимо при этом измерять температуру одной и той же заготовки по мере ее продвижения в печи и одновременно измерять температуру кладки в месте нахождения заготовки. Важно, чтобы темп работы печи, при котором ведутся измерения, не нарушался и чтобы ее тепловой и температурный режимы поддерживались на установленном уровне.

Вместе с данными о температуре металла при прокатке на стане эти показатели могут быть использованы для выявления недостатков печи, наладки ее теплового и температурного режимов и определения ее производительности. Например, близкие по величине температуры поверхности кладки и металла в сварочной зоне трехзонной печи при форсированной работе (высоком темпе выдачи) показали, что производительность печи находилась в данных условиях приблизительно у максимума.

Температура поверхности нагретого металла не характеризует степени его прогрева по сечению. Величина перепада температуры по сечению металла колеблется в ряде случаев в широких пределах и в вопросе о допустимом перепаде нет достаточной ясности. Этот перепад зависит от марки стали, сечения заготовок, от вида проката и других факторов; часто на заводах предъявляют жесткие требования к допустимым перепадам. В результате из-за необоснованных требований температура нагрева металла завышается, что вызывает большие трудности в эксплуатации печей. Чтобы установить значение перепада температур металла по сечению, иногда измеряют температуры внутри металла.

Ниже описана методика, при помощи которой измеряли температуры внутри заготовки для определения равномерности нагрева ее по сечению во время продвижения вдоль трехзонной методической печи с нижним отоплением и влияния охлаждающего действия глиссажных труб на нагрев заготовки, а также приведены результаты измерений. Печь отапливали смешанным газом [QpН = 7,55 Мдж/м3 (1800 ккал/м3)]; длина активного пода печи 24384 мм.

Из нагреваемых в этой печи заготовок отобрали две забракованные заготовки и е них просверлили каналы для термопар. В одной заготовке сечением 240X290 мм и длиной 4350 мм просверлили перпендикулярно продольной оси 3 поперечных канала глубиной 145 мм (до центра заготовки). Через один канал измеряли температуру центра вблизи конца заготовки (на расстоянии 300мм от ее конца), через второй канал - температуру центра в том участке заготовки, которая в печи лежит на глиссажной трубе, и через третий канал - температуру центра заготовки на участке между глиссажными трубами. Эти измерения для определения охлаждающего действия глиссажных труб производили не в печи, а когда горячая заготовка находилась на шлеппере. В каналы одновременно устанавливали 3 платинородий-платиновые термопары с обнаженными горячими спаями, вмонтированными в тонкие фарфоровые трубки. Головки термопар были защищены от нагрева лучистой теплотой горячей заготовки изготовленными для этого двойными асбестовыми щитами. Во второй опытной заготовке сечением 240x290 мм и длиною 4350 мм было высверлено на торце три продольных канала глубиной 700 мм для определения температуры в трех точках: вверху, в центре и внизу сечения заготовки. Замеры температур этой заготовки проводили термопарами непосредственно в печи через кантовальные окна по мере продвижения заготовки вдоль печи. Сначала эти замеры производили через каждое окно, а затем через окна 8, 5 и 1 (рис. 1).

Для этих замеров были изготовлены 3 хромель-алюмелевые термопары длиной 3000 мм каждая. Защитные чехлы для них на длину 2000 мм были сделаны из жароупорных труб диаметром 15 мм с приваренными к них водоохлаждаемыми трубами диаметром 10 мм для придания необходимой жесткости термопаре при нагреве ее в печи. Температуру в печи измеряли, как всегда, в следующих местах: в томильной зоне - радиационным пирометром; калильный стакан, на дно которого визировали пирометр, был установлен в своде посередине печи против оси первого рабочего окна, конец стакана выступал из кладки свода внутрь печи на 80 мм; в верхней камере сварочной зоны - платинородий-платиновой термопарой, установленной в своде посередине печи между шестым и седьмым рабочими окнами, глухой конец защитного чехла термопары выступал из кладки свода на 80 мм, а рабочий спай - на 30 мм; в нижней камере сварочной зоны - платинородий-платиновой термопарой, установленной в боковой стене печи по оси седьмого рабочего окна на 600 мм ниже от верхней грани глиссажных труб, глухой конец защитного чехла и рабочий спай термопары выступали из кладки внутрь камеры соответственно на 80 и 30 мм.

Результаты измерений температуры для определения влияния глиссажных труб на нагрев металла, проведенных с разной длительностью нагрева, даны в табл. 1. Из этих данных видно, что глиссажные трубы в значительной степени способствуют охлаждению, в результате которого рост температуры заготовки над трубами происходит крайне медленно. Данные, характеризующие режим работы печи и температуру заготовки при проходе ее через печь, измеренную в течение четырех опытов, приведены в табл. 2.

Все опыты были проведены в условиях, когда посад до нагрузки опытной заготовки и после нее был холодным. Три опыта (№ 1, 2,3) были проведены при обычных тепловых режимах печи, а один (№ 4) в условиях повышенной тепловой мощности (особенно томильной зоны). Поддерживаемая в этом опыте температура в нижней камере сварочной зоны колебалась в пределах 1250-1380° С. Опыты № 3 и 4 проведены при примерно одинаковом времени пребывания заготовки в методической и сварочной зонах с относительно близким удельным временем нагрева. Таким образом, разница в качестве нагрева обусловлена различной тепловой мощностью печи. В томильной зоне из-за подсоса воздуха через торцовое окно выдачи температура верха заготовок понижается. При измерении температуры внутри относительно тонких заготовок, где трудно разместить три канала на одной вертикальной оси, просверливают один канал в середине сечения заготовки, а другие два - рядом, по другой вертикальной оси (один вблизи верхней, а другой на таком же расстоянии вблизи нижней поверхности заготовки).

Весьма существенно, чтобы во время измерения температуры внутри металла соблюдались условия, приведенные выше для случая наблюдения за температурой поверхности заготовки.

Во время равномерного движения металла в методической и сварочной зонах печи распределение температуры по сечению заготовки происходит по параболическому закону. Исходя из данных температуры, измеренной в трех точках внутри заготовки, можно расчетным путем определить температуру нижней и верхней поверхностей заготовки.

Этот расчет можно выполнить, решая уравнение параболы:

у = а (х - х0) 2,которое для трех точек замера температуры (рис. 2) может быть выражено следующими уравнениями:

d = а (т - х0) 2; d + с3 = а (х0 - k) 2; d + с1 = а (п - х0) 2.

Решая эти уравнения относительно х0, получим

Решая совместно уравнения (1) и (2) и уравнения (1) и (3), после ряда преобразований получим

При подготовке к измерениям температуры внутри металла следует иметь в виду, что два крайних канала в заготовке, которую приспосабливают для замеров, следует сверлить возможно ближе к поверхностям. Это увеличивает перепад измеряемых температур и повышает точность расчетов. Так как температура в металле быстро растет, то желательно, чтобы ее измеряли одновременно во всех трех точках сечения.

3. Процесс горения (краткие сведения)

В томильной зоне стараются вести процесс горения с некоторым недостатком воздуха (при а = 0,85 - 0,9), чтобы уменьшить окисление металла и особенно не оплавить на нем окалины. Оплавление окалины ведет не только к образованию шлаковых наростов на монолитной подине, но и затрудняет прокатку. Слитки с оплавленной окалиной буксуют при задаче их в валки стана и снижают темп прокатки.

Продукты химического недожога, поступающие из томильной зоны, дожигают в печи, подавая избыток воздуха в сварочную зону. В последней, наоборот, необходимо обеспечить минимальную химическую неполноту сгорания топлива с тем, чтобы в методической части происходила утилизация физического тепла продуктов сгорания, поступающих из сварочной зоны. На практике такой оптимальный режим в сварочной зоне достигается при применении совершенных газовых сожигательных устройств, обеспечивающих хорошее смешение топлива с воздухом (например, инжекционных газовых горелок), а при работе на менее совершенных газовых сжигательных устройствах (двухпроводных горелках типа "труба в трубе") или при мазутном отоплении процесс горения, как правило, растягивается и заканчивается в методической зоне.

Опыты показали, что если в печь не подсасывается воздух из атмосферы, то значение коэффициента избытка воздуха, подсчитанное по показаниям расходомеров топлива и воздуха, примерно совпадает со значением а, подсчитанным исходя из анализа продуктов горения в конце печи. При подсосе воздуха в печь указанного совпадения нет и значение а, подсчитанное на основании анализа, выше.

Для борьбы с чрезмерным избытком воздуха уменьшают подачу в печь вентиляторного воздуха или за счет избытка воздуха сжигают дополнительное количество топлива, если в этом есть необходимость. Такой метод регулирования процесса горения легче достигается при примерно постоянной производительности печи. Например, в процессе наладки методической печи с неизолированными подовыми трубами печь по всей длине находилась под некоторым положительным давлением. После изоляции подовых труб расход топлива резко сократился, конечная часть печи (на стороне посадки) оказалась под разрежением, и температура в ней понизилась. Для лучшего прогрева этой части печи уменьшили подачу воздуха к форсункам. Дожиганием мазута с использованием подсасываемого воздуха растянули факел и повысили температуру в конце печи. Однако значение а в этом месте не было всегда достаточно устойчивым и часто колебалось в пределах 0,95-1,05, что приводило к недожогу топлива.

Недостатком такого метода регулирования процесса горения является уменьшение доли горячего воздуха, поступающего в печь, если последняя оборудована рекуператором. Для лучшей организации процесса горения необходимо устранить подсосы воздуха в печь.

Коэффициент избытка воздуха в продуктах сгорания, покидающих рабочую камеру хорошо эксплуатируемых методических печей, отапливаемых газом, составляет обычно 1,05-1,15 при отсутствии продуктов химического недожога. С таким же избытком воздуха и с практически законченным процессом горения выходят из печи продукты сгорания мазута, если его сжигание хорошо организовано. Так, например, в методической печи, оборудованной форсунками высокого давления, при температуре воздуха для горения около 270° С коэффициент избытка воздуха в конце печи составлял всего 1,05 при наличии СО в пределах 0,1-0,5%. При помощи таких же форсунок на другой методической печи мазут сжигали неудовлетворительно даже при а = = 1,2-1,3 из-за плохого распыления топлива влажным паром пониженного давления.

При проведении наладочных работ часто выясняют состав продуктов сгорания только по содержанию в них С02 и 02, определенных на газоанализаторе Орса. При этом содержание СО находят расчетным путем, исходя из значения характеристики 0 для данного топлива. Но бывают случаи, когда этим не ограничиваются. Например, при наладке методической печи, отапливаемой доменным газом, состав последнего значительно колебался, и тогда, как при средневзвешенном значении характеристики в = - 0,168, расчетное содержание СО составляло 2,3%, при крайних значениях характеристики в содержание СО колебалось в пределах от 0 до 5%. В этом случае содержание СО приходилось определять на том же аппарате поглощением его сернистым раствором бетанафтола.

В процессе одной из наладочных работ на методической печи, отапливаемой мазутом, пользуясь аппаратом Орса-Фишера, выполнили большое количество анализов продуктов сгорания поглощением С02, 02 и СО, причем продукты сгорания отбирали из печи водоохлаждаемыми трубками. Результаты этих анализов сравнивали со значениями СО, получаемыми расчетом; при этом систематически обнаруживали невязку между фактическим (по анализу) и расчетным содержанием СО. Это объяснялось затратой 02 не только на сжигание топлива, но и на окисление металла в печи.

4. Количественное значение угара (способы определения)

Обычные продукты сгорания окисляют сталь при ее нагреве в печах. Есть расчетные методы оценки количественного значения угара. Способ определения количества образующейся окалины непосредственно взвешиванием металла до и после нагрева его наиболее надежен, но его не всегда применяют из-за того, что в ряде случаев трудно бывает обеспечить необходимую точность при взвешивании.

Легче определить величину угара, пользуясь специально изготовленными металлическими образцами-спутниками малого размера, уложенными на продвигающийся в печи металл. В этом случае образцы до и после нагрева взвешивают на лабораторных весах.

Потерянную массу образца-спутника от окисления относят к единице его поверхности, омываемой продуктами сгорания (например, г/см2), и считают, что такой же угар происходил на поверхности заготовок, омываемой продуктами сгорания.

Этому способу присущи следующие недостатки:

1. При определении поверхности заготовок, омываемой продуктами сгорания, обычно исключают их боковые грани, которыми они соприкасаются в методической печи (считая эти грани плотно закрытыми). На самом деле из-за кривизны заготовок часть поверхности этих граней также открыта для окисления и, таким образом, нет ясности в определении общей поверхности заготовок, подвергшейся окислению. Естественно, что величина связанной с этим ошибки зависит от размера заготовок (на широких заготовках она меньше).

2. Так как образцы малого размера (к тому же более открытые для омывания продуктами сгорания) при продвижении вместе с заготовками быстрее прогреваются и достигают высоких

температур, то они должны больше окисляться, окалина на них может даже оплавиться и дополнительно появиться, следовательно, может быть искажено представление о величине угара заготовок.

При проведении наладочных работ Центроэнергочермет иногда оценивал количество угара по толщине и массе окалины, снятой со всех граней заготовок. Неоднократные определения показали, что масса, отнесенная к объему, определенному наружным обмером, вследствие ее пористости составляла 4-4,2 г/см3, а плотность 4,6-5,0 г/см3.

По химическому анализу окалины содержание железа в ней было около 75%. Таким образом, пластина окалины толщиной 1 мм и площадью 1 см2 представляла собой потерю металла от

окисления = 0,315 г/см2, или 3,15 кг/м2 поверхности

металла, омываемой продуктами сгорания.

Такой метод оценки угара сравнительно прост, однако большое разнообразие в толщине окалины, снимаемой даже с одной и той же поверхности заготовки (омываемой или неомываемой продуктами сгорания), снижает точность определения по этому методу. Естественно также, что некоторая часть окалины заготовок оплавляется и натирается на монолитную подину, что также уменьшает в какой-то мере толщину окалины и точность определения угара.

В исследованиях на методической печи с двусторонним нагревом, проведенных совместно Центроэнергочерметом, Днепропетровским металлургическим институтом и заводом им. Дзержинского, одновременно применяли все указанные выше способы. Размеры нагреваемых в печи заготовок составляли 180Х180Х XI150 мм, а образцов-спутников из того же металла 55Х55Х X 170 мм.

Для определения массы угара заготовок непосредственным взвешиванием заготовки подвергались следующим операциям: очистке от первичной прокатной окалины, взвешиванию, нагреву в печи, замачиванию в баке с водой, где окалина легко отставала, дополнительной очистке окалины металлической щеткой, повторному взвешиванию. От момента выдачи заготовки из печи до замочки ее в баке проходило около 2 мин, т.е. примерно столько же, сколько требуется для подачи заготовки из печи на первую клеть стана (поверхность образцов до взвешивания перед посадкой в печь и после замочки в воде после нагрева очищали пескоструйным аппаратом).

Исследования показали, что потери металла (угар), отнесенные к единице поверхности нагрева (1 м2), омываемой продукта; ми сгорания, на заготовках и на образцах практически одинаковы.

Поверхность образца, омываемая продуктами сгорания, состояла из верхней, двух боковых и двух торцовых сторон его, а заготовки - из верхней, нижней и двух торцовых.

Таким образом, зная величину угара на 1 м2 указанной поверхности образцов, определяли величину угара заготовок в печи. Метод определения величины угара с помощью образцов удобен тем, что, загрузив в печь несколько образцов, можно при необходимости извлечь некоторые из них из любого места печи и получить сведения о нарастании угара по длине печи.

Величина угара, определенная по толщине окалины, собранной с разных сторон заготовок, была примерно на 12-14% меньше определенной взвешиванием заготовок или образцов до и после нагрева.

На одном заводе, где слябы грели в методической печи с двусторонним нагревом и торцовой выдачей, работники лаборатории определяли значение угара металла на всех гранях сляба. Для этой цели использовали весьма трудоемкий способ, а именно в опытном слябе на каждой грани просверлили ряд каналов глубиной 15 мм и определяли величину угара тщательным измерением глубины каналов до и после нагрева. Чтобы каналы не окислялись во время нагрева, в них ввинтили пробки на глубину примерно 10 мм. Одновременно определяли значение угара взвешиванием образцов малого размера, уложенных на продвигавшихся по печи слябах.

Величина угара, определенная этими способами, почти совпала (по образцам она была несколько меньше), причем относительное значение угара, отнесенное к единице поверхности различных граней опытного сляба, характеризовалось следующим образом;

Наладочной бригаде Центроэнергочермета пришлось определять значение угара в методической печи с монолитным подом, где грелись заготовки сечениями 60 X 60 и 80 X 80 мм длиной 12 м. При такой длине заготовок определение величины угара взвешиванием их до и после нагрева особенно затруднено.

В этом случае бригада Центроэнергочермета осуществляла указанное определение по образцам-вкладышам, которые укладывались между заготовками; при этом поперечное сечение образцов было таким же, как у заготовок, а длина их составляла всего 1 м.

При таком методе исследования условия нагрева образцов-вкладышей намного приближались к условиям нагрева заготовок.

Масса образцов-вкладышей составляла при сечении 60 X 60 мм 25-27 кг, а при сечении 80 X 80 мм 48-49 кг. Выгружаемые из печи вкладыши охлаждали в воде (в баке для замочки печного инструмента), образцы очищали от окалины до и после нагрева металлическими щетками и взвешивали на точных весах (предназначенных для проверки гирь) 1-го класса с наибольшей допустимой нагрузкой 50 кг и с погрешностью при предельной нагрузке, не превосходившей ±500 мг.

Значение угара, выраженное в процентах, может быть в первом приближении принято одинаковым у заготовок и образцов вкадышей.

Однако и при этом методе определения значения угара имеются различия в условиях нагрева образцов и заготовок, приводящие к некоторым неточностям, а именно: отношение полной поверхности коротких образцов к их массе (за счет торцов) больше, чем у длинных заготовок; в частности за счет торцов отношение открытой поверхности, омываемой продуктами сгорания, к массе образцов больше, чем у заготовок. Таким образом, угар у образцов-вкладышей должен быть несколько больше, чем у заготовок.

Если в процессе исследований оценить разницу в величине угара металла на поверхностях образцов, омываемых и неомываемых продуктами сгорания (например, по толщине окалины), то одновременно пользуясь данными об общем угаре образцов (определенными взвешиванием), можно при расчете значения угара заготовок внести некоторые поправки, позволяющие уточнить это значение.

При определении угара на заготовках, греющихся в указанной выше методической печи, расчетными поправками установили, что между значениями угара заготовок у3 и угара образцов-вкладышей (уоб) существовала следующая связь:

Уз =0,95 уоб.

Следует также иметь в виду, что заготовки загружают в печь с небольшим слоем первичной прокатной окалины, которая в какой-то мере защищает поверхность и несколько уменьшает угар заготовок. Наблюдения Центроэнергочермета, проведенные одновременно над образцами-вкладышами, предварительно очищенными (металлическими щетками) от окалины и неочищенными, показали, что угар у неочищенных образцов (уН.0) был меньше, чем у очищенных (у0), и составлял

Ун. о = 0,92 у0.

Это обстоятельство следует учитывать, когда определяют величину угара заготовок в печи на основании наблюдения за угаром образцов, предварительно очищенных от окалины.

Потери металла от угара, числящиеся в отчетности заводов, характеризуют обычно сумму угара: в печи, при транспортировке к стану, в процессе прокатки и при последующем остывании металла. В процессе прокатки, когда поверхность металла увеличивается, растет также значение угара. Непосредственно в печи потери от угара бывают значительно меньше. Например, величина угара, определенная специальными наблюдениями в методических печах с монолитным подом, обслуживающих мелкосортный и проволочный станы, не превышала 1 % и составляла менее половины общего угара, числящегося по отчетности завода, что следует объяснить дополнительным окислением металла после выдачи его из печи.

Правильное определение величины угара металла, происходящего непосредственно в печи, весьма существенно. На основании этой величины можно судить об экономической целесообразности применения тех или иных способов уменьшения угара и, в частности, безокслительного нагрева.

Из факторов, влияющих на величину угара (температура, атмосфера в печи, и пр.), больше всего влияет длительность пребывания металла в печи (при высокой температуре). Например, по наблюдениям, проведенным на методической печи, где грели слябы, при форсировании темпа работы и пребывании металла в печи в течение 2 ч толщина окалины составляла 2 мм, что соответствовало угару 1,5%; при среднем темпе работы и длительности нагрева 3,5 ч толщина ее составляла 2,6-3,0 мм, что соответствовало угару 2%; при длительных простоях толщина окалины была 5,5-6,0 мм, что соответствовало угару 4%.

При обычной работе методической печи с монолитным подом, обслуживающей проволочный стан, нагрев заготовок продолжался, как правило, 55-65 мин и угар при этом составлял 0,75-0,85%, а когда из-за простоев продолжительность нагрева повышалась до 2-2,5 ч, угар металла достигал 1,5-2,5%.

На методической печи, где грелись слитки, толщина окалины при форсированном темпе работы составляла 2,5-3,5 ммv что соответствовало угару металла 1,1-1,6%; при среднем ходе печи толщина окалины была 4-5 мм, что соответствовало угару 2%; а при длительных простоях толщина окалины достигла 10 мм и более, что уже могло привести к вскрытию подкорковых пузырей в слитках и к браку.

Наличие серы в топливе увеличивает окалинообразование и снижает температуру плавления окалины. Так, например, значительно возросли трудности эксплуатации методической печи из-за повышенного роста пода томильной зоны, когда применявшийся для ее отопления смешанный газ заменили одним коксовым газом с содержанием серы (в виде H2S и других соединений) в количестве 10-15 мг/м3.

Большее или меньшее содержание компонентов химического недожога в продуктах сгорания (в пределах, практически наблюдаемых в печах) меньше сказывается на количестве окалины, но отражается на ее качестве. При сжигании топлива с избытком воздуха образуется больше окалины, но она рыхлая и легко отделяется от поверхности металла. При сжигании с недостатком воздуха образуется меньше окалины, но при этом она более плотная и крепче пристает к металлу. На качестве окалины отражается также состав металла. Так, по данным Тринкса, при наличии в стали самой небольшой примеси никеля окалина получается твердой и прочно связанной с металлом даже при значительном избытке воздуха в продуктах сгорания.

5. Очистка пода

На многих методических печах, где температура нагрева металла относительно невысока (1220-1250° С) и печь не работает форсированно, значительная часть окалины убирается с монолитного пода в неоплавленном состоянии. Уборку ее осуществляют скребками из-под фигурной плиты (рис.3), проталкиваемой через печь каждые 2-3 смены, а полную очистку пода от налипшего на него шлака с освобождением его от металла проводят раз в месяц и реже. Однако не во всех случаях удается ограничиться указанным относительно легким методом удаления окалины. Особенно страдают от шлакообразования и интенсивного роста монолитного пода томильной зоны печи, где греются слитки спокойной стали с необрезанной головной частью (с низкоплавкими включениями) и печи тонколистовых станов, где к температуре нагрева металла предъявляются повышенные требования. Фигурная плита в этом случае помогает меньше и чистку пода с удалением металла из печи выполняют каждую неделю и чаще. Например, при нагреве указанных слитков монолитный под в течение 3-4 суток работы нарастал на 300-600 мм. Средства для механизации процесса очистки пода еще не найдены, а приведение в удовлетворительное состояние пода, заросшего шлаком, представляет собой тяжелую и трудоемкую работу, для выполнения которой на помощь персоналу, обслуживающему печь, часто присылают рабочих с других участков производства. При двойной длине заготовок (однорядной посадке длинных слябов, блюмов) накопление шлака на монолитном поде меньше.

Угар металла несколько возрастает при непосредственном воздействии факела на металл, а потому уменьшение длины факела в томильной зоне способствует некоторому уменьшению роста подины.

Увеличенная толщина засыпки монолитного пода облегчает выбивку наростов. В результате уменьшения толщины кирпичной кладки пода повышают толщину его засыпки магнезитовым порошком примерно до 100 мм. Естественно, что при этом следует соответственно изменить размеры брусьев, закладываемых в подину. Размеры кусочков магнезитового порошка обычно составляют 2-5 мм. Более мелкий порошок выдувается при включении горелок (особенно инжекционных) для разогрева пода, кроме того, он в большей мере сваривается с подом и его трудней отделить от него. При более крупном порошке шлак, заполняя промежутки между кусками, способствует образованию трудноудаляемых монолитов. Для облегчения очистки от шлака нижней камеры сварочной зоны под ее засыпают коксовой мелочью размером кусков 2-5 мм, толщиной слоя 50 - 100 мм.

Чем короче монолитный под томильной зоны, тем меньше необходимо затратить труда и времени для очистки его от наростов. В связи с этим наблюдается тенденция к укорочению монолитного пода в печах с нижним нагревом. Устройство монолитного пода описано также в разделе 12 этой главы.

Бывают случаи, когда в связи с интенсивным ростом пода при нагреве слитков методические печи с боковой выдачей металла переводили на жидкое шлакоудаление. Этим значительно облегчали труд по очистке пода, но не исключали длительных простоев печи, обусловленных необходимостью освобождения пода от металла, подъема температуры в томильной зоне и поддержания ее на этом уровне до расплавления шлака и спуска его в ковш.

Для стравливания нерасплавившихся шлаковых настылей и бугров приходится также пользоваться ферросилицием или алюминиевым порошком.

Жидкому шлакоудалению из нижней камеры сварочной зоны значительно способствует герметизация этой камеры. В частности, чтобы избежать охлаждения пода от подсоса воздуха в камеру, необходимо заложить окна камеры.

Освобождение печи от металла ручным способом для полной очистки и ремонта пода представляет собой тяжелый труд, облегчается эта работа специальными приспособлениями. Одно из них приведено на рис.4.

При пользовании этим приспособлением снимают по одному башмаку с каждой штанги обоих толкателей печи (имеется в виду двухрядная печь) и, настроив штанги так, чтобы их вылет был одинаковым, соединяют их со съемной траверсой; оба толкателя также соединяют между собой при помощи муфты. Проталкивают в печь плиту 1, так что ее конец ("ласточкин хвост") остается снаружи и, присоединив к нему вставку 2, проталкивают их вместе в печь. К этой вставке постепенно присоединяют другие аналогичные вставки и проталкивают их в печь до тех пор, пока из печи не будет выдан весь металл.

Чтобы предотвратить взгорбливание указанных деталей во время проталкивания, в их отверстия вставляют металлические пальцы длиной 360 мм. Детали не подвергают действию высоких температур, и перед началом выталкивания металла в печи снижают температуру до 800° С, а при достижении плиты 1 середины печи прекращают подачу топлива в печь.

Детали этого приспособления удаляют из печи постепенно при обратных ходах толкателя, соединяя каждый раз скобой 3 съемную траверсу с ближайшей вставкой.

Чтобы расплавить шлак, накопившийся на монолитном поде (при жидком шлакоудалении), печь снова загружают металлом до монолитного пода и разогревают его до нужной температуры.

Все детали приспособления литые стальные, масса плиты 3500 кг, вставки 2500 кг, съемной траверсы 420 кг, скобы 1830 кг.

При интенсивном образовании шлаковых настылей и бугров на поде, нарушающих порядок продвижения металла, трудно добиться достаточно полной автоматизации работы печной установки. В связи с этим существует мнение о целесообразности расположения в линии стана (между черновой и чистовой клетями) пламенной секционной печи для дополнительного подогрева металла на 50-100 град, чтобы, снизив в результате этого температуру в методическиой печи, избавиться от шлакообразования на ее монолитном поде. Реализация такого метода работы связана с рядом трудностей (передачей металла из одной печи в другую и пр.).

Следует иметь в виду, что неритмичная работа прокатного стана является одним из существенных обстоятельств, ведущих к накоплению шлака на монолитной подине.

В связи с этим быстрое накопление шлака на поде (рост пода), происходившее в период пуска и наладки новой установки, прекращалось в эксплуатации при налаженной и ритмичной работе стана.

6. Безокислительный нагрев металла

Чтобы уменьшить окисление металла во время его нагрева в печи с открытым пламенем, топливо иногда сжигают при некотором небольшом недостатке воздуха. Однако обычно содержащееся в этом случае в продуктах сгорания небольшое количество продуктов химического недожога (например, 2-3% СО) почти не уменьшает окисления металла, но вместе с тем приводит к перерасходу топлива и понижению температуры в печи.

В последние годы привлек к себе внимание метод безокислительного нагрева металла в печах с открытым пламенем, для осуществления которого топливо сжигают с определенным большим недостатком воздуха (примерно с а ~ 0,5). В этих условиях продукты неполного сгорания содержат значительное количество восстановительных газов (СО и Н2) и малое количество окислительных газов (С02 и Н20). Приспосабливая печи к работе с такой атмосферой, организуют в них так называемый безокислительный или малоокислительный нагрев металла. Безокислительному нагреву металла в печах с открытым пламенем посвящено много отечественных работ: Московского вечернего металлургического института, Днепропетровского металлургического института, Института газа АН УССР, ряда проектных организаций и заводов, а также зарубежных работ.

Установлено, что при обычно наблюдаемых температурах в сварочной и томильной зонах методических печей состав продуктов неполного сгорания, при котором обеспечивается безокислительный нагрев металла, должен характеризоваться отношениями, а для методической части печи, где температура поверхности металла не более 950° С, эти отношения должны быть соответственно равны 2,38 и 1,6.

Чем больше теплота сгорания газа и чем больше в нем метана, тем больше может быть коэффициент расхода воздуха для сжигания газа, при котором возможно организовать безокислительный нагрев. Например, безокислительный режим нагрева должен обеспечиваться в случае неполного сжигания различных газов при следующих коэффициентах расхода воздуха: для природного газа а = 0,56; смеси природного и коксового газов с теплотой сгорания 31 Мдж/м3 (7210 ккал/м3) при а = 0,55; нефтяного газа при а = 0,545; коксового газа при а = 0,51; смешанного газа с теплотой сгорания 12,6 Мдж/м3 (3000 ккал/м3) при а = = 0,46, а с теплотой сгорания 10,05 Мдж/м3 (2400 ккал/м3) при а = 0,42; водяного газа (не содержащего метана) при а = 0,33.

Калориметрическая температура горения в методических печах обычно составляет 1800-1900° С. Чтобы при сжигании газа с указанным выше весьма малым коэффициентом расхода воздуха обеспечить необходимую температуру в печи, пользуются высококалорийным топливом и прибегают к подогреву воздуха для горения до относительно высокой температуры.

Количество тепла, выделяющееся при неполном сжигании газа с данным коэффициентом расхода воздуха, составляет тем меньшую долю от теплоты сгорания газа, чем больше в нем содержание метана и тяжелых углеводородов. Таким образом, для обеспечения одинаковой максимально возможной температуры горения при неполном сжигании перечисленных выше газов наименьший подогрев воздуха нужен при сжигании коксового газа; для смеси природного и коксового газов температура подогрева воздуха должна повышаться с увеличением теплоты сгорания этой смеси (т.е. с увеличением доли природного газа в смеси); для смешанного газа температура подогрева воздуха должна повышаться с уменьшением его теплоты сгорания.

На рис.5 показаны максимально возможные температуры горения в зависимости от температуры нагрева воздуха и теплоты сгорания газа при разных коэффициентах расхода воздуха.

Для повышения температуры сгорания можно подогревать также газ. Естественно, что эффективность этого мероприятия тем больше, чем меньше теплота сгорания газа (так как при одинаковой тепловой мощности печи объем низкокалорийного газа, поступающего в печь, больше объема высококалорийного) и чем меньше коэффициент расхода воздуха, так как подогревом газов в известной мере компенсируется уменьшенное количество тепла, вносимого нагретым воздухом на 1 м3 газа.

Можно также повысить температуру горения, если воспользоваться воздухом, обогащенным кислородом; при этом следует иметь в виду, что обогащение кислородом не изменяет отношений С0/С02 и Н220, установленных при неполном сгорании газа в необогащенном воздухе.

Одним из видов приспособления методической печи к работе на безокислительном режиме является осуществление конструкции, где первичное сжигание газа с большим недостатком воздуха происходит в головной части печи (в томильной и сварочной зонах) и последующее вторичное дожигание продуктов химического недожога - в хвостовой (методической) части.

Приспособление печи к безокислительному режиму работы связано с трудностями, заключающимися в основном в необходимости обеспечить:

а) достаточно хорошую герметизацию печи, чтобы предотвратить отравление атмосферы цеха продуктами химического недожога, выбивающимися из нее, причем наибольшие трудности возникали при герметизации свода;

б) достаточно высокую температуру нагрева воздуха (особенно в тех случаях, когда газ не нагревается), что вызывает повышение требований к стойкости и надежности работы металлического рекуператора;

в) достаточно надежную систему автоматического регулирования процесса горения и теплового режима печи, так как при рассматриваемом режиме нагрева возникают специфические требования к системе регулирования.

Перечисленные затруднения хорошо иллюстрируются в разделе 14, ж этой главы.

Дополнительные трудности возникают при использовании природного газа (содержащего много метана), так как при сжигании его с большим недостатком воздуха для организации безокислительного режима происходит обильное выделение сажистого углерода. Рабочее пространство печи в этом случае становится непросматриваемым. Это затрудняет наблюдение за нагревом металла и практически исключает возможность эксплуатации печи.

Центраэнергочермет спроектировал печь для работы на безокислительном режиме при сжигании природного газа, причем для осветления факела была применена в виде опыта насадка типа Сименса из хромомагнезитового кирпича, пропитанного раствором азотнокислого никеля (катализатор типа ЦЭЧМ-4).

Продукты неполного сгорания, содержащие метан и свободный углерод, при конверсии на поверхности катализатора должны становиться прозрачными и обеспечивать просматриваемость рабочей камеры печи.

Практически проще и значительно облегчается установление так называемого малоокислительного режима (раздел 14, ж этой главы). При этом не требуются высокий подогрев воздуха и большие капитальные затраты; этот режим экономически выгоден и его можно широко внедрять в новых и действующих методических печах

К конструкции горелки для печей, работающих на безокислительном режиме, также предъявляют ряд требований, вытекающих из специфических условий работы при таком режиме.

Температура уходящих продуктов сгорания в случае печей рассматриваемого типа выше, чем в случае методических печей, работающих на обычном режиме. Полное дожигание продуктов химического недожога в хвостовой части печи может оказаться недопустимым (чтобы не вызвать высокого нагрева и окисления поверхности металла в этом месте). Использование тепла уходящих продуктов сгорания в рекуператоре (даже при высоком нагреве воздуха) невелико. Поэтому расход тепла в этих печах выше, чем в обычных. Испытание и наладка первой методической печи, работавшей на безокислительном режиме, происходили при сжигании коксового газа и были связаны с рядом затруднений, обусловленных недостаточным опытом работы по такому режиму. В частности, это было связано с необходимостью определять конечное значение угара металла при безокислительном нагреве, а также выяснить, как протекает этот процесс на различных участках по мере продвижения металла вдоль печи.

Для измерения температур пользовались различными методами (ненадежными оказались платиновые термопары). Для определения состава атмосферы в печи применяли газоанализатор Орса и для полного анализа состава продуктов неполного сгорания - ВТИ-2. Были организованы специальные исследования состава атмосферы в печи с одновременным отбором из нее продуктов неполного сгорания неохлаждаемыми трубками (фарфоровыми или кварцевыми) и водоохлаждаемыми из нержавеющей стали. Они показали, что при указанных различных способах отбора проб разницы в составе атмосферы не наблюдалось, отсутствие свободного кислорода в атмосфере печи подтверждало, что горелки обеспечивают хорошее перемешивание воздуха с газом и что до достижения поверхности металла воздух успевает прореагировать с газом (не вызывая таким образом окалинообразования). Состав атмосферы контролировали по ширине печи, так как при неравномерном поступлении газа в горелки происходил некоторый перекос в составе атмосферы.

...

Подобные документы

  • Общая характеристика нагревательных печей. Печи для нагрева слитков (нагревательные колодцы). Тепловой и температурный режимы. Режимы термической обработки. Определение размеров печей. Печи для термической обработки сортового проката. Конструкция печей.

    курсовая работа [44,3 K], добавлен 29.10.2008

  • Нагревательные толкательные печи, их характеристика. Разновидности печей. Расчет горения топлива, температурный график процесса нагрева, температуропроводность. Время нагрева металла и основных размеров печи. Технико-экономические показатели печи.

    курсовая работа [674,8 K], добавлен 08.03.2009

  • Пластическая деформация и термическая обработка металла протекает при высоких температурах. Основными агрегатами для нагрева являются печи. Принципы их работы. Печи нагревательные камерные с выдвижным поддоном. Расчет горения топлива, количества воздуха.

    курсовая работа [395,2 K], добавлен 07.07.2008

  • Характеристика тепловой работы методических нагревательных печей. Тепловой расчёт методической печи, её размеры, потребность в топливе и время нагрева металла. Математическая модель нагрева металла в методической печи. Внутренний теплообмен в металле.

    дипломная работа [1,2 M], добавлен 20.06.2012

  • Расчёт горения топлива (коксодоменный газ) и определение основных размеров печей. Теплоотдача излучением от печи газов к металлу, температура кладки печи, её тепловой баланс. Расчёт времени нагрева металла и определение производительности печи.

    курсовая работа [158,9 K], добавлен 27.09.2012

  • Обжиговые печи черной металлургии. Рациональная конструкция печи. Принцип действия и устройство шахтных печей. Способы отопления и режимы обжига в шахтных печах. Аэродинамический режим печи. Особенности теплообмена в слое. Шахтные и обжиговые печи.

    курсовая работа [550,4 K], добавлен 04.12.2008

  • Применение пламенных печей в крупносерийном кузнечно-штамповочном производстве. Их разделение по характеру нагрева. Обоснование выбора печи. Выбор размеров. Материалы для сооружения. Расчет теплового баланса. Теплотехнические характеристики рекуператора.

    курсовая работа [114,6 K], добавлен 04.03.2012

  • Свойства термообработки металла. Подготовка шихтовых материалов к плавке, заправка печи, загрузка шихты в печь. Восстановительный период плавки. Расчёты угара и необходимого количества ферросплавов. Выбор источника питания печи. Расчёт тепловых потерь.

    курсовая работа [1,6 M], добавлен 18.07.2014

  • Предназначение протяжных печей для термической или термохимической обработки тонколистового металла. Главная задача управления протяжными печами - получение заданного качества ленты при примерно постоянной производительности. Газовый режим печей.

    реферат [612,2 K], добавлен 31.10.2008

  • Пластическая деформация и термическая обработка металла протекает при высоких температурах. Основными агрегатами для нагрева являются печи. Принципы их работы. Расчет горения топлива, количества воздуха. Мероприятия по охране труда и окружающей среды.

    курсовая работа [1,2 M], добавлен 06.07.2008

  • Теплотехнический расчет кольцевой печи. Распределение температуры продуктов сгорания по длине печи. Расчет горения топлива, теплообмена излучением в рабочем пространстве печи. Расчет нагрева металла. Статьи прихода тепла. Расход тепла на нагрев металла.

    курсовая работа [326,8 K], добавлен 23.12.2014

  • Расчет теплового баланса четырехзонной методической печи. Определение времени нагрева и томления металла в методической и сварочной зонах. Тепловой баланс печи и расход топлива. Требования техники безопасности при обслуживании, пуске и эксплуатации печей.

    курсовая работа [505,2 K], добавлен 11.01.2013

  • Основные характеристики и конструкция трубчатых вращающихся печей. Тепловой и температурный режимы работы вращающихся печей. Основы расчета ТВП. Сущность печей для окислительного обжига сульфидов. Печи глиноземного производства (спекание и кальцинация).

    курсовая работа [693,6 K], добавлен 04.12.2008

  • Отходы и лом - основное сырье вторичной металлургии алюминия. Рациональное использование вторичного сырья. Пламенные отражательные печи. Типы пламенных отражательных печей. Однокамерные и двухкамерные отражательные печи. Тепловой баланс и расчет печи.

    курсовая работа [1,6 M], добавлен 04.12.2008

  • Стационарные и качающиеся мартеновские печи и их конструкция. Верхнее и нижнее строение печи. Рабочее пространство. Кладка мартеновской печи. Тепловая работа. Период заправки печи, завалки, нагрева, плавления металлической части шихты, доводки.

    дипломная работа [52,8 K], добавлен 04.12.2008

  • Феросплавные печи и их конструкция. Машины и механизмы феросплавных печей. Механизмы перемещения и перепуска электрода. Механизм вращения копуса печи. Рудовосстановительная печь. Oпределение мощности трансформатора электрических параметров печи.

    курсовая работа [1,4 M], добавлен 04.12.2008

  • Конструкция и общая характеристика индукционной печи. Футеровка и достоинства тигельных плавильных печей. Определение размеров рабочего пространства печи. Тепловой и электрический расчет печи. Расчет конденсаторной батареи и охлаждения индуктора.

    курсовая работа [980,1 K], добавлен 17.01.2013

  • Оценка параметров и показателей действующей дуговой сталеплавильной печи. Определение полезной энергии для нагрева и расплавления металла и шлака. Энергетический баланс периода расплавления. Расчет мощности печного трансформатора. Выбор напряжения печи.

    курсовая работа [116,8 K], добавлен 14.02.2015

  • Расчет времени нагрева металла, внешнего и внутреннего теплообмена, напряженности пода печи. Материальный и тепловой баланс процесса горения топлива. Оценка энергетического совершенствования печи. Определение предвключенного испарительного пакета.

    курсовая работа [294,5 K], добавлен 14.03.2015

  • Перспективы развития листопрокатного производства в ОАО "НЛМК". Характеристика конструкций печи. Проведение теплотехнических расчетов горения топлива, нагрева металла. Определение основных размеров печи, расчет материального баланса топлива, рекуператора.

    курсовая работа [186,2 K], добавлен 21.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.