К вопросу о влиянии геометрических размеров на прочностные характеристики арматурных сталей

Определение прочностных свойств железобетонных конструкций. Исследование влияния упрочнения одноосным растяжением на прочностные характеристики арматурных сталей. Оценка поведения внутренних слоев арматурных сталей при разрушении одноосным растяжением.

Рубрика Производство и технологии
Вид статья
Язык русский
Дата добавления 28.05.2017
Размер файла 111,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

К вопросу о влиянии геометрических размеров на прочностные характеристики арматурных сталей

Косенко Е.Е., Косенко В.В., Черпаков А.В. РГСУ, г. Ростов-на-Дону, НИИМиПМ, ЮФУ, г. Ростов-на-Дону

Способность железобетонных конструкций выполнять требуемые функции в течение длительного времени при эксплуатации в разных условиях определяет сочетание свойств арматуры и бетона. Определение прочностных свойств железобетонных конструкций, каким либо одним методом невозможно, поэтому при расчетах, помимо общих факторов, влияющих на образцы, пользуются вероятностными методами с использованием расчетных характеристик арматуры и бетона. В основу таких расчетов ложится изменчивость свойств материалов и обобщается изменчивость свойств остальных факторов (усилие преднапряжения стержней, геометрические характеристики сечений, условия работы конструкций и т. д.). Значительный запас прочности железобетонных конструкций определяет свойства материалов, заложенные ещё на стадии производства, приобретающие в итоге количественное расчетное значение.

Ранее проведенные работы [1, 2, 3] показали, что при исследовании механических характеристик арматурных сталей руководствуются показателями натурных образцов. Значения механических характеристик определены в сечении арматурных сталей классов А500С и Ат800, с использованием стандартных методов контроля (измерение твердости по Виккерсу) и методом ударного вдавливания индентора. Эти исследования показали, что у образцов арматуры, находящихся в состоянии поставки и упрочненных одноосным растяжением до различных уровней выше значений предела текучести (уровни упрочнения выражены коэффициентом упрочнения Ку, представляющим собой отношение действующего напряжения к физическому или условному пределу текучести) отмечается значительное рассеивание значений твердости, что объясняется неоднородной структурой сечения арматуры классов А500С и Ат800. [4, 5]

Такое распределение твердости характерно для арматурных сталей, прошедших термомеханическое упрочнение и получивших, в результате этого, комбинированную структуру сечения, на формирование которой оказывают влияние химический состав и способ изготовления. Ввиду того, что нас интересует арматура классов А500С и Ат800, рекомендуемая СТО АСЧМ 7- 93, ТУ 14- 1- 5254- 94 и ГОСТ 10884-94 для использования в железобетонных конструкциях в качестве преднапрягаемой, основное внимание в проведенных исследованиях уделено именно этим классам арматуры.

Учитывая то, что в составе железобетонной конструкции арматура испытывает растягивающие воздействия, при исследовании упругопластической области необходимо определить диаграммы растяжения различных зон в сечении арматуры. Эти исследования легли в основу экспериментов, для которых изготовили образцы с выточкой на токарном станке, из арматуры в состоянии поставки и упрочненной одноосным растяжением до различных уровней, двух типов. Таким образом, у первого типа образцов диаметр в месте выточки составил 10 мм (образцы для определения диаграммы растяжения арматуры без влияния концентраторов напряжений в виде периодического профиля), у второго - диаметр в месте выточки составил 6 мм (образцы для определения диаграмм растяжения центрального слоя арматуры). Выточку производили по центру образцов длиной 100 мм. Разрушали образцы на разрывной машине ИР- 200. Результаты эксперимента представлены на рис. 1. У образцов с выточкой (диаметром 10 мм) значение механических характеристик несколько выше в сравнении с натурными образцами, что видно из расположения диаграмм (рис. 1). Это указывает на то, что концентраторы напряжения в виде периодического профиля оказывают определенное влияние на свойства арматуры, незначительно снижая их при растяжении. Образцы с выточкой (диаметром 6 мм) выявили более низкие значения предела текучести в сравнении с натурными образцами. После упрочнения одноосным растяжением (рис. 2) повышаются значения пределов текучести у натурных образцов: арматуры класса А500С на 6 %, у арматуры класса Ат800 - на 9 % и снижаются деформативные характеристики арматуры: для А500С - до 3,2 %, для Ат800 до 2,6 %. Таким образом, после упрочняющего воздействия характер диаграмм рассматриваемых зон сечения не изменился, указывая на постоянство механизма распределения напряжений. Исследования показали наличие более высоких значений предела текучести поверхностного слоя арматуры в сравнении со значениями предела текучести натурных образцов, что позволяет упрочнять эти классы арматуры одноосным растяжением.

Рис. 1. Диаграммы растяжения арматурных сталей классов А500С (а) и Ат800 (б) в состоянии поставки: 1 - натурные образцы; 2 - образцы с выточкой диаметром 10 мм; 3 - образцы с выточкой диаметром 6 мм

арматурный сталь одноосный растяжение

На базе проведенных экспериментов определены предельные уровни упрочнения одноосным растяжением арматурных сталей классов А500С и Ат800, исходя из условия вязкого разрушения. Склонность к охрупчиванию оценивали по виду излома арматуры (волокнистый, кристаллический или смешанный) после ударного разрушения на маятниковом копре в соответствии с методикой, описанной в ГОСТ 4543 - 71. Допустимой величиной вязкой составляющей в изломе арматуры, исходя из инженерной практики, приняли 80 %.

а) б)

Рис. 2. Диаграммы растяжения арматурных сталей классов А500С (а) и Ат800 (б) после упрочнения до Ку =1.15 ут: 1 - натурные образцы; 2 - образцы с выточкой диаметром 10 мм; 3 - образцы с выточкой диаметром 6 мм

Результаты представлены на рис. 3 в виде зависимости доли вязкой составляющей от коэффициента упрочнения.

По результатам фрактографического анализа после разрушающих испытаний установлено, что термомеханически упрочненные арматурные стали классов Ат800 и А500С склонности к охрупчиванию не обнаружили независимо от коэффициента упрочнения.

Арматура классов А500С и Ат800 имеют в изломе около 95 % вязкой составляющей.

Исследованиями, проведенными в последние годы, установлено, что стали можно характеризовать как склонные к хрупкому разрушению в случае сочетания низких значений пластических свойств (д и KCU) и доли вязкой составляющей в изломе.

В связи с этим арматурные стали классов А500С и Ат800 в рассмотренных условиях склонными к охрупчиванию не являются.

Такое поведение можно объяснить технологией производства арматуры, в результате которой создана сложная структура сечения, характеризующаяся бейнитной, с различным соотношением отпущенного мартенсита, цементита и остаточного аустенита - в поверхностном слое и феррито- перлитной - в сердцевине, что позволяет этим классам арматуры выдерживать значительные деформации без опасения перехода в хрупкое состояние.

Рис. 3.Влияние упрочнения одноосным растяжением на долю вязкой составляющей в изломе арматурных сталей: 1 - А500С; 2 - Ат800.

Значения прочностных и пластических свойств арматуры, соответствующих предельным значениям нагрузки, в виде упрочнения одноосным растяжением и достаточная доля вязкой составляющей в изломе, позволяют определить предельное напряжение исходя из условия вязкого разрушения (пред) по формуле:

,(1)

где - коэффициент упрочнения, при котором приложенное напряжение имеет предельное значение.

Для контроля пред используем предельные значения ударной вязкости KCUпред и относительного удлинения пред, соответствующие величине Ку.пред. Ввиду рассеивания механических характеристик арматурных сталей необходимо руководствоваться их минимальными значениями. Минимальную величину (пред) определим из выражения:

,(2)

где т.min - минимальное значение предела текучести.

Таблица 1 Прочностные характеристики арматурных сталей

Класс арматуры

Данные измерений на разрывной машине ИР- 200 т в, МПа

Процент вязкой составляющей в изломе арматуры, %

Kупр.доп.

Значения деформации

пред. min, МПа

А500С

580/ 764

95

1,15

6

667

Ат800

902/ 1149

95

1,15

2,5

1037

Результаты расчета предельных уровней упрочнения одноосным растяжением, исходя из условия вязкого разрушения и соответствующие им напряжения для исследуемых классов арматуры, представлены в табл. 1. Анализ проведенных исследований показал, что при напряжениях, превышающих значения предела текучести, эффективно использовать термомеханически упрочненные арматурные стали классов А500С и Ат800 из-за неизменной доли вязкой составляющей в изломе практически до значений предела прочности.

Вышеуказанные эксперименты показали возможность применения арматурной стали при напряжениях превышающих значения предела текучести, однако следует учесть, что при проведении экспериментов использовались образцы длиной 200 мм в соответствии с гостом. При переходе на стержни длиной 6 м, применяемые при изготовлении железобетонных конструкций, большое влияние оказывают геометрические размеры арматурных профилей, а именно диаметр арматуры, значения которого имеют значительное рассеивание. По причине различия диаметров по длине арматурных стержней весь эффект упрочнения одноосным растяжением может ограничиться областями с наименьшими значениями диаметра. Для арматурных сталей этот вопрос приобретает особое значение, т.к. арматура- это элемент железобетонной конструкции, а современные виды высокопрочных арматурных сталей, в которых только за счет технологии изготовления значительно повышен прочностной потенциал, имеют высокую склонность к разупрочнению. Вышесказанное говорит о необходимости использования современных методов исследований с применением метода конечных элементов и компьютерных технологий для оценки качества изготовления стержней арматурных сталей.

ЛИТЕРАТУРА

1. Мещеряков В.М, Косенко Е.Е. Влияние упрочнения одноосным растяжением на механические характеристики в сечении арматурных сталей/ Рост. гос. строит. ун-т, 2004. 9 с. Деп. в ВИНИТИ, 10.12.04 № 1690 - В2004.- Лично автором выполнено 4 с.

2. Мещеряков В.М., Косенко Е.Е. Изменение свойств арматурных сталей подверженных влиянию пониженных температур/ Рост. гос. строит. ун-т, 2004. 11 с. Деп. в ВИНИТИ, 10.03.05 № 1861 - В2005. - Лично автором выполнено 3 с.

3. Мещеряков В.М., Косенко Е.Е. Влияние особенностей нагрева используемого при изготовлении железобетонных конструкций в условиях пониженных температур на свойства арматурных сталей/ Рост. гос. строит. ун-т, 2005. 11 с. Деп. в ВИНИТИ, 10.03.05 № 1862 - В2005.- Лично автором выполнено 4 с.

4. Мещеряков В.М., Косенко Е.Е. Применение расчетных методов для оценки прочностных возможностей арматурных сталей/ Рост. гос. строит. ун-т, 2005. 9 с. Деп. в ВИНИТИ, 10.03.05 № 1863 - В2005. - Лично автором выполнено 3 с.

5. Беленький Д.М., Вернези Н.Л., Косенко Е.Е. О прочностных возможностях арматурных сталей // Бетон и железобетон. - 2004. - № 3. - Лично автором выполнено 4 с.

Размещено на Allbest.ru

...

Подобные документы

  • Классификация и маркировка сталей. Сопоставление марок стали типа Cт и Fe по международным стандартам. Легирующие элементы в сплавах железа. Правила маркировки легированных сталей. Характеристики и применение конструкционных и инструментальных сталей.

    презентация [149,9 K], добавлен 29.09.2013

  • Классификация и применение различных марок сталей, их маркировка и химический состав. Механические характеристики, обработка и причины старения строительных сталей. Оборудование для автоматической сварки под флюсом, предъявляемые к ней требования.

    контрольная работа [73,8 K], добавлен 19.01.2014

  • Классификация углеродистых сталей по назначению и качеству. Направления исследования превращения в сплавах системы железо–цементит и сталей различного состава в равновесном состоянии. Определение содержания углерода в исследуемых сталях и их марки.

    лабораторная работа [1,3 M], добавлен 17.11.2013

  • Исследование структурных составляющих легированных конструкционных сталей, которые классифицируются по назначению, составу, а также количеству легирующих элементов. Характеристика, область применения и отличительные черты хромистых и быстрорежущих сталей.

    практическая работа [28,7 K], добавлен 06.05.2010

  • Обзор результатов численного моделирования напряженно-деформированного состояния поверхности материала в условиях роста питтинга. Анализ контактной выносливости экономно-легированных сталей с поверхностно-упрочненным слоем и инструментальных сталей.

    реферат [936,0 K], добавлен 18.01.2016

  • Роль легирующих элементов в формировании свойств стали. Анализ и структура хромоникелевых сталей. Роль и влияние никеля на сопротивление коррозии. Коррозионные свойства хромоникелевых сталей. Характеристика ряда хромоникелевых сталей сложных систем.

    реферат [446,2 K], добавлен 09.02.2011

  • Разновидности выполняемых работ по изготовлению мостовых железобетонных конструкций на МЖБК Подпорожского завода. Армирование железобетонных изделий, основы их классификации. Особенности осуществления арматурных работ. Принципы стыковки арматуры.

    отчет по практике [560,2 K], добавлен 30.08.2015

  • Сравнительная характеристика быстрорежущих сталей марок: вольфрамомолибденовой Р6М5 и кобальтовой Р9М4К8 - различие в свойствах этих сталей и оптимальное назначение каждой из них. Разработка и обоснование режимов обработки изделий из этих сталей.

    практическая работа [1,8 M], добавлен 04.04.2008

  • Характеристика быстрорежущих сталей - легированных сталей, которые предназначены для изготовления металлорежущего инструмента, работающего при высоких скоростях резания. Маркировка, химический состав, изготовление и термообработка быстрорежущих сталей.

    реферат [775,4 K], добавлен 21.12.2011

  • Изменение механических, физических и химических свойств углеродистых конструкционных и инструментальных сталей в результате химико–термической обработки. Марки сталей, их назначение и свойства. Структурные превращения при нагреве и охлаждении стали.

    контрольная работа [769,1 K], добавлен 06.04.2015

  • Режим работы предприятия. Определение производительности цеха. Характеристика арматурных изделий. Расчет потребности арматурной стали. Сводная ведомость работ. Характеристика станка МСР-50 для стыковой сварки арматурных стержней. Расчет состава рабочих.

    курсовая работа [568,4 K], добавлен 17.06.2014

  • Классификация сталей. Стали с особыми химическими свойствами. Маркировка сталей и области применения. Мартенситные и мартенсито-ферритные стали. Полимерные материалы на основе термопластичных матриц, их свойства. Примеры материалов. Особенности строения.

    контрольная работа [87,0 K], добавлен 24.07.2012

  • Низкоуглеродистые и низколегированные стали: их состав и свойства, особенности свариваемости. Общие сведения об электродуговой, ручной дуговой, под флюсом и сварке сталей в защитных газах. Классификация и характеристика высоколегированных сталей.

    курсовая работа [101,4 K], добавлен 18.10.2011

  • Производство проволоки из высоколегированных сталей и сплавов. Особенности технологии обработки высоколегированных сталей и сплавов. Технические требования, правила приемки, методы испытаний. Технологическая схема изготовления, транспортировка, хранение.

    контрольная работа [32,7 K], добавлен 13.10.2011

  • Разновидности профиля арматуры. Проектирование технологии производства арматурных изделий. Производство плоских сеток и каркасов. Производство закладных деталей и монтажных петель. Компановка оборудования арматурного цеха. Состав рабочей бригады.

    дипломная работа [2,1 M], добавлен 04.11.2014

  • Закономерности формирования структуры поверхностных слоев сталей при высокоэнергетическом воздействии. Технологические варианты плазменного упрочнения деталей. Получение плазмы. Проведение электронно-лучевой и лазерной обработки металлических материалов.

    дипломная работа [1,4 M], добавлен 06.10.2014

  • Классификация методов борирования сталей и сплавов. Марки сплавов, их основные свойства и области применения. Технологический процесс прокатки. Схема прокатного стана. Диффузионная сварка в вакууме. Сущность сверления, части и элементы спирального сверла.

    контрольная работа [745,5 K], добавлен 15.01.2012

  • Классификация инструментальных сталей. Влияние легирующих элементов на структуру и свойства штамповых сталей. Химический состав стали 4Х5МФ1С. Влияние температуры закалки на структуру и твердость материала. Оценка аустенитного зерна и износостойкости.

    дипломная работа [492,5 K], добавлен 19.02.2011

  • Классификация, маркировка и области применения сталей. Сплавы с особыми физическими свойствами: прецизионные, магнитные, аустенитные. Химический состав электротехнических сталей. Натуральный и синтетический каучуки. Свойства резин специального назначения.

    контрольная работа [133,3 K], добавлен 10.01.2013

  • Сущность назначения резца и его применение. Анализ технологических свойств и химического состава быстрорежущих сталей. Этапы технологического процесса предварительной и упрочняющей термической обработки, выбор приспособлений, дефекты и их устранение.

    курсовая работа [28,1 K], добавлен 11.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.