Модернизация токарного станка с ЧПУ модели 16К20Ф3С32 с целью обеспечения возможности обработки поверхностей сложных форм
Описание детали представителя "шток" и маршрут ее обработки. Анализ конструкции устройств и механизмов станка. Определение чисел зубьев зубчатых колес. Расчет подшипников, шлицевого соединения, шкиво-ременной передачи. Определение толщины стенок корпуса.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 01.09.2017 |
Размер файла | 225,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Дипломная работа
на тему: «Модернизация токарного станка с ЧПУ модели 16К20Ф3С32 с целью обеспечения возможности обработки поверхностей сложных форм»
Выполнил:
Колмаков А.
Воронеж - 2010
Введение
Прогресс всех отраслей народного хозяйства страны неразрывно связан с уровнем развития машиностроения и его базовой отраслью, которым является станкостроение.
Современному отечественному и мировому машиностроению присущи постоянное усложнение конструкции из-за увеличения номенклатуры выпускаемых изделий и частой смены объектов производства, а также требований сокращения сроков освоения новой продукции.
Уровень машиностроения во многом определяет качество и количество изделий, выпускаемых всеми отраслями, обеспечивающими функционирование рыночной экономики. Поэтому эффективному развитию машиностроения уделяется внимание в настоящее время /9/.
Особое влияние на современное машиностроение оказало развитие вычислительной техники, повлекшие создание гибких производственных систем. Сформированные на основе управляющих вычислительных машин и станков с числовым программным управлением, а также промышленных роботов, подобные комплексы прочно вошли в структуру оборудования современных машиностроительных заводов.
Гибкие производственные системы внедрялись в СССР и России. Однако их использование было не очень эффективным, что наряду с развалом социалистической экономики не дало примеров для широкого внедрения. Помимо того, что это было связано с высокой стоимостью оборудования и вычислительной техники, в стране также отсутствовали надежные средства контроля и диагностики, а также недостаточной конкурентоспособностью между реальной экономией от повышения производительности труда и объемом выпуска продукции /8/.
Перестройка машиностроительного производства России привела к резкому снижению производства станков с числовым программным управлением и средств автоматизации машиностроения. Однако развитие сети малых предприятий, неспособных приобретать дорогостоящее автоматизированное технологическое оснащение, привело к необходимости проводить модернизацию оборудования, в том числе, с ЧПУ, к которому относится станок 16К20Ф3С32.
В этих условиях необходим новый подход, соответствующий современным требованиям, способный обеспечить повышение производительности труда при небольших инвестициях при постоянно сменяющейся номенклатуре выпускаемых изделий /14/.
Сегодня заводам требуются средства механизации и совершенствования технологического оснащения, необходимо создание новой высокопроизводительной технологической оснастки.
Также требуется освоить расширение технологических возможностей станков. Расширение технологических возможностей оборудования в основном достигается совершенствованием самих станков, увеличением их надежности, точности, применением различных приспособлений, совершенного режущего инструмента.
Предлагаемый высокий уровень автоматизации может быть достигнут для изготовления в обычных производственных условиях, причем, обеспечивающий при небольших затратах превращение станка в станочный комплекс, выполняющий значительно большее количество разнообразных видов работ по сравнению с обычным универсальным оборудованием.
Такие модернизации полезны предприятиям малого и среднего бизнеса, так как позволяют им иметь в своей структуре минимальное количество станков при достаточно большом разнообразии выполняемых ими методов обработки.
Это направление развивается в нашем дипломном проекте.
Предметом работы является модернизация токарного станка с ЧПУ модели 16К20Ф3С32 с целью обеспечения возможности обработки поверхностей сложных форм.
1. Анализ особенностей конструкции и обоснование модернизации токарного станка с ЧПУ мод. 16К20ФЗС32
1.1 Назначение и область применения станка
Станок токарный патронно-центровой с числовым программным управлением (ЧПУ) модели 16К20Ф3С32 предназначен: для токарной обработки наружных и внутренних поверхностей деталей типа тел вращения со ступенчатым и криволинейным профилем различной сложности в один или несколько проходов в замкнутом полуавтоматическом цикле и нарезание крепежных резьб. У этого станка есть УЧПУ типа 2Р22 с вводом программ с клавиатуры, магнитных кассет или с перфоленты.
Станок предназначен преимущественно для центровых работ и может оснащаться системами контурного программного управления, как отечественного, так и иностранного производства. Программа перемещений инструмента и вспомогательные команды записываются в одном из стандартных кодов
Станки применяются в индивидуальном, мелкосерийном и серийном производствах с небольшими повторяющими партиями.
Класс точности станка - П.
Область применения станка является индивидуальное, мелкосерийное и серийное производство с мелкими повторяющимися партиями деталей /16/.
Технические характеристики станка 16К20Ф3С 32 даны в таблице 1.
Таблица 1 - Технические характеристики станка 16К20Ф3С32
Наименование параметров |
Единица измерения |
Величина параметров |
||
Наибольший диаметр обрабатываемого изделия над станиной |
мм |
500 |
||
Наибольший диаметр обрабатываемого изделия над суппортом |
мм |
220 |
||
Наибольший диаметр прутка, проходящего через отверстие в шпинделе |
мм |
55 |
||
Наибольшая длина обрабатываемого изделия |
мм |
1000 |
||
Наибольшая длина продольного перемещения каретки |
мм |
905 |
||
Наибольшая длина хода поперечного суппорта |
мм |
250 |
||
Количество рабочих скоростей шпинделя |
22 |
|||
Пределы чисел оборотов шпинделя |
об/мин |
20…2240 |
||
Количество автоматически переключаемых скоростей |
9 |
|||
Диапазон автоматического переключения |
16 |
|||
Диапазон скоростей шпинделя, устанавливаемого вручную, I - II - III - |
об/мин |
20-325 63- 900 160ч2240 |
||
Центр пиноли задней бабки по ГОСТ 13214-67 |
7032-0045 Морзе №5 |
|||
Центр шпинделя передней бабки по ГОСТ 13214-67 |
7032-0043 Морзе №6 |
|||
Конец шпинделя по ГОСТ 12593-72 |
6К |
|||
Максимальная скорость продольной подачи при врезании резьбы |
мм/мин |
2000 |
||
Пределы шагов нарезаемых резьб |
мм |
0,01-40,95 |
||
Диапазон скоростей подач |
Продольных |
мм/мин |
3 - 1200 |
|
Поперечных |
1,5ч600 |
|||
Скорость быстрых ходов |
Продольных |
мм/мин |
7500 |
|
Поперечных |
5000 |
|||
Дискретность перемещения |
Продольных |
0,01 |
||
Поперечных |
0,005 |
|||
Высота резца |
мм |
25 |
||
Количество позиций на поворотной резцедержке |
6 |
|||
Габаритные размеры станка (без гидроагрегата, электрошкафа привода подач и пульта ЧПУ) длина, ширина, высота |
мм |
3250Ч 1700Ч2145 |
||
Масса станка без учета ЧПУ, не более |
кг |
3800 |
1.2 Описание детали представителя «Шток» и маршрут её обработки
Из широкой номенклатуры обрабатываемых на станке деталей в соответствии с заданием на дипломное проектирование исследуем особенности типовой детали «шток» чертёж которой дан в Приложении А.
Заданная в проекте деталь - шток. Шток выполняет роль опоры и основания, для закрепления на него других деталей, при помощи резьбы М20, фрезерованной поверхности и посадочных поверхностей диаметр 32 f9 (допуск в интервале с (-0,025) по (-0,087) мм.) и Д=24 е8 (допуск в интервале с (-0,040) по (-0,073) мм). Данные посадки относятся к посадке с зазором, в связи с чем деталь закреплена жестко не по всем её поверхностям. Шток изготовлен из стали 45 ГОСТ 1050-88.
Предлагаются следующий маршрут обработки детали.
Операция 005 - токарная, в качестве базы принимается поверхность диаметра вала. При этом производится подрезание торца и центрование отверстия.
Операция 010-токарная. Установочной базой является поверхность диаметра вала и центрованное отверстие, обработанное в предыдущей операции 005.
Операция 015 -токарная. Установочной базой является поверхность Д=32мм, обработанная в предыдущей операции -010. При таком базировании будет соблюден принцип совмещения баз (измерительной и установочной). Эту же базу используем на операции 020 -токарная;
Операция 025 -фрезерная, при этом выполняется принцип постоянства баз, что позволяет выполнить требования чертежа по взаимному расположению поверхностей, относительно, оси вращения детали.
Операция 030-- шлифовальная. В качестве установочной базы является два центрованных отверстия на торцах детали. Базирование подобным методом позволяет шлифовать поверхностно с заданной точностью, согласно требованиям чертежа.
1.3 Анализ конструкции устройств и механизмов станка
Основание станка - монолитная отливка, на которой устанавливается станина. В левой нише основания размещена моторная установка, на задней стороне основания крепится автоматическая коробка скоростей. Средняя часть основания служит сборником для стружки и охлаждающей жидкости.
Первый отсек является резервуаром для охлаждающей жидкости, в нем монтируется насос охлаждения.
Станина станка - коробчатой формы с поперечными ребрами П-образного профиля, направляющие каленые, шлифованные. Для перемещения каретки служит неравнобокая призматическая передняя и плоская задняя направляющие. В правой части станины крепится привод продольной подачи.
Привод главного движения включает моторную установку с асинхронным электродвигателем, автоматическую 9-скоростную коробку скоростей КС-309-16-51, шпиндельную бабку, соединенных клиноременными передачами. В шпиндельной бабке предусмотрено переключение вручную трех диапазонов скоростей с соотношением 1:4 и 1:2,5, что вместе с 9-скоростной коробкой скоростей обеспечивает получение 22-х скоростей шпинделя в диапазонах 12,5 - 200; 50 - 800 и 125 - 2000 об/мин (по 9 скоростей в каждом диапазоне) при основном исполнении станка с электродвигателем 1460 об/мин.
Резьбонарезание осуществляется при помощи фотоэлектрического резьбонарезного датчика, установленного на шпиндельной бабке.
Установленная на станке АКС имеем 6 электромагнитных муфт, включение которых в определённой последовательности позволяет получать 9 ступеней скорости и тормозить шпиндель станка.
Привод поперечной подачи монтируется на задней стороне каретки и включает приводной двигатель, одноступенчатый редуктор и шариковую передачу винт-гайка качения с условным диаметром 40 мм, шагом 5 мм. Редуктор имеет 2 исполнения: для электрогидравлического шагового привода и для установки электродвигателя постоянного тока. В конструкции предусмотрена возможность установки датчика обратной связи.
Суппорт и каретка - традиционного типа отключаются увеличением высоты каретки и суппорта для повышения жесткости и возможности установки шарикового винта, поперечной подачи диаметром 40 мм.
Передняя бабка. Установка передней бабки осью шпинделя по расчетной линии центров станка на станине производится двумя винтами.
Смазка передней бабки централизованная от специальной станции смазки, монтируемой на основании станка.
Выбор радиального зазора в заднем подшипнике и компенсации тепловых деформаций производится под действием пружин.
Подшипники типа «Гаме» регулируются на заводе-изготовителе станка и не требуют регулировки в процессе эксплуатации станка.
В станках 16К20Ф3С4 и 16К20Ф3С5 в передней бабке устанавливается датчик резьбонарезания.
Для постоянной выборки люфта в зубчатом зацеплении шестерня постоянно поджата пружинами. Разрешающая способность датчика 1000 импульсов на оборот и 1 нулевой импульс для отметки «нулевого» положения шпинделя при вводе в нитку при нарезании резьбы в несколько проходов.
Смазка шпиндельной бабки централизованная.
Привод продольной подачи - включает одноступенчатый редуктор, опоры ходового винта и шариковую передачу винт-гайка качения с условным диаметром 63 мм, шагом 10 мм.
Редуктор имеет 2 исполнения: для гидравлического шагового привода и для установки электродвигателя постоянного тока. В конструкции предусмотрена возможность с установкой датчика обратной связи.
Поворотный резцедержатель станка 16К20ФЗС32. Это 6-ти позиционный узел с горизонтальной осью вращения, который устанавливается на поперечном суппорте. В специальной инструментальной головке устанавливается: 6 резцов-вставок или 3 инструментальных блока.
Таким образом, инструментальная головка съемная, устанавливается на выходном валу резцедержателя и жестко связана с подвижной частью плоскозубчатой муфты. Поворот осуществляется от электродвигателя через червячную передачу вращение передается на кулачковую муфту.
Для ручного поворота и зажима резцедержки при наладке станка на валу 12 предусмотрена головка под ключ.
Ограждение - неподвижное, щитового типа со съемными щитками с задней стороны станка и переднее подвижное с прозрачным экраном для наблюдения, полностью закрывает зону резания.
Поворотная резцедержка рассчитана на установку съемных инструментальных блоков, предварительно настроенных на заданные размеры вне станка в специальных приспособлениях.
Таким образом, станок полностью удовлетворяет требованиям, в соответствии с которыми нам необходимо обработать на нём деталь типа «шток».
1.4 Патентно-информационный поиск
Документом, служащим основанием для проведения патентно-информационного поиска, является задание на патентный поиск, выдаваемое руководителем.
Задание на проведение патентных исследований выполнили, исходя из темы дипломного проекта: Модернизация токарного станка с ЧПУ мод. 16К20Ф3С32 с целью расширения технологических возможности и обработки поверхностей сложных форм.
Направление поиска основного решения: возможность обработки деталей сложной формы на токарных станках
Направление поиска отдельных элементов: приспособления к токарным станкам, позволяющие обрабатывать на них разные детали включая специальные длинные штоки и различные фасонные поверхности.
Данный патентно-информационный поиск -- это мероприятия, направленные на получение из научно - технической литературы современных новых технических решений по направлению модернизации данного станочного оборудования.
Основным источником при ведении патентного поиска является патентный отдел Воронежской публичной областной библиотеки им. И.С. Никитина. Раздел, по которому произведён поиск - «В» (различные технологические процессы). Глубина патентного поиска 25-30 лет.
Таблица 2 - Анализ применимости известных технических решений
№ А.С. МКИ УДК |
Наименование А.С., патента |
№ литер источника |
Сущность технического решения, используемого в разрабатываемой конструкции |
|
В23b 5/44 |
Приспособление для обработки эксцентричных поверхностей. АС 396184 |
АС |
В корпусе, установленном с помощью переходной втулки в гнезде револьверной головки автомата, а штырями сцепленном со шпинделем детали, эксцентрично шпинделю детали закреплена обойма с резцами, а соосно ей установлено с помощью поводка на переходной втулке солнечное колесо планетарного редуктора для подачи резцов, отличающееся тем, что, с целью регулировки эксцентриситета обоймы с резцами, корпус выполнен переставным относительно центра шпинделя детали, для чего он снабжен хвостовиком, входящим в эксцентричное отверстие поворотной регули-ровочной втулки, которая связана с приводной шестерней планетарного редуктора и установлена в переходной втулке приспособления соосно обойме с резцами, а солнечное колесо планетарного редуктора, сопряженное с корпусом, выполнено так же, как и корпус, переставным относительно центра шпинделя детали и снабжено пазом для установки поводка, осуществляющего его связь с переходной втулкой в гнезде револьверной головки автомата. |
|
В 23 В 31/00. |
Самоцентрирующий патрон для закрепления эксцентричных деталей. №1572759 |
АС |
Самоцентрирующий патрон для закрепления эксцентричных деталей, содержащий корпус с двумя основными зажимными кулачками, геометрические оси которых расположены в диаметральной плоскости патрона, и смещенную относительно центра патрона дополнительную опору, отличающийся тем, что с целью повышения производительности путем повышения жесткости и надежности закрепления при скоростной обработке, он снабжен установленным с возможностью возврат-поступательного перемещения параллельно упомянутой диаметральной плоскости патрона дополнительным зажимным кулачком, а дополнительная опора выполнена в виде призмы с базовыми поверхностями, одна из которых расположена параллельно направлению плоскости расположения дополнительного зажимного кулачка. |
|
В23b 5/00 |
Устройство для совмещенной обработки нежестких валов. |
АС |
Устройство для совмещенной обработки нежестких валов, содержащее три шариковых обкатника, суппорт с резцом, отличающееся тем, что, с целью снижения интенсивности относительных колебаний инструмента и детали, оно снабжено встроенной саморегулирующейся опорой, обхватывающей обрабатываемую поверхность и выполненной, например, в виде набора упругих элементов с нелинейной характеристикой. |
|
В23В 5/36 755437 |
Устройство для обработки внутренних фасонных поверхностей. |
АС |
Устройство содержит закреп-ленный на суппорте станка корпус, в котором с возможностью осевого перемещения установлен вал с резцом, кинематически связанный с приводом круговой подачи, и упорную тягу, взаимодействующую с неподвижной частью станка. |
|
В 23 В 5/40. |
АС.611721. Устройство для обработки сферических поверхностей. |
АС |
Формула изобретения. Устройство для обработки сферических поверхностей, содержащее резцедержатель с приводом его вращения, отличающееся тем, что, с целью расширения технологических возможностей, резцедержатель выполнен грибовидной формы с кольцеобразным лазом и установлен на связанной с приводным валом направляющей, в которой выполнены прорезь для резцов и отверстия для их шарнирного крепления. |
|
В23В 25/06. |
Устройство для крепления патрона к шпинделю станка. АС 1357147. |
АС |
Устройство содержит корпусы 1 и 2 причем корпус 1 крепится на шпинделе станка, а в корпусе 2 устанавливается кулачковый патрон. Между корпусами расположены эксцентриковые втулки и, а также кольцо, в которое входят две пары пальцев, связанные соответственно с корпусами I и 2 и расположенные во взаимно перпендикулярных плоскостях. Концы пальцев входят в отверстие кольца по посадке движения, что обеспечивает радиальное смещение корпуса 2 относительно корпуса 1 при фиксированном угловом положении. Поворотом втулок 3 и 4 можно установить патрон с закрепленной деталью соосно со шпинделем станка. |
|
В23b 5/00 396183 |
Патрон для зажима коленчатых валов |
АС |
В корпусе имеются опорные базовые поверхности и зажимная губка, соединенная с червячно-винтовым приводом через рычажный механизм, отличающийся тем, что, с целью повышения точности и надежности зажима, рычажный механизм выполнен в виде двух рычагов, установленных на осях в корпусе и соединенных между собой шарнирной распоркой. |
|
В23В 3/25 |
АС № 653029 В 23 В Устройство для обработки деталей сложной формы |
АС |
Формула изобретения такова. Устройство для обработки деталей сложной формы на станке типа токарного с суппортом, подвижным в поперечном и продольном направлениях от подвижно связанных через тягу двух копиров, один ИЗ которых выполнен в виде качающейся линейки, а другой -- вращающийся, с целью расширения технологических возможностей, в нем копирный ролик, взаимодействующий с вращающимся копиром, выполнен в форме усеченного конуса и установлен на тяге с возможностью перестановки вдоль оси вращающегося копира. |
В результате проведенного патентно-информационного поиска принимаем решение о применении для данного станка патрона для зажима коленчатых валов, устройство для совмещенной обработки нежестких валов, устройство для прорезки канавок на шейках коленчатых валов, приспособление для обработки эксцентричных поверхностей на токарных автоматах и устройство для обработки внутренних фасонных поверхностей на токарных автоматах, так как это соответствует поставленному техническому заданию и расширяет технологические возможности станка.
Таким образом, предлагается применять следующие технические решения:
- устройство для совмещенной обработки нежестких валов;
- устройство для зажима тонкостенных деталей;
- патрона для зажима коленчатых валов;
- устройство для обработки длинных нежестких валов;
- устройство для прорезки канавок на шейках коленчатых валов;
- приспособление для обработки эксцентричных поверхностей;
- устройство для обработки внутренних фасонных поверхностей;
- многокулачковый самоцентрирующий патрон и другие, которые соответствуют заданию и расширяют технологические возможности станка.
1.5 Анализ аналогов
Станок относится к станкам токарной группы и предназначен для обработки наружных и внутренних поверхностей заготовок типа тел вращения со ступенчатым или криволинейным профилем в один или несколько рабочих ходов в замкнутом полуавтоматическом цикле. Станок выпускают на базе станка 16К20, но отличается тем, что его оснащают различными устройствами числового программного управления в зависимости от модификации. Класс точности станка П. Станок имеет традиционную для токарных станков компоновку.
Существуют родственные станки и модификации моделей 16КР20Ф3, 16К20Ф3, 16К20Ф3С1, 16К20Ф3С2, 16К20Ф3С5, 16К20Ф3С4, 16К20Т1 с оперативной системой управления, который отличается тем, что у него нет АКС, а имеется шпиндельная бабка с ручной установкой скоростей и возможностью автоматического изменения их величины в два раза по программе. Указанные станки 16К20Ф1…5 отличаются от моего некоторыми техническими характеристиками.
1.6 Уточнение технического задания по модернизации станка модели 16К20Ф3С32
Анализ показал, что для повышения производительности и эффективности обработки целесообразно для выполнения моей темы «Модернизация токарного станка с ЧПУ модели 16К20Ф3С32 с целью обеспечения возможности обработки поверхностей сложных форм» иметь следующее задание.
Разработать приспособления, позволяющие обрабатывать на станке 16К20Ф3С32 детали сложной формы, включая штоки, сложные валы, в том числе коленвалы автомобилей, крыльчатки и др. Конструкции узлов модернизации и приспособлений не должны быть дорогостоящими и подходить по габаритам к данному станку.
Приспособления должно давать возможность обрабатывать несколько видов деталей сложной формы. В том числе деталей типа шток, коленвал, фасонную деталь колесо компрессора и др. Приспособления должны обеспечивать повышение точности и надежности обработки.
Предлагаемые технические решения должны позволять сократить потери рабочего времени, связанные с переналадкой, а, следовательно, повысить производительность обработки или контроля деталей сложной формы.
Целью проекта является модернизация токарного патронно-центрового станка с ЧПУ мод. 16К20Ф3 с целью обеспечения возможности обработки поверхностей сложных форм.
2. Конструкторская часть
2.1 Общая компоновка модернизируемого станка и описание его работы
Станок имеет традиционную для токарных станков компоновку. Основание представляет собой монолитную отливку. Станина коробчатой формы с поперечными ребрами. Направляющие станины термообработанные, шлифованные.
Каретка суппорта с поворотным резцедержателем перемещается по неравнобокой призматической передней и плоской задней направляющей, задняя бабка - по передней плоской и задней неравнобокой призматической направляющей.
Автоматическая коробка скоростей и передачи в шпиндельной бабке обеспечивают главное движение - вращение шпинделя, а движения подачи инструмент получает от приводов продольных и поперечных подач.
2.2 Особенности кинематической схемы и цепей станка
В зависимости от универсальности кинематическая структура токарного станка может иметь различные группы или некоторые из них. Наиболее сложная кинематическая структура у токарно-винторезного станка.
Представленная на рис. 2.3 кинематическая структура обеспечивает выполнение всех исполнительных движений, необходимых для формообразования: перемещение инструмента (установочное) для получения заданного размера осуществляется механизмами подачи [Уст(П2П3)]; врезание, например, при обработке канавки, - механизмом поперечной подачи [Вр(П3)]; деление выполняется поворотом шпинделя с заготовкой [Д(В1)].
Изучим её. Главное движение шпиндель V1 получает от электродвигателя M1. (кВт, мин-1) через клиноременную передачу с диаметрами шкивов мм и мм, АКС, клиноременную передачу со шкивами мм и мм и передачи шпиндельной бабки. АКС обеспечивает девять переключаемых в цикле частот вращения шпинделя за счет включения электромагнитных муфт.
Вал II имеет три значения частоты вращения благодаря переключателю муфт (соответственно работают передачи или или ) /16/.
Вал III вращается уже с девятью различными частотами вращения: при включении муфты работает зубчатая пара , муфты - пара , муфты - пара . Одновременным включением муфт и осуществляется торможение шпинделя. В шпиндельной бабке переключением блока Б1 вручную можно получить три диапазона частот вращения шпинделя (12,5…200; 50…800 и 125…2000 мин-1).
В положении блока Б1, движение с вала V на шпиндель передается через зубчатые пары , , . При перемещении блока Б1 влево шпиндель V1 получит вращение от вала V через передачи или .
Уравнение кинематического баланса для минимальной частоты вращения шпинделя
мин-1.
Смазывание шпиндельной бабки автоматическое централизованное. Шпиндель смонтирован на двух конических роликоподшипниках 5-го или 4-го класса точности в зависимости от класса точности станка.
Датчик резьбонарезания ДР, связанный со шпинделем беззазорной зубчатой парой , осуществляет связь между шпинделем и ходовым винтом, исходя из условия, что за один оборот шпинделя резец должен переместиться на величину шага нарезаемой резьбы.
Приводы подач имеют два исполнения: с гидравлическим шаговым приводом и с электродвигателем постоянного тока.
В станке применены электрогидравлические шаговые двигатели ШД5-Д1 с гидроусилителем Э32Г18-23 для продольной подачи и гидрроусилителем Э32Г18-22 для поперечной подачи. Винт качения продольной подачи с шагом t=10 мм получает вращение от двигателя через беззазорный редуктор , а винт поперечного перемещения с шагом t=5 мм от гидроусилителя через беззазорную передачу .
Минимальная поперечная подача
мм,
где - минимальная доля оборота выходного вала гидроусилителя при шаге на выходном валу шагового двигателя 1,50.
При применении двигателей постоянного тока на ходовые винты устанавливают датчики обратной связи.
Суппорт и каретка имеют традиционное устройство, но их размеры увеличены по высоте в связи с увеличением размера винта поперечной подачи и для повышения жесткости.
Задняя бабка имеет жесткую конструкцию. Перемещение пиноли осуществляется с помощью электромеханической головки через винт с шагом =5 мм. Постоянство усилия зажимам заготовки обеспечивается тарельчатыми пружинами (18).
2.3 Гидравлическая и пневматическая схемы станка
Гидрооборудование станка состоит из узлов /16/
1) гидростанции 7,5/1500 Г48-44, которая включает в себя резервуар для масла емкостью 200 л, регулируемый насос 2Г15-14 с приводным электродвигателем А02-51-4МЗ01, Элементы фильтрации и охлаждения рабочей жидкости, контрольно-регулирующую аппаратуру;
2) гидроусилитель моментов продольного хода каретки Э32Г18-23;
3) гидроусилитель моментов поперечного хода суппорта Э32Г18-22;
4) магистральные трубопроводы, соединяющие между собой гидравлические узлы на аппаратуру согласно принципиальной гидравлической схеме станка.
Работа гидроусилителей моментов. Работа гидроусилителей моментов поперечного хода суппорта и продольного хода каретки осуществляется с помощью шаговых двигателей, входные валы которых посредством муфт жестко соединены с входными валами гидроусилителей.
При отработке шаговым двигателем какого-то числа электрических импульсов происходит поворот входного вала и смещение следящего золотника гидроусилителя на соответствующую этому величину.
Масло под давлением через щели следящего золотника и распределительный диск воздействует на поршни ротора гидроусилителя, который поворачивает выходной вал пропорционально величине открытия щелей.
За счет энергии масла, подводимого к гидроусилителю, электрические сигналы малой мощности, поступающие на вход шагового двигателя, многократно усиливается и преобразуется в синхронное (по отношению к валу шагового двигателя) вращение выходного вала гидроусилителя с крутящим моментом, необходимым для перемещения рабочих органов.
При этом величина угла поворота выходного вала гидроусилителя определяется числом поданных импульсов, а скорость - частотой их следования.
Пневмосистема. Пневмооборудование служит для создания воздушной подушки, облегчающей перемещение задней бабки по станине и предотвращающей износ направляющих. Пневмоаппараты смонтированы с задней стороны станка, на станке 16К20РФЗС32 не (устанавливаются.
Пневмооборудование нужно подключать к цеховой сети сжатого воздуха. Для этого на задней стороне основания имеется труба с наружной резьбой 3/8".
По окончании работы необходимо салфеткой удалить влагу с направляющих и покрыть их тонким слоем масла.
Ежедневно перед началом работы необходимо спустить влагу из фильтра 3 посредством поворота воротка, установленного в его нижней части.
Регулярно один раз в 2--3 месяца по мере поднятия конденсата до уровня заслонки фильтр 3 снимать для очистки и промывки. В маслораспределитель 2 по мере опорожнения корпуса надо заливать, масло «Индустриальное 20А»
2.4 Смазочная система
Общие указания. Правильная и регулярная смазка станка имеет важнейшее значение для нормальной его эксплуатации и продления срока его работы. Поэтому необходимо строго придерживаться приведенных ниже рекомендаций.
При подготовке станка к пуску в соответствии с картой смазки и схемой смазки заполнить резервуары смазки 1 до уровня указателя масла 8 и смазать указанные в карте механизмы.
Смазку производить смазочными материалами в соответствии со сроками, указанными в «Карте смазки и расхода масла и смазочных материалов», или их заменяющими материалами; (Перечень рекомендуемых смазочных материалов).
Первую замену масла во всех масляных емкостях произвести через месяц после пуска станка в эксплуатацию; вторую -- через 3 месяца, а далее -- строго руководствуясь указаниями карты смазки и раздела. Слив масла производить через сливные отверстия 7.
Описание системы смазки шпиндельной бабки.
В станке применена автоматическая система смазки шпиндельной бабки. Шестеренный насос 10 всасывает масло из резервуара и подает его через сетчатый фильтр 5 к подшипникам шпинделя и зубчатым колесам.
Для контроля работы насоса может быть применено дополнительное реле 13, установленное после сетчатого фильтра 5.
При наличии потока масла в системе смазки реле дает команду о готовности к работе главного-привода. В случае выхода из строя электродвигателя станции смазки реле даёт команду на выключение двигателя главного привода.
Кроме того, для визуального контроля работы станции смазки установлен маслоуказатель 8, вращающийся диск которого свидетельствует о работе системы смазки. В процессе работы необходимо следить за состоянием фильтра 5 и по мере засорения производить промыву его элементов в керосине не реже одного раза в месяц (для снятия фильтра предварительно отсоединяется сливная труба).
Из шпиндельной бабки масло через сетчатый фильтр и магнитный патрон 9 сливается в резервуар.
Ежедневно перед началом работы следует проверять уровень масла по риске маслоуказателя 2 на резервуаре и при необходимости доливать его.
Описание системы смазки направляющих каретки и станшны.
В станке применена автоматическая смазка направляющих каретки и направляющих станины от станции смазки, установленной на основании.
При включении насоса станции смазки масло под давлением 1--2 атм подается при помощи шланга к коллектору 12 на каретке.
На давление 1-2 атм должен быть отрегулирован подпорный клапан 6. Величина давления в системе смазки контролируется манометром 3.
Включение насоса -станции смазки происходит при включении станка и в дальнейшем по команде от электроавтоматики станка или УЧПУ (с интервалом 45 мин.).
Для исключения попадания загрязненного масла в станцию смазки предусмотрен обратный клапан 4.
При необходимости можно дополнительно осуществить подачу масла нажатием кнопки «Толчок смазки». При этом подача масла осуществляется в течение всего времени нажатия кнопки, поэтому необходимо избегать избыточной подачи масла.
Описание смазки винтовых пар подшипников, винтов перемещения и универсальной автоматической головки.
Консистентной смазкой смазываются подшипники опор винта продольного перемещения, подшипники правой опоры винта поперечного перемещения, винтовые пары продольного и поперечного перемещений, а также подшипники универсальной автоматической головки.
Для смазки винта продольного перемещения нужно снять имеющиеся на опорах крышки.
На винтовых парах продольного и поперечного перемещений, правой опоре винта поперечного перемещения, а также в корпусе универсальной автоматической головки для этой цели имеются пресс-масленки. Места консистентной смазки обозначены позицией 11.
3. Расчетная часть
3.1 Обоснование и предварительный расчет приводов станка
Исходя из конструктивных особенностей модернизируемого станка, выбираем как у всей гаммы этих станков раздельный вариант компоновки механизмов привода главного движения, содержащий односкоростной электродвигатель, автоматическую коробку скоростей (редуктор) и шпиндельную бабку, т. е. диапазонный механизм.
Такой вариант привода универсален, хотя и имеет свои недостатки, но он наиболее подходит для данного типа оборудования.
3.2 Кинематический расчет
По проведенным расчетам режимов резания, и по полученным предварительным значениям частот вращения шпинделя из опыта, и учитывая, что расчет проведен по размерам детали-представителя, определяем предельные значения частот вращения, получим следующие результаты.
Исходим из стандартного ряда значений диапазонов частот и отношений, предусматривая возможность использования данного оборудования при изменении размерного ряда или исходя из свойств обрабатываемого материала детали /13/. Это все существенно расширит область применения станочного оборудования. Следовательно, принимаем:
об/мин
об/мин
Получая при этом диапазон регулирования чисел оборотов
, (4.1)
Видим, то он находится в допустимых пределах для данного типа станочного токарного оборудования /13/.
Проведем определение промежуточных значений частот вращения. Оно проводится в обусловленных пределах и производится по знаменателю геометрического ряда /11, 13/.
Выбираем значение знаменателя из стандартного ряда как наиболее отвечающее эксплуатационным условиям и рекомендуемое для данного типа оборудования, а именно, =1,26 /13/.
Зная диапазон регулирования чисел оборотов шпинделя и знаменатель геометрического ряда , определяем число ступеней скорости шпинделя /14/:
. (4.2)
По принятому значению геометрического ряда в пределах диапазона регулирования составляем ряд чисел оборотов для числа ступеней скорости шпинделя , ограниченный предельными значениями:
20 160
28 200
31 250
40 325
46 400
50 500
55 630
58 800
63 900
84 1250
93 1600
100 2000
120 2240
160
Все значения составленного ряда приняты из ряда и предпочтительных значений.
Поскольку нами выбран привод с диапазонным регулированием, то наиболее точно его можно воплотить приводом со сложной структурой, позволяющим добиться требуемого диапазона скоростей наиболее оптимальным путем.
Структурная формула такого привода будет выглядеть следующим образом: , классифицируемая как сложная структура множительного типа (тип А) с частичным выпадением или совпадением скоростей для достижения требуемого диапазона регулирования с передаточной ступенью и одной дополнительной структурой () /11/.
Так как привод раздельный, то основную структуру (), участвующую в создании как своего, так и других диапазонов регулирования, относим к автоматической коробке скоростей, а передаточную ступень и дополнительную структуру с одной кинематической группой - к шпиндельной бабке.
Распределяя число ступеней скорости при сложной структуре привода, принимаем как одно из возможных значений для стандартизованных автоматических коробок скоростей, а , что позволяет получить требуемое общее число ступеней скорости , причем с совпадением некоторых скоростей. Для принятого числа ступеней основной структуры возможны следующие структурные формулы:
,
,
,
,
.
Но поскольку заранее оговорено, что основную структуру формирует автоматическая коробка скоростей, в которой переключение передач осуществляется электромагнитными муфтами, то для разгрузки входного и выходного валов предпочтительно использовать структурную формулу вида .
Эта формула также удовлетворяет некоторым другим требования, предъявляемым при разработке привода главного движения в наиболее оптимальной форме /11,14/.
Следовательно, структурную формулу привода можно определить следующим образом: .
Применение приводов с другими структурными формулами основной структуры не исключается, если к приводу предъявляются требования, характеризующие компоновку оборудования и в немалой степени конструктивную реализацию.
Вариантность структуры зависит от конструктивного порядка расположения групп и кинематического порядка включения передач (основная группа, первая переборная, вторая и т. д.).
В сложных структурах количество вариантов будет гораздо больше. Количество вариантов будет гораздо больше.
Количество вариантов для основной структуры /13/:
. (4.3)
где - количество групп передач; - количество групп с одинаковым числом передач.
Для дополнительной структуры количество конструктивных вариантов определяется поэтому же соотношению. Если учесть, что основная структура может быть конструктивно расположена как впереди, так и после дополнительной структуры, то общее количество конструктивных вариантов
; следовательно
.
Но поскольку конструктивное расположение структур в нашем случае оговорено, то общее количество конструктивных вариантов будет
.
Приводы со сложной структурой могут иметь групп передач, т.е. Причем каждая группа может быть основной, первой, второй и т.д. переборной. Отсюда количество кинематических вариантов:
(4.4)
Общее количество вариантов привода /11/
. (4.5)
Следовательно, для разработанной структурной формулы , а для нашего варианта расположения структур
Все варианты привода допустимы к осуществлению, но в каждом случае необходимо учитывать возможность конструктивной реализации.
Поскольку для разработанной сложной структурной формулы привода имеется немало вариантов, то для их сокращения ограничимся условиями компоновки привода: основная структура (АКС) допускает возможность варьирования характеристик групп, а дополнительную структуру используем для достижения требуемого числа ступеней скорости, т. е. характеристикой группы зададимся заранее. Исходя из вышесказанного, записываем структурные формулы согласно рекомендациям литературы /11, 13, 14/
,
,
,
,
,
.
Общая структурная формула позволяет получить 36 ступеней скоростей. Изменив (уменьшив) характеристику дополнительной структуры, получим совпадение 6 скоростей, и соответственно число ступеней скорости сократится до 27. Достижение требуемого числа скоростей достигаем варьированием передаточной ступени.
По принятому ранее условию возможность варьирования характеристик групп оставили за основу, поэтому построение структурных сеток, определенных структурных формул и выбор оптимального варианта ведем только по основной структуре.
Выбор оптимального варианта производим из критериев оптимальности /11/ но более полно этим критериям отвечает структурная сетка по структурной формуле:
.
По выбранному оптимальному варианту основной структуры строим общую структурную сетку, учитывая влияние ременных передач от электродвигателя к АКС, и от АКС к шпиндельной бабке на взаимосвязь групп передач.
По разработанной структурной сетке привода строим график частот вращения, учитывая факторы оптимальности /11/ и возможность технологического и конструктивного воплощения при принятой компоновке оборудования с наибольшей эффективностью.
Для кинематических расчетов приводов использовали графо-аналитический метод, при котором последовательно строят структурную сетку и график чисел оборотов.
Структурная сетка содержит следующие данные о приводе: количество групп, передач, число передач в каждой группе, относительный порядок конструктивного расположения групп вдоль цепи передач, порядок кинематического включения групп, диапазон регулирования групповых передач и всего привода число ступеней скорости вращения ведущего и ведомого валов групповой передачи.
График чисел оборотов строят для определения конкретных значений величин передаточных отношений всех передач привода и чисел оборотов всех его валов; он позволяет выбрать их оптимальное значение.
График чисел оборотов включает в себя все, что содержится в структурной сетке. На нем указаны диапазоны для части АКС, шпиндельной бабки и диапазонов отдельно.
Указаны предельные и некоторые промежуточные значения частот вращения шпинделя и расчетные значения мощности и крутящего момента для трех диапазонов частот вращения шпинделя при установке электродвигателя 4АБ2П132М4 (N = 11 кВт при 1500--4500 об/мин).
3.3 Определение чисел зубьев зубчатых колес
Определение чисел зубьев зубчатых колес ведем исходя из условия постоянства межосевого расстояния группы передач. Поскольку ГТД определен нами как раздельный, то определение чисел зубьев зубчатых колес ведем также раздельно: для шпиндельной бабки (механизма диапазонного выбора) и для коробки скоростей АКС.
Автоматическая коробка скоростей.
Определение начинаем так, с группы передач содержащей пару с минимальным передаточным отношением, т. е. группа передач между валами III и IV.
Определяем наименьшее кратное К сумм для чего передаточные отношения выражают в виде простых дробей с числителем и знаменателем , причем так, чтобы () были числа разлагающиеся на простые множители.
,
.
Следовательно
Отсюда наименьшее общее кратное сумм () будет .
Определяем для минимального передаточного отношения по формуле:
. (4.6)
Полученное значение округляем до целого числа .
Сумма чисел зубьев сопряженных колес .
Полученную сумму уточняем по нормам Н21-5 с учетом межцентрового расстояния и модуля колес m=3 мм, как наиболее используемый для зубчатых колес заданного назначения.
Окончательный выбор модуля можно будет сделать после расчета наиболее нагруженного зубчатого колеса, а также для межосевого расстояния мм при использовании требуемого габарита электромагнитной муфты.
Определяем числа зубьев сопряженных колес:
, (4.7)
,
.
,
,
Проведем расчет оставшихся групп передач. Учитываем при этом требования по унификации проектируемых узлов, т.е. закладываем для остальных групп передач такие же, как и в предыдущей группе модуль зубчатых колес мм, межосевое расстояние мм, и, следовательно, сумму чисел зубьев сопряженных колес .
Группа передач между валами I и III рассчитаем так.
Выражаем передаточные отношения в виде простых дробей:
,
,
.
Поскольку сумма чисел зубьев сопряженных колес нами задана , то определяем числа зубьев по формулам:
,
,
,
,
,
,
.
Определение числа зубьев зубчатых колес предварительны и уточняются после расчета модуля зацепления и конструктивного выбора габарита электромагнитной муфты, а также расчетов других элементов и узлов.
Шпиндельная бабка.
Определение начинаем с группы передач содержащих пару с минимальным передаточным отношением, т.е. передачу между валами VII и VIII. Поскольку в группе одна передача, то определение чисел зубьев ведем через минимальное значение числа зубьев . Принимаем , тогда сопряженное колесо будет , а сумма .
Сумму зубьев уточняем по модулю колес мм, выбранного ранее предположительно как наиболее используемый для зубчатых колес заданного назначения, а так же для межосевого расстояния мм, предположительно необходимого по конструктивным предположениям.
Из соотношения и определяем числа зубьев ; , следовательно ; ; а сопряженное колесо будет .
Переходим к оставшимся группам передач, учитывая при этом требования по унификации проектируемых узлов, т. е. закладываем для остальных групп передач такие же, как и в предыдущей группе модуль зубчатых колес мм, и межосевого расстояния мм, и, следовательно, сумму чисел зубьев сопряженных колес .
Группа передач между валами VI и VII, а также VIII и IX, имеющих одиночные передачи с одинаковым передаточным отношением. Поскольку сумма чисел зубьев сопряженных колес нами задана , то определяем числа зубьев из соотношения , где - для данной передачи будет , тогда , а сопряженного колеса .
3.4 Силовой расчет
Группа передач между валами V и VI, содержащая одиночную передачу. Поскольку сумма чисел зубьев сопряженных колес нами задана , то определяем числа частот вращения (первая скорость второй четверти, об/мин)
,
где М - крутящий момент на шпинделе, Д - диаметр на шпинделе (м), ,
где N - мощность на шпинделе при расчетной частоте вращения в кВт, n - расчетная частота вращения об/мин,
H•м. Следовательно: кН.
Нагрузка от зубчатой передачи определяется как сумма проекций сил зацепления на плоскость силы резания.
, (4.8)
где - радиальная сила зацепления, Н;
- окружная сила зацепления, Н.
, (4.9)
где - крутящий момент, Н•м;
- диаметр колеса.
кН.
кН. (4.10)
Следовательно:
кН.
Определяем реакции опор под нагрузкой:
,
кН,
,
кН.
Записываем формулы грузовых моментов по участкам:
I участок: ,
II участок: ,
III участок: .
Для определения величины прогиба нагружаем шпиндель в точке определения прогиба единичной силой.
Определяем реакции опор при единичном нагружении:
кН•м3
кН•м3
м4. (4.11)
Определяем величину прогиба:
мм.
Величина прогиба находится в допустимых пределах, а знак «-» означает, что направление прогиба противоположно выбранному на схеме единичного нагружения. Следовательно, шпиндельный узел работает в допустимых пределах.
Расчет особо нагруженного вала на прочность заключается в определении диаметра вала (наименьшего) через изгибающие моменты. В качестве особо нагруженного вала принимаем входной вал автоматической коробки скоростей. В расчете используем нагрузки от зубчатой передачи, клиноременной передачи и крутящий момент /4/. Определяем усилия от зубчатой передачи: окружное и радиальное
, (4.12)
где - крутящий момент, Н.м,
- диаметр колеса, м.
Крутящий момент определяем по формуле
, (4.13)
где - максимальная передаваемая мощность, кВт,
- минимальная частота вращения вала, об/мин.
, (4.14)
где - мощность электродвигателя, кВт,
- КПД привода (для токарных станков ). Следовательно:
кВт,
Н.м,
Н.
Определяем усилия от клиноременной передачи, которая равна геометрической сумме натяжений ветвей.
При упрощенных расчетах /4, 11, 20/ следует принимать равнодействующую направленной по линии центров передачи и равной
, (4.15)
где - сила предварительного натяжения, Н;
- угол обхвата, град.
, (4.16)
где - напряжение от предварительного натяга, МПа (для клиновых ремней /20=1,2…1,5 Мпа, принимаем Мпа).
- площадь поперечного сечения ремня, мм2 (по каталогу см2). Следовательно, получим: Н,
Н.
Определяем составляющие усилия клиноременной передачи в вертикальной и горизонтальной плоскостях:
Н,
Н.
По определенным реакциям строим схему нагружения вала.
Определяем моменты по плоскостям. В горизонтальной плоскости определяем реакции опор:
,
Н,
,
Н.
Определяем изгибающие моменты по участкам:
I участок ,
Н.м.
II участок ,
Н.м.
III участок ,
Н.м,
Н.м.
По полученным расчетам строим эпюру изгибающих моментов от сил нагружения в горизонтальной плоскости. В вертикальной плоскости определяем реакции опор:
,
Н,
,
Н.
I участок ,
Н.м.
II участок ,
Н.м.
III участок ,
Н.м,
Н.м.
По полученным результатам строим эпюру изгибающих моментов в вертикальной плоскости, а также эпюру крутящего момента.
Определяем эквивалентный момент, действующий на вал по формуле:
. (4.17)
Подставляя значения, получаем:
Н.м.
По известному эквивалентному моменту определяем наименьший диаметр вала по формуле:
, (4.18)
где - допустимое номинальное напряжение для вала, МПа (для материала вала сталь 40Х принимают [5] ) МПа.
Подставляя значение, получаем:
мм, мм.
С учетом запаса прочности на min в 16 мм, получаем значение диаметра вала допустимое при заданных нагрузках.
Диаметры всех участков вала назначаются по конструктивным и технологическим соображениям из стандартного ряда диаметров, но не менее полученного при расчете.
При этом условии не требуется выполнить уточняющий расчет вала по коэффициентам запаса прочности, поскольку он заведомо больше допустимого. Для редукторов, в том числе АКС имеем: .
3.5 Расчет особо нагруженного зубчатого зацепления
Расчет особо нагруженного зубчатого зацепления (передача, передающая вращение наиболее нагруженному валу при максимальных нагрузках) заключается в прочностном расчете на изгиб, т.е. основным критерием работоспособности зубчатых колес в узлах типа редукторов, в том числе и АКС.
При расчете на изгиб определяется модуль зацепления по наиболее нагруженному колесу, т. е. изготовленному из менее прочного материала или с меньшей твердостью по формуле /4, 20/:
, (4.19)
где - коэффициент передачи, для прямозубых колес ;
- окружное усилие в зацеплении, Н, по вышеприведенным расчетам Н;
- коэффициент долговечности, при упрощенном расчете для реверсивной нагрузки принимаем =1;
- коэффициент нагрузки;
- расчетная ширина зубчатого колеса, по конструктивным соображениям принимаем м.;
- допустимое напряжение на изгиб, МПа.
Коэффициент нагрузки определяется по формуле:
, (4.20)
где - коэффициент распределения, для прямозубых колес принимают =1;
- коэффициент концентрации, при проектном расчете ;
- коэффициент динамичности, при известной окружной скорости в передачи м/с, по твердости колеса.
Подставляя известные значения, получим:
.
Допускаемое напряжение на изгиб определяется по формуле:
, (4.21)
где - предел длительной выносливости зубчатого колеса, МПа; по материалу и твердости колеса принимаем МПа;
- запас прочности при изгибе, на материал и твердость колеса принимают .
Подставляя известные значения, определяем модуль зацепления:
м или мм.
Полученное значение модуля зацепления является минимальным из расчета на изгиб, округляем до большего значения (требуемого по конструктивным соображениям) из стандартного ряда.
Исходя из конструктивных соображений, желательно принимать одинаковый модуль для всех передач в редукторе (в том числе и АКС). При этом допускается применять модуль меньшего значения, чем расчетный, но при этом необходимо проводить согласованный расчет на изгиб и контактную прочность.
3.6 Расчет шлицевого соединения
Расчет шлицевого соединения проводят на смятие рабочих граней шлицов при передаче крутящего момента на особо нагруженном валу (поскольку на выходном валу АКС не используются нагрузочные шлицевые соединения, то расчет ведем по шлицевому соединению на шпинделе) по формуле /4/:
, (4.22)
где - крутящий момент, по приведенным ранее расчетам =3160000 Н.м;
- удельный суммарный статический момент площади рабочих поверхностей соединения относительно оси вала, по каталогу для заданного шлицевого соединения принимаем =850 мм3;
- рабочая длина соединения, по конструктивным соображениям принимаем =25 мм;
...Подобные документы
Описание детали-представителя "шток" и маршрут её обработки. Анализ конструкции устройств и механизмов станка. Особенности кинематической схемы и цепей станка. Расчет особо нагруженного зубчатого зацепления. Расчет детали методом конечных элементов.
дипломная работа [2,3 M], добавлен 30.04.2015Деталь "Шток" и маршрут ее обработки. Анализ конструкции устройств и механизмов станка. Компоновка модернизируемого станка. Особенности кинематической схемы и цепей станка. Обоснование и предварительный расчет приводов. Построение структурных сеток.
дипломная работа [2,3 M], добавлен 14.04.2013Разработка черновых переходов при токарной обработке основных поверхностей. Описание и анализ конструкции станка 1П756ДФ3. Технологические характеристики и кинематическая схема станка. Настройка станка на выполнение операций, расчёт режимов резания.
курсовая работа [4,9 M], добавлен 04.05.2012Проектирование привода главного движения токарно-винторезного станка. Модернизация станка с числовым программным управлением для обработки детали "вал". Расчет технических характеристик станка. Расчеты зубчатых передач, валов, шпинделя, подшипников.
курсовая работа [576,6 K], добавлен 09.03.2013Расчет кинематики (диаметр обработки, глубина резания, подача) привода шпинделя с плавным регулированием скорости, ременной передачи с зубчатым ремнем, узла токарного станка на радиальную и осевую жесткость с целью модернизации металлорежущего станка.
контрольная работа [223,1 K], добавлен 07.07.2010Определение технических характеристик металлорежущего станка. Определение основных кинематических параметров. Определение чисел зубьев зубчатых колес и диаметров шкивов привода. Проектировочный расчет валов, зубчатых передач и шпоночных соединений.
курсовая работа [3,0 M], добавлен 14.09.2012Разработка технологического процесса обработки изделия. Назначение подачи на оборот детали. Определение скорости вращения шпинделя. Составление кинематической схемы станка. Оценка конструкции с точки зрения эргономики, эстетики, охраны труда, надежности.
курсовая работа [3,2 M], добавлен 19.05.2019Анализ технологичности конструкции втулки и технологии её изготовления. Характеристика основных узлов токарного станка и оснастки для обработки детали. Расчет режимов резания. Установка и закрепление детали в приспособлении. Наладка режущего инструмента.
курсовая работа [1,8 M], добавлен 20.11.2015Назначение и технические характеристики горизонтально-фрезерного станка. Построение графика частот вращения. Выбор двигателя и силовой расчет привода. Определение чисел зубьев зубчатых колес и крутящих моментов на валах. Описание системы смазки узла.
курсовая работа [145,1 K], добавлен 14.07.2012Кинематический расчет коробки скоростей привода главного движения горизонтально-фрезерного станка. Прочностной расчет зубчатых колес, их диаметров, ременной передачи, валов на статическую прочность и выносливость. Определение грузоподъемности подшипников.
курсовая работа [730,7 K], добавлен 27.05.2012Описание и назначение детали "шпиндель", которая входит в состав шпиндельного узла токарного станка Афток 10Д. Разработка технологического процесса обработки данной детали в условиях среднесерийного производства. Расчет экономической эффективности.
дипломная работа [2,1 M], добавлен 17.10.2010Структурно-кинематический анализ горизонтально-фрезерного станка модели 6П80Г, выявление исполнительных движений и настройка необходимых параметров для обработки детали. Техническая характеристика и конструктивные особенности, основные узлы станка.
курсовая работа [3,1 M], добавлен 09.11.2013Изготовление агрегатного станка для обработки группы отверстий в детали "Планка". Подбор технологического оборудования и узлов станка, их технические характеристики. Определение порядка обработки и технологических переходов. Расчет режимов резания.
курсовая работа [1,6 M], добавлен 14.05.2012Назначение и краткая характеристика станка базовой модели. Основные недостатки конструкции. Описание основных узлов и датчиков линейных перемещений. Расчет модернизации привода главного движения, коробки скоростей и привода вращения осевого инструмента.
курсовая работа [3,1 M], добавлен 20.01.2013Описание конструкции станка 1720ПФ30 и ее назначение, технические характеристики, и кинематическая схема. Выбор основных геометрических параметров коробки скоростей. Расчет режимов резания и определение передаточных чисел. Расчет шпиндельного узла.
курсовая работа [360,7 K], добавлен 13.06.2015Расширение технологических возможностей методов обработки зубчатых колес. Методы обработки лезвийным инструментом. Преимущества зубчатых передач - точность параметров, качество рабочих поверхностей зубьев и механических свойств материала зубчатых колес.
курсовая работа [1,0 M], добавлен 23.02.2009Описание конструкции базовой модели станка и определение общих технических характеристик проектируемого привода. Выбор электродвигателя и определение величин передаточных отношений. Расчет ременной и зубчатых передач. Система управления коробкой передач.
курсовая работа [1,0 M], добавлен 17.02.2013Определение силовых и кинематических параметров привода токарно-винторезного станка модели 1К62. Определение модуля зубчатых колес и геометрический расчет привода. Расчетная схема шпиндельного вала. Переключение скоростей от электромагнитных муфт.
курсовая работа [2,7 M], добавлен 18.05.2012Изучение процесса модернизации привода главного движения вертикально-сверлильного станка модели 2А135 для обработки материалов. Расчет зубчатых передач и подшипников качения. Кинематический расчет привода главного движения. Выбор электродвигателя станка.
курсовая работа [888,2 K], добавлен 14.11.2011Ориентировочный расчёт и конструирование приводного вала. Проектирование ременной передачи. Описание работы шлифовальной головки. Проверка долговечности подшипников. Разработка программы для станка с ЧПУ. Проектирование конструкций в системе "КОМПАС".
дипломная работа [1,2 M], добавлен 12.08.2017