Модернизация токарного станка с ЧПУ модели 16К20Ф3С32 с целью обеспечения возможности обработки поверхностей сложных форм

Описание детали представителя "шток" и маршрут ее обработки. Анализ конструкции устройств и механизмов станка. Определение чисел зубьев зубчатых колес. Расчет подшипников, шлицевого соединения, шкиво-ременной передачи. Определение толщины стенок корпуса.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 01.09.2017
Размер файла 225,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

- допускаемое напряжение смятия, для материала вала с учетом коэффициента запаса прочности для шлицевого термообрабатываемого соединения принимаем =800 МПа.

Подставляем значения в формулу:

. (4.23)

Полученное значение находится в допустимых пределах, следовательно, шлицевое соединение работает в нормальном режиме.

3.7 Расчет шкиво-ременной передачи

Расчет шкиво-ременной передачи ведем по кинематическим данным от электродвигателя к АКС. Расчет начинаем с выбора сечения ремня /11/.

Подходит ремень сечения Б, технические данные определяем по каталогу: мм, мм, мм, площадь поперечного сечения см2. Расчетная длина мм. мм; минимальный диаметр меньшего шкива мм.

Определяем диаметры шкивов:

Для повышения ресурса работы передачи рекомендуется устанавливать меньший шкив с расчетным диаметром , из стандартного ряда принимаем мм, диаметр ведомого шкива , где - передаточное число, по кинематической схеме , следовательно, получаем мм. Уточняем передаточное число с учетом относительного скольжения .

. (4.24)

Межосевое расстояние определяем по формуле:

мм, (4.25)

мм. (4.26)

Принимаем промежуточное значение мм.

Определяем расчетную длину ремней по формуле:

(4.27)

Ближайшее стандартное значение мм.

Определяем натяжение каждой ветви одного ремня , Н предварительно определив скоростей ремней V и коэффициенты центробежных сил .

м/с. (4.28)

=0,18 принимаем по каталогу для сечения Б.

. (4.29)

Полученное значение используют для необходимых силовых расчетов, при которых учитывается влияние клиноременной передачи.

3.8 Расчет подшипников

Расчет заключается в определении типов подшипников в опорах, в данном случае особо нагруженного вала - выходного вала АКС. Определяем суммарные реакции опор /4, 11/:

, (4.30)

где и - соответствующие реакции в горизонтальной и вертикальной плоскостях.

Н, (4.31)

Н. (4.32)

Определяем динамическую грузоподъемность, предварительно задавшись долговечностью Н, для редукторов общего назначения по формуле:

, (4.33)

где - коэффициент типа подшипника, для радиальных подшипников =10/3, получаем значение динамической грузоподъемности по опорам:

Н,

Н.

По динамической грузоподъемности и диаметру посадочного места подбираем подшипники в опорах по каталогу:

Опора А: Роликоподшипник радиальный сферический 2-х рядный 3610 4610 ГОСТ 5721-75.

Опора В: Шарикоподшипник радиальный однорядный 310 ГОСТ 8338-75.

Выбранные подшипники желательны к использованию.

3.9 Определение толщины стенок корпуса

При конструировании литой корпусной детали стенки следует выполнять одинаковой толщины. Рекомендуемая толщина стенок для отливок приведена в каталогах, но при этом исходя из жесткости корпуса, не должна быть меньше /10/:

мм, (4.34)

где - крутящий момент на тихоходном валу Н.м

Подставляем в формулу:

мм.

В конечном итоге выбирается требуемая толщина стенок, учитывая при этом конструктивные особенности.

Таким образом, приведённый расчёт подтвердил правильность выбора направления модернизации по приводу.

310 Расчет муфты

Расчет муфты ведется на критический передающий крутящий момент, т.е. определением допускаемого крутящего момента по формуле /4/:

, (4.35)

где - крутящий момент на особо нагруженном валу Н.м;

- коэффициент режима работы, учитывающий условия эксплуатации, для вращательного движения на МРС =1,5.

Н.м.

Определяем габарит по усилию сцепления фрикционных дисков.

3.11 Расчет детали методом конечных элементов

Проведен расчет детали «Шток» методом конечных элементов, как задано. Для этого используем программу, установленную на кафедре АОМП.

Система SOLID WORKS работает по принятым Windovs правилами, к которым относятся многооконный режим работы, настраиваемый пользователем интерфейс, использованием буфера обмена и полная поддержка технологии OLE.

Процесс моделирования в системе начинается с выбора конструкционной плоскости, в которой будет построен двухмерный эскиз детали. Потом данный эскиз может быть преобразован с помощью ряда операций в объёмное тело. При создании эскиза доступен полный набор геометрических построений и операций редактирования.

Эскиз конструктивного элемента может быть отредактирован в любой момент времени работы над моделью. Можно вложить в размер требуемые связи. Пользователю предоставляется несколько различных средств создания объёмного изображения моделей.

Основными формообразующими операциями является команда добавления и снятия материала. Система позволяет выдавливать контур с различными конечными условиями, в том числе, на заданную длину до указанной поверхности или на другие различные условия.

Возможно создание тела по заданным контурам с использованием нескольких образующих кривых (или выдавливанием контура по заданной траектории).

В системе SOLID WORKS строятся литейные уклоны на выбранных гранях модели, полости в твердых телах, фаски и скругления, а также любые отверстия, даже сложной формы.

Характеристикой системы является возможность получения формы разверток, используемых для проектирования деталей из листового металла.

Создание твердотельной параметрической модели системы поддерживает средства твердотельного моделирования, основывающегося на постепенным добавлении или вычитании базовых конструктивных тел. Эскиз для получения базового тела может быть построен на произвольной плоскости.

После создания модели имеется возможность для автоматического построения с изображениями основных видов проекции сечений и разрядов, а также автоматическое нанесение размеров.

Система поддерживает обмен данных через следующие форматы:

IGES - для переноса в 3D изображение;

DXF - для совместимости систем AutoCad;

DWG - для передачи 2D изображения;

XT - формат ядра.

Поддержка технологии OLE позволяет связывать твердотельные модели сборки и чертежи с помощью системы SOLID WORKS с файлами других приложений.

Анализ усилия детали «шток», согласно программы расчета, предусматривает следующие этапы.

1. Введение

2. Информация о файле

3. Материалы

4. Информация о нагрузке

5. Свойство упражнения

6. Контакт

7. Результаты усилия

8. Результаты напряжения

9. Результаты перемещения

10. Результаты деформации

11. Результаты проверки проектирования

12. Приложение

В результате работы проведен анализа FEM на деталь «Шток». Сделаны проектные решения исключительно на данных, представленных в дипломе. Эта информация используется как совместно с экспериментальными данными, так и практическим опытом.

Испытания в условиях эксплуатации обязательны для утверждения окончательного проекта COSMOS Works. Это помогает уменьшить время продвижения проекта, но не упразднения испытаний в условиях эксплуатации.

Общая информация о файле. Имя модели: Шток

Местоположение модели C:\Documents and Settings\ cmen\ Рабочий стол\ Колмаков\ Шток SLDPRT

1. Приспособление для обработки фасонных поверхностей.

АС № З10735 МПК В 23 В 11/00 В 23 В 6/36.

Изобретение относится к станкостроению.

Известны приспособления для обработки фасонных поверхностей.

Целью изобретения является упрощение конструкции приспособления. Это достигается тем, что копир закреплен на шпинделе станка и снабжен отверстием для установки заготовки, а механизм подачи выполнен в виде двуплечего рычага с режущим инструментом на одном конце и роликом, взаимодействующим с копиром, на другом.

В шпинделе станка закрепляется копир с обрабатываемой деталью. Корпус приспособления зажимается в резцедержателе суппорта станка, и суппорт станка перемещается к шпинделю с обрабатываемым изделием до тех пор, пока ролик войдет в контакт с копиром, при этом резец не соприкасается с обрабатываемой деталью.

После этого включается привод вращения шпинделя, и ролик, обкатываясь по копиру, сообщает резцу качательное движение по заданной программе. Механизм продольной подачи суппорта резец вводится в соприкосновение с обрабатываемой деталью и начинается процесс обработки отверстия.

Форма копира может иметь любую требуемую конфигурацию (многогранную, конусную, 15 криволинейную и т. л.).

Предмет изобретения

Приспособление для обработки фасонных поверхностей по копиру с механизмом подачи режущего инструмента, отличающееся тем, что-с целью упрощения конструкции, копир за креплен на шпинделе станка и снабжен отверстием для установки заготовки, а механизм подачи выполнен в виде двуплечего рычага с режущим инструментом на одном конце и рол ком, взаимодействующим с копиром, на другом.

2. Устройство для крепления патрона к шпинделю станка. АС 1357147. В23В 25/06.

Изобретение относится к устройствам для установки зажимного патрона на шпинделе станка с коррекцией его радиального положения. Целью изобретения является повышение производительности путем сокращения времени коррекции положения патрона.

Устройство содержит корпусы 1 и 2 причем корпус 1 крепится на шпинделе станка, а в корпусе 2 устанавливается кулачковый патрон. Между корпусами 1 и 2 расположены эксцентриковые втулки 3 и 4, а также кольцо, в которое входят две пары пальцев, связанные соответственно с корпусами I и 2 и расположенные во взаимно перпендикулярных плоскостях.

Концы пальцев входят в отверстие кольца по посадке движения, что обеспечивает радиальное смещение корпуса 2 относительно корпуса 1 при фиксированном угловом положении. Поворотом втулок 3 и 4 можно установить патрон с закрепленной деталью соосно со шпинделем станка, что регистрируется соответствующими шкалами. Введение кольца и пальцев позволило существенно сократить время коррекции положения патрона и повысить производительность. Корпусы 1 и 2 по наружному цилиндру снабжены одинаковыми шкалами из 600 делений.

Компенсация радиального биения на обрабатываемой детали, зажатой в патроне, производится следующим образом. Совмещением дополнительных рисок Е эксцентриситеты (риски Д) втулок 3 и А располагают в диаметрально противоположных местах, в результате чего патрон устанавливается соосно шпинделю станка.

Обрабатываемую деталь зажимают в патроне и с помощью индикаторной стойки определяют величину максимального биения на соответствующей поверхности детали. Место максимального биения отмечают на детали мелом. Вращением планшайбы располагают отметку максимального биения в горизонтальной плоскости "от себя" (или "к себе").

Удерживая планшайбу, поворачивают спецключом эксцентриковые втулки 3 и А вместе так, чтобы риски Д расположились в вертикальной плоскости. Производя отсчеты по шкалам, спецключом поворачивают относительно корпусов каждую эксцентриковую втулку на одно и то же число делений "на себя" (или "от себя"), соответствующее величине замеренного ранее биения.

При повороте втулок в пределах до 50 делений (30°) зависимость радиального смещения от угла поворота линейная с точностью, приемлемой для технических целей, на которые планшайба предназначается (погрешность составляет не более 0,01 мм).

При повороте эксцентриковых втулок на 50 делений радиальное смещение равно 0,5 мм, т.е. одному делению шкалы соответствует радиальное смещение 0,01 мм.

Максимальное радиальное смещение равно удвоенному эксцентриситету, т.е. 1 мм. При повороте эксцентриковых втулок более, чем на 50 делений необходимую величину радиального смещения следует устанавливать с помощью индикаторной стойки.

3. Приспособление для обработки эксцентричных поверхностей на токарных автоматах. А.С. 396184, МКИ В23В 5/44.

Известны приспособления для обработки эксцентричных поверхностей, в корпусе которых установлена циклическая передача. Инструмент получает движение подачи от шпинделя станка.

Предлагаемое приспособление предназначено для токарных автоматов и позволяет быстро переналаживать инструмент па обработку эксцентричных поверхностей.

Для этого корпус, сцепленный со шпинделем и с помощью переходной втулки установленный в гнезде револьверной головки токарного автомата, выполнен переставным относительно центра шпинделя детали, для чего он снабжен хвостовиком, входящим в эксцентричное отверстие поворотной регулировочной втулки, которая связана с приводной шестерней планетарного редуктора и установлена в переходной втулке приспособления соосно обойме с резцами, а солнечное кольцо планетарного редуктора, сопряженное с корпусом, выполнено так же, как и корпус, переставным относительно центра шпинделя детали и снабжено пазом для установки поводка, осуществляющего его связь с переходной втулкой в гнезде револьверной головки автомата.

Предмет изобретения

Приспособление для обработки эксцентричных поверхностей на отличающееся тем, что, с целью регулировки эксцентриситета обоймы с резцами, корпус выполнен переставным относительно центра шпинделя детали, для чего он снабжен хвостовиком, входящим в эксцентричное отверстие поворотной регулировочной втулки, которая связана с приводной шестерней планетарного редуктора и установлена в переходной втулке приспособления соосно обойме с резцами, а солнечное колесо планетарного редуктора, сопряженное с корпусом, выполнено так же, как и корпус, переставным относительно центра шпинделя детали и снабжено пазом для установки поводка, осуществляющего его связь с переходной втулкой в гнезде револьверной головки автомата.

4. Устройство для обработки сферических поверхностей. АС.611721.

В 23 В 5/40. Изобретение относится к обработке металлов резанием, в частности к обработке на токарных станках сферических поверхностей.

Известно устройство для обработки сферических поверхностей, содержащее резцедержатель с приводом его вращения. С целью расширения технологических возможностей в предлагаемом устройстве резцедержатель выполнен грибовидной формы с кольцеобразным пазом и установлен на связанной с приводным вялом направляющей, в которой выполнены прорезь для резцов и отверстия для их шарнирного крепления.

Устройство может быть установлено и под углом к обрабатываемой детали при обработке деталей типа рукояток с шаровидными головками или внутренних сфер. Устройство позволяет, легко настраивать резцы на необходимый размер, не требуя сложного копирующего приспособления или набора трудно затачиваемых фигурных резцов.

Формула изобретения. Устройство для обработки сферических поверхностей, содержащее резцедержатель с приводом его вращения, отличающееся тем, что, с целью расширения технологических возможностей, резцедержатель выполнен грибовидной формы с кольцеобразным лазом и установлен на связанной с приводным валом направляющей, в которой выполнены прорезь для резцов и отверстия для их шарнирного крепления.

5. Самоцентрирующий патрон для закрепления эксцентричных деталей. АС № 1572759 А1 В 23 В 31/00.

Изобретение относится к области станкостроения, а именно к устройствам для закрепления эксцентричных деталей типа коленчатых валов на шпинделе металлорежущего станка.

Целью изобретения является повышение производительности труда путем повышения жесткости и надежности закрепления при скоростной обработке.

Работа патрона описана на примере установки и закрепления коленчатого вала.

Патрон работает в паре с патроном аналогичной конструкции, имеющим базовую поверхность в виде торцового упора в центре.

Формула изобретения

1. Самоцентрирующий патрон для закрепления эксцентричных деталей, содержащий корпус с двумя основными зажимными кулачками, геометрические оси которых расположены в диаметральной плоскости патрона, и смещенную относительно центра патрона дополнительную опору, отличающийся тем, что с целью повышения производительности путем повышения жесткости и надежности закрепления при скоростной обработке, он снабжен установленным с возможностью возврат-поступательного перемещения параллельно упомянутой диаметральной плоскости патрона дополнительным зажимным кулачком, а дополнительная опора выполнена в виде призмы с базовыми поверхностями, одна из которых расположена параллельно направлению плоскости расположения дополнительного зажимного кулачка.

Патрон по п. 1, отличающийся тем, что, с целью обеспечения удобства установки детали в корпусе ось симметрии которых расположена в диаметральной плоскости патрона, перпендикулярной диаметральной плоскости, проходящей через продольные оси симметрии основных зажимных кулачков.

4. Техника безопасности и экология

Цехи современных машиностроительных заводов оснащены самыми различными видами технологического оборудования. Его использование облегчает труд человека, делает его производительным. Однако в ряде случаев работа этого оборудования связана с возможностью воздействия на работающих опасных или вредных производственных факторов

В разделе рассмотрены общие методы обеспечения безопасности производственного оборудования, включая работу на станке с ЧПУ модели 16К20Ф3 и процессов механической обработки деталей.

Основным направлением облегчения и оздоровления условий труда, повышения его производительности является механизация и автоматизация работ и технологических процессов и использование роботов и манипуляторов.

Механизация способствует ликвидации тяжелого физического труда, снижению травматизма, уменьшает численность персонала. Особое значение с точки зрения охраны труда имеет механизация подачи заготовок в рабочую зону при обработке.

При эксплуатации особо опасных видов оборудования, таких, как кузнечно-прессовые машины, установки с использованием радиоактивных веществ, для подачи этих веществ используются роботы и манипуляторы.

При комплексной автоматизации технологические процессы выполняются последовательно без вмешательства человека.

Применение управляющих машин экономит усилия работника, ускоряет выполнение операции и значительно облегчает труд даже по сравнению с автоматизированными устройствами.

Ведение производственного процесса при помощи управляющих машин исключает ошибки, всегда возможные при непосредственном управлении. Применение управляющих машин не только облегчает труд, но делает его безопасным /30/.

В неавтоматизированных производствах безопасность труда обусловлена степенью безопасности оборудования и технологических процессов.

4.1 Требования безопасности, предъявляемые к оборудованию

Основными требованиями охраны труда, предъявляемыми при создании станков, машин и механизмов, являются: безопасность для человека, надежность и удобство эксплуатации. Требования безопасности определяются системой стандартов безопасности труда.

Безопасность производственного оборудования обеспечивается правильным выбором принципов его действия, кинематических схем, конструктивных решений (в том числе форм корпусов, сборочных единиц и деталей), рабочих тел, параметров рабочих процессов, использованием различных средств защиты. Последние должны вписываться в конструкцию машин и агрегатов.

Средства защиты должны быть многофункционального типа, т. е. решать несколько задач одновременно. Так, конструкции машин и механизмов, станин станков должны обеспечивать не только ограждение опасных элементов, но и снижение уровня их шума и вибрации, ограждение абразивного круга заточного станка должно конструктивно совмещаться с системой местной вытяжной вентиляции.

Установки повышенной опасности должны быть выполнены с учетом специальных требований органов Госгортехнадзора России.

При наличии у агрегатов электропривода последний должен быть выполнен в соответствии с Правилами устройства электрических установок; в случае использования рабочих тел под давлением, не равным атмосферному, а также при конструировании и эксплуатации грузоподъемных машин должны соблюдаться требования Госгортехнадзора России.

Должны предусматриваться средства защиты от электромагнитных и ионизирующих излучений, загрязнений атмосферы парами, газами, пылями, воздействия лучистого тепла и т. п.

Надежность машин и механизмов определяется вероятностью нарушения нормальной работы оборудования. Такого рода нарушения могут явиться причиной аварий, травм. Большое значение в обеспечении надежности имеет прочность конструктивных элементов.

Конструкционная прочность машин и агрегатов определяется прочностными характеристиками как материала конструкции, так и его крепежных соединений (сварные швы, заклейки, штифты, шпонки, резьбовые соединения), а также условиями их эксплуатации (наличие, смазочного материала, коррозия под действием окружающей среды, наличие чрезмерного изнашивания и т. д.).

Большое значение в обеспечении надежной работы машин и механизмов имеет наличие необходимых контрольно-измерительных приборов и устройств автоматического управления и регулирования.

При несрабатывании автоматики надежность работы технологического оборудования определяется эффективностью действий обслуживающего перервала. Поэтому производственное оборудование и рабочее место оператора должны проектироваться с учетом физиологических и психологических возможностей человека и его антропометрических данных.

Необходимо обеспечить возможность быстрого правильного считывания показаний контрольно-измерительных приборов и четкого восприятия сигналов. Наличие большого числа органов управления и приборов (шкал, кнопок, рукояток, световых и звуковых сигналов) вызывает повышенное утомление оператора.

Органы управления (рычаги, педали, кнопки и т. д.) должны быть надежными, легкодоступными и хорошо различимыми, удобными в пользовании. Их располагают либо непосредственно на оборудовании, либо выносят на специальный пульт, удаленный от оборудования на некоторое расстояние.

Все виды технологического оборудования должны быть удобны для осмотра, смазывания, разборки, наладки, уборки, транспортировки, установки и управления ими в работе.

Степень утомляемости работающих на основных видах оборудования в цехах машиностроительных заводов обусловлена не только нервной и физической нагрузкой, но и психологическим воздействием окружающей обстановки, поэтому большое значение имеет выбор цвета внешних поверхностей оборудования и помещения.

Важнейшим условием обеспечения безопасности машин и механизмов является учет и выполнение требований без опасности на всех этапах их создания, начиная с разработки технического задания на проектируемое оборудование и кончая сдачей опытных образцов в серийное производство. Перечень такого рода требований определяется на основе анализа опасной зоны производственного оборудования /30/.

4.2 Опасные зоны оборудования и средства защиты

Наличие опасной зоны может быть обусловлено опасностью поражения электрическим током, воздействия тепловых, электромагнитных и ионизирующих излучений, шума, вибрации, ультразвука, вредных паров и газов, Пыли, возможностью травмирования отлетающими частицами материала заготовки и инструмента при обработке, вылетом обрабатываемой детали из-за плохого ее закрепления или поломки /30/.

Размеры опасной зоны в пространстве могут быть постоянными (зона между ремнем и шкивом, зона между вальцами и т. д.) и переменными (поле прокатных станов, зона резания при изменении режима и характера обработки, смена режущего инструмента и т. д.).

При проектировании и эксплуатации технологического оборудования необходимо предусматривать применение устройств, либо исключающих возможность контакта человека с опасной зоной, либо снижающих опасность контакта (средств защиты работающих).

Средства защиты работающих по характеру их применения делятся на две категории: коллективные и индивидуальные.

Средства коллективной защиты в зависимости от назначения подразделяются на следующие классы: нормализации воздушной среды производственных помещений и рабочих мест, нормализации освещения производственных помещений и рабочих мест, средства защиты от ионизирующих излучений, инфракрасных излучений, ультрафиолетовых излучений, электромагнитных излучений, магнитных и электрических полей, излучения оптических квантовых генераторов, шума, вибрации, ультразвука, поражения электрическим током, электростатических зарядов, от повышенных и пониженных температур поверхностей оборудования, материалов, изделий, заготовок, от повышенных и пониженных температур воздуха рабочей зоны, от воздействия механических, химических, биологических факторов.

Средства индивидуальной защиты в зависимости от назначения подразделяются на следующие классы: изолирующие костюмы, средства защиты органов дыхания специальная одежда, специальная обувь, средства за щиты рук, головы, лица, глаз, органов слуха, средства защиты от падения и другие аналогичные средства, защитные дерматологические средства.

Все применяющиеся в машиностроении средства коллективной защиты работающих по принципу действия можно разделить на оградительные, предохранительные, блокирующие, сигнализирующие, а также системы дистанционного управления машинами и специальные. Каждый из перечисленных подклассов, как будет показано ниже, имеет несколько видов и подвидов.

Общими требованиями к средствам защиты являются: создание наиболее благоприятных для организма человека соотношений с окружающей внешней средой и обеспечение оптимальных условий для трудовой деятельности; высокая степень защитной эффективности; учет индивидуальных особенностей оборудования, инструмента, приспособлений или технологических процессов; надежность, прочность, удобство обслуживания машин и механизмов, учет рекомендаций технической эстетики.

Оградительные средства защиты препятствуют появлению человека в опасной зоне. Применяются для изоляции систем привода машин и агрегатов, зон обработки заготовок, для ограждения токоведущих частей, зон интенсивных излучений (тепловых, электромагнитных, ионизирующих), зон выделения вредных веществ, загрязняющих воздушную среду, и т.д. Ограждаются также рабочие зоны, расположенные на высоте (леса и т. п.).

Конструктивные решения оградительных устройств многообразны. Они зависят от вида оборудования, рас положения человека в рабочей зоне, специфики опасных и вредных производственных факторов, сопровождающих технологический процесс.

Оградительные устройства делятся на три основные группы: стационарные (несъемные), подвижные (съемные) и переносные. Стационарные ограждения периодически демонтируются для осуществления вспомогательных операций (смены рабочего инструмента, смазывания, проведения контрольных измерений деталей и т.п.).

Их изготовляют таким образом, чтобы они пропускали обрабатываемую деталь, но не пропускали руки работающего из-за небольших размеров соответствующего технологического проема. Такое ограждение может быть полным, когда локализуется опасная зона вместе с машиной, или частичным, когда изолируется только опасная зона машины.

Примерами полного ограждения являются ограждения распределительных устройств электрооборудования, галтовочных барабанов, вентиляторов, корпуса электродвигателей, насосов и т.д.

Подвижное ограждение представляет собой устройство, сблокированное с рабочими органами механизма или машины. Оно закрывает доступ в рабочую зону при наступлении опасного момента. В остальное время доступ в указанную зону открыт. Широкое распространение такие оградительные устройства получили в станкостроении.

Переносные ограждения являются временными. Их используют при ремонтных и наладочных работах, например, на постоянных рабочих местах сварщиков для защиты окружающих от воздействия электрической дуги и ультрафиолетовых излучений (сварочные посты). Выполняются они чаще всего в виде щитов высотой 1,7 м.

Конструкция и материал ограждающих устройств определяются особенностями данного оборудования и технологического процесса. Ограждения выполняют в виде сварных или литых кожухов, жестких сплошных щитов (щитков, экранов), решеток, сеток на жестком каркасе. Размер ячеек в сетчатом и решетчатом ограждениях рассчитывают по формуле а=b/(6+5), где b - расстояние от ограждения до опасной зоны, мм.

В качестве материала ограждений используют металлы, пластмассы, дерево. При необходимости наблюдения за рабочей зоной кроме сеток и решеток применяют сплошные оградительные устройства из прозрачных материалов (оргстекла, триплекса и т. п.) /30/

Чтобы выдерживать нагрузки от отлетающих при обработке частиц и случайные воздействия обслуживающего персонала, ограждения должны быть достаточно прочными и хорошо крепиться к фундаменту или частям машины. При расчете на прочность ограждений, применяемых при обработке металлов и дерева, необходимо учитывать возможность вылета и удара об ограждение заготовок и режущего инструмента.

Предохранительные защитные средства предназначены для автоматического отключения агрегатов и машин при выходе какого-либо параметра оборудования за пределы допустимых значений, что исключает аварийные режимы работы.

На установках, работающих под давлением больше атмосферного, используют предохранительные клапаны и мембранные узлы.

В случае возможного выделения токсичных паров и газов, либо паров и газов, способных образовывать взрыво- и пожароопасные смеси, вблизи оборудования устанавливают стационарные автоматические газоанализаторы. При образовании концентрации токсичных веществ, равной ПДК, а концентрации горючих смесей в пределах 5 - 50% нижнего предела воспламенения включают аварийную вентиляцию. Ее основным функциональным звеном является датчик, в котором в зависимости от состава пробы газа возникает и формируется выходной сигнал, пропорциональный концентрации анализируемого компонента. Выходной сигнал датчика усиливается и поступает в измерительное устройство, где происходит оценка и фиксация значения сигнала.

Наряду с газоанализаторами с использованием электроэнергии в машиностроении применяют приборы аналогичного назначения без источников электроэнергии. Это газоанализаторы, использующие фотоколориметрический метод анализа, в основе которого -- цветная избирательная реакция между индикатором в растворе или на ленте и компонентом газовоздушной смеси; термокондуктометрический метод, основанный на изменении теплопроводности анализируемой смеси в зависимости от содержания в ней определяемого компонента; оптический метод, использующий явление изменения оптических свойств анализируемых паров и газов при изменении их количественных характеристик; ионизационный метод, в основу которого положена зависимость величины ионного тока, возникающего при ионизации анализируемых смесей, от содержания в них определяемого компонента.

Для предохранения от взрыва ацетиленовых генераторов и трубопроводов при проскоке пламени газовой горелки, а также трубопроводов и аппаратов, заполненных горючими газами, при проникновении в них кислорода или воздуха используют водяные предохранительные затворы. По принципу действия и давлению рабочего газа различают предохранительные затворы открытого (низкого давления) и закрытого (среднего давления) типа.

Для предотвращения взрывов в ресиверах применяют тепловые реле, отключающие двигатель компрессора при повышении температуры сжимаемого воздуха сверх допустимого значения.

Сжатый воздух широко используют в различных станках и агрегатах для крепления обрабатываемых деталей с помощью эксцентриковых зажимов. Такие приспособления необходимо обеспечивать устройствами, предотвращающими самопроизвольное освобождение зажимов при отключении давления или при значительном силовом воздействий со стороны рабочих органов оборудования (резца, фрезы и т. п.).

В электромагнитных плитах для закрепления обрабатываемого материала, подъема и переноски различных изделий следует предусматривать запасную проводку для питания электромагнитов от запасного источника, который должен включаться автоматически при прекращении подачи электроэнергии от основной сети.

Одним из видов предохранительных средств, обеспечивающих сохранность машин и повышение техники безопасности, являются слабые звенья в конструкциях технологического оборудования, деталей и сборочных единиц, рассчитанные на разрушение (или несрабатывание) при перегрузках;

К слабым звеньям относятся: срезные штифты и шпонки, соединяющие вал с маховиком, шестерней или шкивом, фрикционные муфты, не передающие движения при чрезмерных крутящих моментах, плавкие предохранители в электрооборудовании, разрывные мембраны в установках с повышенным давлением и т. п. Срабатывание слабого звена приводит к останову машины на аварийных режимах.

Слабые звенья делятся на две основные группы: системы с автоматическим восстановлением кинематической цепи после того, как контролируемый параметр пришел в норму (например, муфты трения), и системы с восстановлением кинематической цепи путем замены слабого звена (например, предохранители электроустановок).

Применение в цехе таких средств, как блокировочные устройства, исключают возможность проникновения человека в опасную зону либо устраняют опасный фактор на время пребывания человека в этой зоне.

Большое значение этот вид средств защиты имеет при ограждении опасных зон и там, где работу можно выполнять при снятом или открытом ограждении. По принципу действия блокировочные устройства делят на механические, электрические, фотоэлектрические, радиационные, гидравлические, пневматические, комбинированные.

Механическая блокировка представляет собой систему, обеспечивающую связь между ограждением и тормозным (пусковым) устройством. Например, для снятия ограждения кривошипно-шатунного механизма необходимо затормозить и полностью остановить привод механизма. Это осуществляется отключением электродвигателя или переводом ремня с рабочего на холостой шкив. При этом рычаг (направление движения которого показано стрелкой) дает возможность запорной планке выйти из направляющей.

При снятом ограждении агрегат невозможно запустить в работу. По такому принципу блокируют двери в помещениях испытательных стендов, а также в других, особо опасных помещениях, в которых пребывание людей во время работы оборудования запрещено.

Электрическую блокировку применяют на электроустановках с направлением от 500 В и выше, а также на различных видах технологического оборудования - с электроприводом. Она обеспечивает возможность включения оборудования только при наличии ограждения.

При электрической блокировке в ограждение встраивают концевой выключатель, контакты которого при закрытом ограждении включаются в электрическую схему управления оборудованием и допускают включение электродвигателя. При снятом или неправильно установленном ограждении контакты размыкаются, и электрическая цепь системы привода оказывается разорванной.

Радиочастотную электрическую блокировку также применяют для предотвращения попадания человека в опасную зону. Принцип работы блокировки в этом случае основан на применении электромагнитных полей высокой частоты, излучаемых в пространство генератором.

В момент попадания человека в опасную зону высокочастотный генератор подает импульс тока к электромагнитному усилителю и поляризованному реле. Контакты реле обесточивают схему магнитного пускателя, при этом обеспечивается электродинамическое торможение двигателя за десятые доли секунды. Время торможения регулируется при помощи переменного сопротивления.

Сигнализирующие устройства дают информацию о работе технологического оборудования, а также об опасных и вредных производственных факторах, которые при этом возникают. По назначению системы сигнализации делятся на три группы: оперативную, предупредительную и опознавательную.

По способу информации различают сигнализацию звуковую, визуальную, комбинированную (светозвуковую) и одоризационную (по запаху); последнюю широко используют в газовом хозяйстве.

Для визуальной сигнализации используют источники света, световые табло, подсветку шкал измерительных приборов, подсветку на мнемонических схемах, цветовую окраску, ручную сигнализацию. Для звуковой сигнализации применяют сирены или звонки.

Оперативная сигнализация находит применение при проведении разнообразных технологических процессов, а также на испытательных стендах. Чаще всего подача сигналов производится автоматически. Для этого используют различные приборы (вольтметры, гальванометры, манометры, и т. д.), снабженные контактами, замыкание которых происходит при определенных значениях контролируемых параметров.

Применяют также реле, срабатывающие на отклонение рабочих параметров данного технологического процесса (давление, температура и т. д.). Включение красных сигнальных ламп производится при подаче на оборудование цеха опасного напряжения. При снятии напряжения включаются зеленые сигнальные лампы.

Оперативную сигнализацию используют также для согласования действий работающих, в частности крановщиков и стропальщиков. Двусторонняя сигнализация устраивается между насосной станцией и гидромониторами.

Предупредительная сигнализация предназначена для предупреждения о возникновении опасности. Для этого используют световые и звуковые сигналы, одоризаторы, приводимые в действие от различных приборов, регистрирующих ход технологического процесса.

Подвидом предупредительной сигнализации являются газосигнализаторы -- приборы, осуществляющие звуковую или световую сигнализацию о достижении заранее устанавливаемого значения концентрации анализируемого компонента (или суммы компонентов) и не предназначенные для количественной оценки фактического значения концентрации до или после момента срабатывания сигнализации. Настройка газоанализаторов производится аналогично настройке автоматических газоанализаторов в системах, включающих аварийную вентиляцию.

Большое применение находит сигнализация, опережающая включение оборудования или подачу высокого напряжения. Она предусматривается на производствах, где перед началом работы в опасной зоне могут находиться люди (участки испытаний, автоматические линии сборочных цехов, литейные цехи и т. д.).

Предупреждающую сигнализацию следует предусматривать при проектировании вентиляции в пожаро- и взрывоопасных помещениях, при работе с радиоактивными веществами и т. п.

К предупредительной сигнализации относятся указатели, плакаты («Не включать -- работают люди», «Не входить», «Не открывать -- высокое напряжение» и др.). Указатели желательно выполнять в виде световых табло с переменной по времени (мигающей) подсветкой.

Наглядные плакаты являются средством, помогающим безопасному обслуживанию оборудования. Указатели и надписи с указанием допустимой нагрузки необходимо располагать непосредственно в зоне обслуживания машин и агрегатов.

Опознавательная сигнализация служит для выделения отдельных видов технологического оборудования, его наиболее опасных узлов и механизмов, а также зон. Для этих целей применяют систему сигнальных цветов и знаков безопасности по ГОСТ 12.4.026 - 76. Примером опознавательной сигнализации является окраска в соответствующие цвета баллонов со сжатыми, сжиженными и растворенными газами, трубопроводов, электрических проводов, рукояток и кнопок управления.

Так, запрещающие знаки выполняют в виде круга красного цвета с белым полем внутри, белой по контуру знака каймой и символическим изображением черного цвета на внутреннем белом поле, перечеркнутым наклонной полосой красного цвета.

Сигнальные лампочки, извещающие о нарушении условий безопасности, внутренние поверхности дверей ниш и других оградительных устройств, в которых рас положены механизмы передач станков и машин, требующие периодического доступа при наладке и способные при эксплуатации нанести травму работающему, окрашиваются в красный цвет.

В желтый цвет окрашиваются элементы строительных конструкций, которые могут являться причиной получения травм работающих, производственного оборудования, неосторожное обращение с которыми представляет опасность для работающих; внутрицехового и меж цехового транспорта, подъемно-транспортных машин, ограждений, устанавливаемых на границах опасных зон; подвижные монтажные устройства или их элементы и элементы грузозахватных приспособлений, подвижных частей кантователей, траверс, подъемников; границы подходов к эвакуационным или запасным выходам /30/

Предупреждающие знаки представляют собой равносторонний желтого цвета треугольник со скругленными углами, обращенный вершиной вверх, с каймой черного цвета и символическим изображением черного цвета.

Предписывающие знаки, разрешающие определенные действия работающих только при выполнении конкретных требований охраны (обязательное применение средств защиты работающих, принятие мер по обеспечению безопасности труда), требований пожарной безопасности, либо указывающие пути эвакуации, представляют собой квадрат зеленого цвета с белой каймой по контуру и белым полем квадратной формы внутри него, на которое должны быть нанесены черным цветом символическое изображение или поясняющая надпись. На знаках пожарной безопасности поясняющие надписи выполняют красным цветом.

Указательные знаки должны быть следующими: синий прямоугольник, окантованный белой каймой по контуру, с белым квадратом внутри. Внутри белого квадрата должны быть нанесены символическое изображение или поясняющая надпись черного цвета, за исключением символов и поясняющих надписей пожарной безопасности, которые выполняют красным цветом.

Таковы основные положения, отражающие технику безопасности и экологию на предприятии машиностроения.

5. Технологическая часть

5.1 Описание, назначение детали и условий работы ее основных поверхностей, исходя из чертежа детали

Рассмотрим особенности технологии заданной детали шток. Шток выполняет роль опоры и основания, для закрепления на него других деталей, при помощи резьбы М20, фрезерованной поверхности и посадочных поверхностей Ш 32 f9 (допуск в интервале с (-0,025) по (-0,087) мм.) и Ш 24 е8 (допуск в интервале с (-0,040) по (-0,073) мм). Данные посадки относятся к посадке с зазором, в связи с чем деталь будет закреплена жестко не по всем её поверхностям.

Описание типа производства и форма организации труда: тип производства - гибкое мелкосерийное автоматизированное.

Серийное производство характеризует периодическое технологически непрерывное изготовление некоторого количества одинаковой продукции в течение продолжительного промежутка календарного времени. Производство изделий осуществляется партиями.

На одном и том же заводе, а нередко в одном и том же цехе одни изделия изготавливаются единицами, другие периодически повторяющимися партиями, третьи - непрерывно. Следовательно, на одном и том же заводе и даже в цехе могут быть совмещены три типа производств. Это во многом зависит от продолжительности операций технологического процесса изготовления изделий.

Так изготовление базовых деталей станка может быть организовано по принципу крупносерийного производства, в то время как на участках по изготовлению изделий типа тел вращения, что имеется в нашем случае, может быть среднесерийное или даже мелкосерийное производство.

Это связано с тем, что трудоемкость обработки базовых деталей в десятки раз выше трудоемкости изготовления деталей типа тел вращения. Поэтому отнесение производства завода или цеха к одному из типов обычно делается по преобладающему типу производства.

Основная характеристика гибкого мелкосерийного автоматизированного производства - это способность оборудования и оснастки к переналадке, адаптации к изменяющимся требованиям или условиям производства. Гибкость производства отражает возможность быстрого внесения коррекций в производственный процесс, например, в связи с изменением конструкции изделия, каких-либо отдельных требований, сроков изготовления, материала или его свойств, а также в связи с поломкой оборудования или системы управления.

Под автоматизацией технологических процессов понимают применение энергии неживой природы для выполнения и управления ими без непосредственного участия людей, осуществляемое в целях улучшения условий производства, повышения объема выпуска и качества продукции.

Поэтому в гибком мелкосерийном автоматизированном производстве рекомендуется использовать механизированное и автоматизированное оборудование, позволяющее производить быструю переналадку. Особенно эффективны станки с ЧПУ, промышленные и гибкие производственные системы /9/.

Современный этап развития автоматизации характеризуется созданием универсальных машин и станков с ПУ, непосредственно управляемых от ЭВМ в режиме разделения времени. Управление от одной ЭВМ несколькими рабочими машинами, станками с ПУ и вспомогательным оборудованием позволило создать системы машин: гибкие производственные модули, участки, линии.

Достижение отечественного и зарубежного станкостроения, вычислительной техники и электроники позволили создать высокоавтоматизированные технологические комплексы оборудования, функционирующие без участия человека. Переход на безотходную технологию в условиях многономенклатурного серийного производства возможен на основе использования гибких производственных систем (ГПС).

Анализ технологичности детали: в комплексе требований, предъявляемых к технико-экономическим показателям промышленных изделий важное место занимают вопросы технологичности конструкций изделий /8/.

Технологичность конструкций изделий определена ГОСТ 14205-83, как совокупность свойств конструкции изделия определяющих ее приспособленность к достижению оптимальных затрат при производстве, эксплуатации и ремонте для заданных показателей качества, объема выпуска и выполнения работ.

Стандартами ЕСТГШ установлена обязательность отработки конструкции изделия на технологичность и количественной оценки технологичности на всех стадиях создания изделия.

Производственная технологичность конструкций изделий проявляется в сокращении затрат, средств и времени на конструкцию и технологическую подготовку производства, а так же на изготовление, в том числе на контроль и испытание изделий; эксплуатационную технологичность конструкции изделия - в сокращении затрат, времени и средств на техническое обслуживание, текущий ремонт и утилизацию изделия; ремонтная технологичность конструкции изделия - в сокращении затрат при всех видах ремонта, кроме текущего.

Конструкция детали должна соответствовать следующим требованиям /8/:

1. Наличие удобных и надежных базирующих поверхностей.

2. Удобный подход режущего инструмента к обрабатываемым поверхностям. Наименьшее количество используемых режущих инструментов.

3. Унификация конструктивных элементов (канавки, резьбы, фаски).

4. Наличие канавок для выхода инструмента

5. Соответствие размеров точных поверхностей стандартному ряду

6. Достаточная жесткость детали.

7. Хорошая обрабатываемость материала

Анализируются так же размерные соответствия, возможность обработки «на проход», необходимость в специальном режущем инструменте.

Вывод: По своим конструктивным особенностям деталь шток- технологична.

5.2 Обоснование выбора базирующих поверхностей

На операцию 005 - токарная, в качестве базы принимается поверхность диаметра вала. Производится подрезание торца и центрование отверстия. Операция 010 - токарная.

Установочной базой является поверхность диаметра вала и центрованное отверстие, обработанное в предыдущей операции 005. Операция 015 -токарная.

Установочной базой является поверхность Ш 32, обработанная в предыдущей операции -010. При таком базировании будет соблюден принцип совмещения баз (измерительной и установочной). Эту же базу используем на операции 020 -токарная; 025 -фрезерная, при этом выполняется принцип постоянства баз, что позволяет выполнить требования чертежа по взаимному расположению поверхностей, относительно оси вращения детали. Операция 030--шлифовальная

В качестве установочной базы является два центрованных отверстия на торцах детали. Базирование подобным методом позволяет шлифовать поверхности Ш32 и Ш 24 с точностью, согласно требованиям чертежа.

5.3 Определения и обоснование метода получения заготовки

Для определения метода получения заготовки выберем из всех методов самый оптимальный, руководствуясь /3/:

а) формой и размерами заготовки;

б) шероховатостью;

в) программой выпуска;

г) маркой материала.

Литье практически не используется для изготовления заготовок в виде валов. Наш случай не является исключением. В виду того, что производство мелкосерийное, а КИМ из-за большой разницы диаметров довольно небольшой - подходит круглый прокат. Принимаем в качестве заготовки сортовой прокат по ГОСТ 14637-89.

5.4 Аналитический расчет припуска на поверхность

При работе максимального и минимального припуска руководствуемся рекомендациями по проведению данных расчетов, изложенных в источниках /3, 17, 18, 23, 24, 25 / и др.

Исходные данные:

Деталь «Шток». Технические характеристики: Внутренняя поверхность Ш 24е8 допуск в интервалах от (-0,040) до (-0,073). Шероховатость Ка =3,2. Общая длина детали 1060 мм., длина обрабатываемой поверхности 27 мм. Метод получения заготовки - прокат. Обработка ведется в трех кулачковом патроне токарного станка 16К20Ф3С32.

- Точение черновое

- Точение под шлифование

- Шлифование

В графу 2 записываем элементарную поверхность детали и технологические переходы в порядке последовательности их выполнения.

Заполняем графы 3, 4 и 9, по всем технологическим переходам. Данные для заполнения граф 3 и 4 взяты из таблиц допуск (графа 9) на диаметральный размер проката взят из таблицы

Суммарное значение пространственных погрешностей при обработке наружной поверхности:

ро = vР2СМ2 + Р2кор

где Рcм- допускаемые погрешности по оси смещению осей фигур, принимаем 700 мкм

Ркор = общая кривизна заготовки

Ркор = Р к * Lз,

где Р к -- удельная допустимая кривизна, приминаем 3 мкм/мм

Lз - длина заготовки, равна 1060мм

Р0 = 3x1060 = 3180 мкм

Находим коэффициенты уточнения.

-точение черновое Ку =0,06

-точение под шлифование Ку =0,04

-шлифование Ку =0,02

Рi = рKу

р 1=3180x0,06 =190,8 мкм

р2= 190,8x0,04 = 7,6 мкм

р з = 7,6x0,02 = 0,15 мкм

Данные заносим в графу 5.

Погрешность установки заготовок (графа 6) в трех кулачковом само центрирующем патроне при черновом обрабатывании 200 мкм.

При чистовом обтачивании без переустановки еi = 0

Расчет минимального припуска (графа 7) при обработке наружной поверхности проката в патроне проводят по формуле:

2Zmin = 2(R z.j-1+ Tj-1 + P j-1 2 + еi ) - точение черновое:

2 Zmin =2(160 + 1060 + 31802 + 2002 )=8812 мкм - точение под шлифование:

2 Zmin = 2 ( 50 + 50 + 190,82 + 02 ) = 581 мкм - шлифования:

2 Zmin = 2 ( 25 + 25 + 7,62 + 02 ) = 115 мкм

Расчет промежуточных минимальных диаметров по переходам (графа 8) проводят в порядок, обратно ходу технологического процесса обработки этой поверхности, т. е. от размера готовой детали к размеру заготовки, и наименьшему предельному размеру готовой поверхности детали минимальному припуску 2 Zmin.

бmin j-1= бmin о +Z min c

бmin1= 24 -0,033 = 23,927

бmin2=23,927+ 0,115 = 24,042

бmin3 = 24,042 + 0,581 = 24,623

бmin4 = 24,623 + 8,812 = 33,435

...

Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.