Процесс пиролиза этановой фракции

Физико-химические свойства исходных, промежуточных и конечных продуктов пиролиза этановой фракции. Химизм процесса по стадиям, физико-химические основы. Рабочие технологические параметры. Аналитический контроль и материальный баланс производства.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 02.10.2017
Размер файла 457,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В зависимости от объекта аналитического контроля и его цели различают следующие виды анализов, с помощью которых производят оценку химического состава: маркировочные, скоростные, арбитражные. Маркировочные анализы проводят для контроля химического состава и свойств сырья и материалов, поступающих на предприятие. Они предназначены также для объективной оценки работы предприятия. По результатам маркировочных анализов определяют качество полупродуктов и готовой продукции, ее соответствие установленным нормам. Маркировочные анализы должны отличаться большой достоверностью и правильностью, так как на их основе делают технологические и экономические расчеты.

Скоростные (экспрессные) методы применяют при текущем контроле промежуточных и готовых продуктов, с их помощью устанавливают правильность технологического режима. Основное требование, предъявляемое к анализам этого вида, - повышенная скорость, чтобы результаты могли быть своевременно использованы в процессе производства.

Арбитражные анализы производят в случае необходимости получения особенно точных сведений о химическом составе, при разногласиях между заводом-поставщиком и предприятием-потребителем, например по поводу химического состава сырья.

Заключения о качестве вещества основаны на сопоставлении данных анализа, выполненного на предприятии аналитической службой (в лаборатории), с определенными показателями. Ниже перечислены некоторые типы таких показателей.

Таблица 12 Нормативы показателей

Оцениваемый объект

Тип норматива

Сырье

Допускаемые пределы изменения содержания компонентов (допуск на состав)

Полупродукты

Допустимые технологическим регламентом колебания состава среды в реакторе

Готовая продукция

Содержание компонентов в продуктах, аттестуемых на Знак качества или предназначенных на экспорт

Окружающая среда

Фоновые содержания элементов или их соединений в природе

При осуществлении контроля химического состава особенно важно получение правильных и достоверных результатов, для достижения которых используют теорию ошибок и математическую обработку результатов анализа (см. гл. 7). При этом можно исходить из двух общих задач: 1) согласование норм на содержание тех или иных ком'нонентов или стабильности значений содержаний во множестве партий оцениваемых объектов и выявление доли неверно аттестованных партий и 2) индивидуальный контроль отдельной партии. Для решения первой задачи необходим сплошной контроль, а для решения второй - выборочный. Сплошной контроль, т.е. анализ каждой партии, необходим в следующих случаях: а) ответственное назначение продукта; б) высокая стои-мо. сть партии; в) недостаточная стабильность контролируемых объектов, например полупродуктов технологического процесса, и др. Точность анализа во всех указанных случаях также лимитирована нормативами. Желательно, чтобы доверительная вероятность составляла 0,99 или 0,95.

При проведении химического анализа используют химические, физико-химические и физические методы в сочетании с химическими, физико-химическими методами разделения и концентрирования элементов. Выбор метода обнаружения или количественного определения компонентов зависит от фазового состояния объекта анализа, его химико-аналитических свойств и способа проведения анализа (мокрым или сухим путем, с разрушением или без разрушения пробы и т.п.). При выборе метода учитывают также требуемую точность определения, чувствительность метода, необходимую скорость проведения анализа, оснащение лаборатории и другие факторы.

Аналитическая служба предприятия (заводская лаборатория) связана с другими службами предприятия и другими организациями, в частности с отраслевыми научно-исследовательскими институтами. Она включает аппаратуру, вещества, производственные площади, обслуживающий персонал, энергетические ресурсы и т.д. Эта сложная система постоянно развивается и совершенствуется, что связано с непрерывным развитием всего народного хозяйства. Постоянно повышаются требования к получению аналитической информации с технической и экономической точек зрения. Аналитический контроль должен характеризоваться небольшой продолжительностью анализа, небольшими затратами рабочей силы и экономией мощности, высокими избирательностью, точностью и чувствительностью определения. Это достигается путем внедрения технических средств аналитического контроля: механизации, инструментальных методов анализа, автоматизации и использования ЭВМ.

Таблица 13 Аналитический контроль производства

№№

п/п

Что

контролируется

Частота и

способ контроля

Нормы и

технологические показатели

Предельно- допустимые параметры

Кто контролирует

1.

Состав пирогаза после аппарата Т-2

1 раз в смену с 2-х работающих печей

Хроматографический

Не регламен-тируется.

Не регламентируется

Лаборатория по контролю цехов по производству этилена -пропилена УК.

Содержание СО2 в пирогазе

1 раз в смену с 2-х остальных работающих печей

Хроматографический

Не регламентируется

Не регламентируется

"-"

Содержание СО2 в пирогазе

По требованию со всех работающих печей

Хроматографический

Не регламен-тируется

Не регламен-тируется

"-"

2.

Содержание СО2 в газах выжига кокса

Через час по прибору ОРСа. В конце выжига через каждые 30 минут.

Поглощением

(0,2-6) % об.,

не более 0,2% об. в конце выжига

Не более 6% об.

не более 0,2 об.

в конце выжига

Аппаратчик

3.

Продувочная вода из аппарата Е-4 печей пиролиза:

3.1.

Cолесодержание

Кондуктометрический,

1 раз в неделю с записью в документации

(1200-1500) мг/дм3

Не более 1500 мг/дм3

Лаборатория по контролю цехов по производству фенола-ацетона УК

3.2.

Общая щелочность

Титриметрический

1 раз в неделю с записью в документации

Не более 5

мг-экв/дм3

Не более 5

мг-экв/дм3

"-"

3.3.

Содержание шлама

Визуально,

1 раз в неделю с записью в документации

Отсутствие

Отсутствие

"-"

3.4.

Содержание кремнекислоты в пересчете на SiO2

Колориметрический,

1 раз в неделю с записью в документации.

Не регламентируется

Не регламентируется

"-"

3.5.

Значение РН

Потенциометрический

1 раз в неделю с записью в документации.

Не менее 9,0

Не менее 9,0

Лаборатория по контролю цехов по производству этилена -пропилена УК.

3.6.

Удельная электропроводност

Кондуктометрический,

1 раз в неделю с записью в документации.

Не более 500 мСм/см

Не более 500 мСм/см

"-"

Таблица 14 Сигнализация предельных параметров

№№

пп

Параметр

Позиция прибора

Сигнализирует

когда

Место

сигнала

1.

Температура пирогаза на выходе I, II, III, IV потоков

44-1

44-2

44-3

44-4

Температура повышена до 835оС

Щит КИПиА корп.0776

2.

Расход этана на I, II, III, IV потоки

63-1

63-2

63-3

63-4

Расход менее 1,0 т/ч

То же

3.

Расход пара разбавления на I, II, III, IV потоков

68-1

68-2

68-3

68-4

Расход менее 400 кг/ч

То же

4.

Уровень в паросборнике Е-4

72

Минимальный 40% максимальный 80%

То же

5.

Температура дымовых газов на своде печи

47-3

47-6

47-9

47-12

Температура повышена до 1085оС

То же

6.

Давление топливного газа после отсечного клапана

104

Давление понижено до 3 кгс/см2

То же

7.

Давление этана на входе в печь

103

Давление понижено до 3,0 кгс/см2

То же

8.

Давление воздуха КИП на от- сечной клапан на линии пожаротушения

102

Давление на клапан 0,8 кгс/см2

То же

9.

Разряжение в печи

105

Разряжение понижено до 3,0 мм.вод.ст.

То же

10.

Загазованность в районе печей пиролиза П-1I-VI

Поз.

QISA 6511.10,

QISA 6511.11,

QISA 6511.12,

QISA 6511.13,

QISA 6511.14,

QISA 6511.15.

Выше 15% от нижнего концентрационного предела взрываемости газов

То же

11.

Загазованность в районе печей пиролиза П-1I-VI

Поз.

QISA 6511.10,

QISA 6511.11,

QISA 6511.12,

QISA 6511.13,

QISA 6511.14,

QISA 6511.15.

Выше 35% от нижнего концентрационного предела взрываемости газов

Щит КИПиА корпус 0776, включение звукового сигнала на наружной установке.

Лабораторный контроль необходим для обеспечения устойчивой работы производства и выпуска качественной продукции.

В производстве используются следующие методы контроля:

- йодометрический - определяется количество водорода в сырье пиролиза, количество кислорода в питательной воде, подаваемой в котлы-утилизаторы и закалочные устройства;

- хроматографический - определяется количество этилена, пропилена, СО2 в пирогазе, полный состав легкой и тяжелой смолы, количество кислорода в газах продувки, полный состав пирогаза, идущий на компримирование;

- титрованием - определяется количество К2СО3 и КНСО3в рабочем растворе ингибитора;

- трилонометрический - определяется жесткость питательной воды;

- колориметрический - содержание солей железа в питательной воде;

- потенциометрически - определяется рН питательной воды в котле-утилизаторе и пара из котла-утилизатора.

6. Материальный баланс производства

Пиролиз этана осуществляют в трубчатых печах в среде водяного пара при температуре 830--900оС и давлении, близком к атмосферному.

Исходные данные: годовая производительность установки по этилену 200 000 т; годовой фонд рабочего времени 8000 ч; состав исходной этановой фракции (ц1, %): С2Н4 - 0,73; С2Н6 - 89,80; С3Н6 - 4,69; С3Н8 - 4,70; С4Н8 - 0,08; массовое отношение водяной пар: этановая фракция = 0,4: 1,0; температура процесса 845 °С.

Последовательность расчета:

а)определяем степень конверсии этана в этилен по целевой реакции пиролиза;

б)рассчитываем объемный расход компонентов этановой фракции на входе в трубчатую печь (основной аппарат пиролизной установки);

в)определяем изменение состава газа в процессе пиролиза и состав газа на выходе из трубчатой печи.

Кинетика основной реакции процесса пиролиза

С2Н6 ± С2Н4 + Н2

удовлетворительно описывается уравнением первого порядка:

К = (2,303/ф) · Lg ·[a/(a - x)],

где К - константа скорости реакции, с-1; ф - время, прошедшее от начала реакции (оптимальная продолжительность пребывания реагентов в зоне высоких температур), с; а, х - количество реагента исходное и вступившее в реакцию соответственно, %.

Константу скорости реакции определяют по формуле:

lg К = 14,676 - 15800/Т,

где Т - температура процесса, К (Т = 845 + 273 = 1118 К).

lg К = 14,676 - 15800/1118 = 0,544; К = 3,5 с-1.

Продолжительность пребывания реагентов в зоне высоких температур определяют по формуле:

lg ф = -12,75 + 13700/1118 = -0,496=1,504; ф =0,32 с.

Определяем степень конверсии этана:

3,5 = (2,303/0,32) · lg·[100/(100 - х)]; х=67,3%.

Следовательно, степень конверсии этана б - 0,673. Фактическая степень конверсии этана в этилен меньше за счет повышения давления до 0,5 МПа и наличия в этановой фракции более тяжелых компонентов. При температуре 845 °С и времени контакта ф = 0,32 с степень конверсии этана в этилен составляет 60% (а' = 0,6).

Селективность процесса по основной реакции равна:

Я = а'/а = 0,6/0,673 = 0,89.

Часовая производительность установки в расчете на 100%-й этилен составит:

200 000 - 1000/8000 = 25000 кг/ч или 25000/28 = 892,86 кмоль/ч.

Расход этана, находящегося в составе поступающей на пиролиз этановой фракции:

892,86/0,6 = 1488,1 кмоль/ч.

Общий расход этановой фракции:

1488,1/0,898=1657,1 кмоль/ч.

Определяем состав этановой фракции на входе в трубчатую печь (табл. 5).

Количество водяного пара на входе в трубчатую печь (поток 2):

51743 · 0,4 = 20697 кг/ч или 1149,844 кмоль/ч.

Таблица 13 Состав этановой фракции (поток 1)

Компонент

цi(xi),%

nф кмоль/ч

Vф м3

mф кг/ч

Wi, %

С2Н4

С2Н6

С3Н6

С3Н8

С4Н8

0,73 4,69 89,80

4,69

4,70

0,08

12,1

1488,1

77,7

77,9

1,3

271

33333

1741

1745

29

339

44643

3263

3428

70

0,65

86,27

6,31

6,62

0,15

сумма

100,00

16571,1

37119

51743

100,00

Количество парогазовой смеси на входе в трубчатую печь (поток 3):

51743 + 20697 = 72420 кг/ч.

По основной реакции:

С2Н6 = C2H4 + H2 (1)

расход этана составляет 892,86 кмоль/ч или 26786 кг/ч; образуется:

этилена: 892,86 кмоль/ч или 25000 кг/ч;

водород: 892,86 кмоль/ч или 1786 кг/ч.

Всего конвертируется этана:

1488,1 · 0,673 = 1001,5 кмоль/ч.

По реакции образования метана

С2Н6 + Н2 = 2СН4 (2)

расходуется:

этана: 1001,5 - 892,86 = 108,64 кмоль/ч или 3259 кг/ч;

водорода: 108,64 кмоль/ч или 217 кг/ч;

образуется метана:

108,64 · 2 = 217,28 кмоль/ч или 3476 кг/ч.

Остается этана в составе пирогаза:

1488,1 - 1001,5 = 486,6 кмоль/ч или 14598 кг/ч.

Пропилен в составе этановой фракции конвертируется по двум реакциям:

СзН6 = С2Н2 + СН4 (3)

С3Н6 + ЗН2 = ЗСН4 (4)

По реакции 3, согласно экспериментальным данным, расходуется 8,5% пропилена, что составляет:

77,7 · 0,085 = 6,6 кмоль/ч или 277 кг/ч;

образуется:

ацетилена: 6,6 кмоль/ч или 172 кг/ч;

метана: 6,6 кмоль/ч или 106 кг/ч.

По реакции 4 расходуется 26% пропилена, что составляет:

77,7 · 0,260 = 20,202 кмоль/ч или 848 кг/ч;

образуется метана:

20,202 ·3 = 60,61 кмоль/ч или 970кг/ч.

Расход водорода составляет 60,61 кмоль/ч или 121 кг/ч. Остается пропилена в составе пирогаза:

77,7 - 6,6 - 20,202 = 50,898 кмоль/ч или 2138 кг/ч.

Пропан в составе этановой фракции конвертируется по следующим реакциям:

3Н8 = С4Н6 + 2СН4 + Н2 (5)

3Н8 = С4Н8 + 2СН4 (6)

3Н8 = C5Hl0 + CH4 + H2 (7)

2СзН8 = С4Н10 + С2Н4 + Н2 (8)

С3Н8 + 2Н2 = ЗСН4 (9)

По реакции 5 расходуется 55,0% пропана, что составляет:

77,9 · 0,55 = 42,845 кмоль/ч или 1885 кг/ч;

образуется:

бутадиена: 42,845/2 = 21,423 кмоль/ч или 943 кг/ч;

метана: 42,845 кмоль/ч или 686 кг/ч;

водорода: 21,423 кмоль/ч или 42 кг/ч.

По реакции 6 расходуется 6,0% пропана, что составляет:

77,9 · 0,06 = 4,674 кмоль/ч или 206 кг/ч;

образуется:

бутиленов: 4,674/2=2,337 кмоль/ч или 135 кг/ч;

метана: 4,674 кмоль/ч или 74 кг/ч.

Всего содержится бутиленов в пирогазе:

2,337 + 1,3 = 3,637 кмоль/ч или 203 кг/ч.

По реакции 7 расходуется 8,5% пропана, что составляет:

77,9 · 0,085 = 6,6 кмоль/ч или 290 кг/ч;

образуется:

пентенов: 6,6/2=3,3 кмоль/ч или 231 кг/ч;

метана: 3,3 кмоль/ч или52 кг/ч;

водорода: 3,3 кмоль/ч или 6 кг/ч.

По реакции 8 расходуется 10% пропана, что составляет:

77,9 · 0,1 = 7,79 кмоль/ч или 342 кг/ч;

образуется:

бутана: 7,79/2 = 3,895 кмоль/ч или 225 кг/ч;

этилена: 3,895 кмоль/ч или 109 кг/ч;

водорода: 3,895 кмоль/ч или 7 кг/ч.

По реакции 9 расходуется 17,5% пропана, что составляет:

77,9 · 0,175 = 13,633 кмоль/ч или 600 кг/ч.

Расход водорода составляет:

13,633 · 2 = 27,268 кмоль/ч или 54 кг/ч.

Образуется метана:

13,633 ·3 = 40,899 кмоль/ч или 654 кг/ч.

Остается пропана в пирогазе:

77,9 - (42,845 + 4,674 + 6,6 + 7,79 + 13,633) = 2,358 кмоль/ч или 103 кг/ч.

Бутадиен взаимодействует с этиленом по реакции

С4Н6 + С2Н4 = С6Н6 + 2Н2 (10)

В эту реакцию вступает 23,5% образовавшегося бутадиена, что составляет:

21,423 · 0,235 = 5,034 кмоль/ч или 271 кг/ч.

Расход этилена составляет: 5,034 кмоль/ч или 140 кг/ч;

образуется:

бензола: 5,034 кмоль/ч или 392 кг/ч;

водорода: 5,034 · 2 = 10,068 кмоль/ч или 20 кг/ч.

Остается бутадиена:

21,423 - 5,034 = 16,389 кмоль/ч или 885 кг/ч.

Всего образуется метана по реакциям 2 - 7, 9:

217,28 + 6,6 + 60,61 + 42,845 + 4,674 + 3,3 + 40,899 = 376,208 кмоль/ч или 6019 кг/ч.

По реакции

СН4 + Н20 = СО + ЗН2 (11)

конвертируется 2,6% метана, что составляет:

376,208 · 0,026 =9,781 кмоль/ч или 156 кг/ч.

Расход водяного пара:

9,781 кмоль/ч или 176 кг/ч;

образуется:

оксида углерода: 9,781 кмоль/ч или 273 кг/ч;

водорода: 9,781 · 3 = 29,343 кмоль/ч или 58 кг/ч.

Остается:

метана: 376,208 - 9,781 = 366,427 кмоль/ч или 5862 кг/ч;

водяного пара: 1149,844 - 9,781 = 1140,063 кмоль/ч или 20521 кг/ч;

где 1149,844 - молярный поток водяного пара на входе в трубчатую печь (поток 2), кмоль/ч.

Образуется водорода по реакциям 1, 5, 7, 8, 10, 11:

892,86 + 21,423 + 3,3 + 3,895 + 10,668 + 29,343 = 960,886 кмоль/ч

или 1922 кг/ч.

Расход водорода по реакциям 2, 4, 9:

108,64 + 60,61 + 27,268 = 196,518 кмоль/ч или 393 кг/ч.

Остается водорода в пирогазе:

960,886 - 196,518 = 764,368 кмоль/ч или 1528 кг/ч.

Этилена в составе этановой фракции содержится 12,1 кмоль/ч (см. табл. 1), образуется по реакции 8: 3,895 кмоль/ч, расходуется по реакции 10: 5,034 кмоль/ч.

Остаток 12,1 + 3,895 - 5,034 = 10,961 кмоль/ч представляет собой потери на стадии выделения этилена из пирогаза. В составе пирогаза (на выходе из трубчатой печи) содержится этилена:

892,86 + 10,961 = 903,821 кмоль/ч или 25307 кг/ч.

Потери этилена составляют:

10,961 · 100/903,821 = 1,2%,

что соответствует оптимальному технологическому режиму. Коксообразованием в процессе пиролиза пренебрегают.

По результатам расчета составляем табл. 6.

Таблица14 Состав пирогаза (поток 6)

Компонент

nф кмоль/ч

Хi, %

Vф м3

mф кг/ч

Wi, %

Сухой газ:

метан

366,427

13,97

8208

5862

11,29

ацетилен

6,6

0,25

147

172

0,33

этилен

903,821

34,46

20245

25307

48,74

этан

486,6

18,55

10905

14598

28,11

пропилен

50,898

1,94

1140

2138

4,12

пропан

2,358

0,09

53

103

0,2

бутадиен-1,3

16,389

0,62

366

885

1,7

бутилены

3,637

0,14

81

203

0,39

бутан

3,895

0,15

87

225

0,44

пентены

3,3

0,13

74

231

0,45

бензол

5,034

0,19

113

392

0,76

водород

764,368

29,14

17121

1528

2,94

оксид углерода

9,781

0,37

218

273

0,53

Сумма

2623,108

100

58758

51917

100

Водяной пар

1140,063

25537

20521

Всего

3763,171

84295

72438

Необходимые округления при определении массовых потоков компонентов (в кг/ч) обусловлены точностью расчетов и необходимостью соблюдения закона сохранения масс.

Расчет основных расходных коэффициентов. Для получения 25000 кг/ч 100%-го этилена затрачивается 51743 кг/ч этановой фракции и 20697 кг/ч водяного пара (см. табл. 6).

Рассчитывают расходные коэффициенты:

по этановой фракции: 51743/25000 = 2,070 кг/кг;

по водяному пару: 20697/25000 = 0,828 кг/кг.

что соответствует показателям эксплуатации промышленных установок.

Образуется дополнительно на 1 т этилена, кг:

пропилена: 2138/25,00 = 85,5;

бутадиена -1,3: 885/25,00 = 35,4;

бензола: 392/25,00 = 15,7.

Исходные данные: в трубном пространстве ЗИА охлаждается пирогаз, который содержит: сухого газа - 58758/(9 - 3600) = 1,813 м3/с; водяного пара - 25537/(9 - 3600) = 0,788 м3/с;

компонентный состав пирогаза см. табл. 6; температура пирогаза, °С: на входе -- 845; на выходе -- 420; давление пирогаза 0,45 МПа;

в межтрубное пространство подают умягченную воду при температуре 323 °С, соответствующей температуре кипения при давлении 12 МПа.

Цель расчета - определение паропроизводительности и тепловой нагрузки (теплового потока) аппарата.

Уравнение теплового баланса аппарата в общем виде:

Ф1 + Ф2 = Ф3 + Ф4 + Фпот,

где Ф1,Ф2,Фз, Ф4 - тепловые потоки поступающего пирогаза, умягченной воды, уходящего пирогаза и получаемого насыщенного водяного пара соответственно, кВт; Фпот - теплопотери в окружающую среду, кВт.

Для определения значений Ф1 и Ф3 рассчитывают средние объемные теплоемкости пирогаза при температуре Т1 = 845 + 273=1118 К и Т3 = 420 + 273 = 693 К соответственно (см. табл. 4).

Объемная теплоемкость водяного пара:

при Т1 = 1118 К с = 42,00/22,4 =1,8750 кДж/(м3-К); при Т3 = 693 К с = 37,49/22,4 = 1,6737 кДж/(м3-К).

Тепловой поток пирогаза на входе в ЗИА (поток 6): Ф1 = (1,813 · 3,7634 + 0,788 · 1,8750) · 845 = 7013,96 кВт.

Таблица 15 Расчет средних объемных теплоемкостей

Т1 =1118 К

Т3=693 К

Компонент

цi,,%

СI, Дж/ /(моль·К)

СIцi, /(100·22,4), кДж/(м3·К)

СI, Дж/ /(моль·К)

СIцi,/(100·22,4), кДж/(м3· К)

СН4 С2Н2 С2Н4 С2Н6 С3Н6 С3Н8

С4Н6

С4Н8 С4Н10 С5Н10 С6Н6

Н 2

СО

13,97

0,25

34,46

18,55

1,94

0,09

0,62

0,14

0,15

0,13

0,19

29,14

0,37

76,00 67,85 100,36 129,21 163,55 186,33 173,92 209,32 241,80 260,83 213,92 30,96 32,95

0,4740

0,0076

1,5439

1,0700

0,1416

0,0075

0,0481

0,0131

0,0162

0,0151

0,0181

0,4028

0,0054

57,69

59,91

77,67

99,32

120,13

143,98

139,51

161,72

184,10

199,39

174,61

29,64

31,15

0,3598 0,0067 1,1949 0,8225 0,1040 0,0058 0,0386 0,0101 0,0123 0,0116 0,0148 0,3856 0,0051

Сумма

100,00

--

3,7634

--

2,9718

Тепловой поток пирогаза на выходе из ЗИА (поток 7) :

Ф3 = (1,813 · 2,9718 + 0,788 · 1,6737) · 420 = 2816,83 кВт.

Тепловой поток умягченной воды (поток 8):

Ф2 = mх ·1455 кВт,

где mх - массовый расход умягченной воды (паропроизводительность), кг/с; 1455 - удельная энтальпия кипящей воды при р =12 МПа, кДж/кг.

Общий приход теплоты:

Ф1 + Ф2 = 7013,96 + 1455 mх кВт.

Принимаем, что теплопотери в окружающую среду составляют 5% от общего прихода теплоты, тогда

Фпот = 0,05· (7013,96 + 1455mх) = 350,69 + 72,75mх кВт.

Тепловой поток насыщенного пара (поток 8):

Ф4 = / mх · 2638 кВт,

где 2638 -- удельная энтальпия насыщенного пара при р= 12 МПа, кДж/кг.

Паропроизводительность аппарата (поток 10) находят из уравнения теплового баланса:

7013,96 + 1455 mх = 2816,83 + 2638,00 mх + 350,69 + 72,75mх mх = 3846,44/1255,75 = 3,06306 кг/с или 3,06306 · 3600 = 11027 кг/ч.

Таблица 16 Тепловой баланс ЗИА

Приход

кВт

%

Расход

кВт

%

Тепловой поток поступающего пирогаза

Тепловой поток умягченной воды

7013,96

4456,75

61,1

38,9

Тепловой поток уходящего пирогаза

Тепловой поток получаемого насыщенного водяного пара

Теплопотери в окружающую среду

2816,83

8080,35

573,33

24,6

70,4

5,0

Все го...

11470,71

100,0

В с е г о...

11470,71

100,0

Потерями воды в процессе парообразования пренебрегают. Уточняют статьи теплового баланса:

Ф2 = 3,06306 · 1455 = 4456,75 кВт;

Ф4 = 3,06306 · 2638 = 8080,35 кВт;

Фпот = 350,69 + 72,75 · 3,06306 = 573,33 кВт.

Тепловая нагрузка аппарата:

Фа = ф4 - ф2 = 8080,35 - 4456,75 = 3623,6 кВт. Составляем тепловой баланс ЗИА.

7. Автоматизация

Выбор средств контроля и регулирования зависит от условий технологического режима. При выборе средств контроля и регулирования руководствуются следующими принципами:

- приборы должны обеспечивать необходимую точность измерений, быть быстродействующими при измерении и регулировании;

- показывающие приборы должны быть доступны для наблюдения;

- приборы должны быть выполнены во взрыво и пожаробезопасном исполнении;

- средства автоматизации выполнены по государственной схеме приборов, использование которой даёт возможность применение приборов в различных состояниях и имеют ряд следующих достоинств:

а) повышается надежность, точность, быстродействие средств контроля и регулирования;

б) применение унифицированных блоков уменьшает номенклатуру и общее количество приборов, которое надо иметь в резерве при эксплуатации систем автоматизации;

в) уменьшение затрат на ремонт вследствие возможности замены модулей и блоков, а не всего устройства.

Первичные преобразователи. Датчик расхода - диафрагма камерная ДКС-10. Диаметр условного прохода 50-150 мм, Ру = 10 МПа, материал камеры и диска - сталь Х18Н10Т.

Датчики температур - термопара хромель-капелевая ТХАУ-205 ЕХ с диапазоном измерения от 0 до 900 0С, термометр сопротивления платиновый ТСПУ-205 ЕХ с диапазоном измерения от 0 до 200 0С для измерения высоких температур с унифицированными выходными сигналами 4-20 мА; метран-255 ТСП с диапазоном измерения от -200 до 500 0С для измерения низких температур. Ру = 6,3 МПа.

Датчик давления - электрический манометр Сапфир-22М-ДА-2060 с пределом измерения от 0 до 6 МПа. Выходной сигнал - 4-20 мА.

Датчик уровня - буйковый уровнемер сапфир 22ДУ-ВН.

Датчик состава - адресный анализатор состава S 4100C с выходным сигналом 4-20 мА.

Промежуточные преобразователи. Преобразователь сигнала диафрагмы - дифманометр метран-44 ДД. Выходной сигнал - 4-20мА.

Преобразователь сигнала термометра сопротивления метран-255 ТСП в стандартный токовый сигнал 4-20 мА - НП-01.

Вторичные приборы и регуляторы. Для регулирования, регистрации и сигнализации используется ПИД-регулятор UP-750. Для регистрации и контроля используется прибор типа А-100. Входной сигнал приборов 4-20 мА.

Исполнительные механизмы. В качестве исполнительных устройств применяются: электрический регулирующий клапан 241-4 (Ду = 50-150 мм, Ру = 40 МПа), отсечной клапан 33-51 (Ду = 50-150 мм, Ру = 40 МПа). Входной сигнал приборов 4-20 мА.

Описание системы контроля регулирования, сигнализации и блокировки. Поз (20). Контроль уровня в отстойнике (О-2).

Уровень измеряется буйковым уровнемером сапфир 22ДУ-ВН (20-1), выходной сигнал подаётся на вторичный регистрирующий прибор А-100 (20-2), осуществляющий непрерывный контроль за параметром. Аналогично контроль происходит в аппарате Е-2 (поз.22).

Поз (7). Контроль расхода топлива на горелки печи (П-1).

Расход измеряется камерной диафрагмой ДКС-10-150 (7-1), смонтированной в трубопроводе и преобразующей расход в перепад давления. Выходной сигнал диафрагмы воспринимается дифманометром метран-44 ДД (7-2). Стандартный токовый выходной сигнал дифманометра поступает на вторичный регистрирующий прибор А-100 (7-3), осуществляющий непрерывный контроль за параметром. Аналогично контролируется расход подсмольной воды на отпарку в колонну К-2 (поз.27), товарного этилена после емкости Е-10 (поз.74), товарного пропилена после гидрирования (поз.93).

Поз (9). Контроль температуры пирогаза на перевале печи (П-1)

Температура измеряется хромель-капелевой термопарой ТХАУ-205 ЕХ (9-1), стандартный токовый сигнал от которой подаётся на вторичный регистрирующий прибор А-100 (9-2), осуществляющий непрерывный контроль за параметром. Аналогично контроль осуществляется за температурой пирогаза после воздушного холодильника (ХВ, поз.16), после водяного холодильника (Х-2, поз.19), после аммиачного холодильника (апп.Х-3, поз.24), на входе в колонну К-3 (поз.35), но первичным прибором является термометр сопротивления платиновый ТСПУ-205 ЕХ.

Поз (2). Контроль давления сырья, подаваемого в печь (П-1).

Давление измеряется электрическим манометром Сапфир-22М-ДА-2060 (2-1), стандартный токовый сигнал от которого воспринимается вторичным регистрирующим прибором А-100 (2-2). Аналогично контролируется давление пара на смешение с сырьем (поз.3), топлива на горелки печи (П-1, поз.8), давление в отпарной колонне (К-2, поз.30).

Поз (18). Регулирование уровня в емкости-разделителе (Е-2).

Уровень измеряется буйковым уровнемером сапфир 22ДУ-ВН (18-1), выходной сигнал подаётся на вторичный прибор со встроенным ПИД регулятором UP-750 (18-2). С выхода регулятора командный сигнал поступает на электрический регулирующий клапан 241-4 (18-4). Аналогично регулирование происходит в емкостях Е-3, Е-4, Е-8, Е-10, Е-11, Е-12, Е-13 (поз.21, 22, 25, 26, 55, 73, 79, 87, 92), колоннах К-1 - К-2 (поз.15, 28). При достижении критического уровня в емкостях подается сигнал на отключение перекачивающего из рассматриваемой емкости насоса.

Поз (1). Регулирование расхода сырья на печь (П-1).

Расход измеряется камерной диафрагмой ДКС-10-150 (1-1), смонтированной в трубопроводе и преобразующей расход в перепад давления. Выходной сигнал диафрагмы воспринимается дифманометром метран-44 ДД (1-2). Стандартный токовый выходной сигнал дифманометра поступает на вторичный регулирующий прибор UP-750 (1-3), который передаёт команду на электрический регулирующий клапан 241-4 (1-4).

Унифицированный электрический сигнал с термопары хромель-капелевой ТХАУ-205 ЕХ (5-1) поступает на вторичный регулирующий прибор типа UP-750 (5-2), который также регистрирует величину данного параметра. Сигнал с регулятора поступает на исполнительный механизм - регулирующий клапан на линии топлива 241-4 (5-4). Аналогично подачей подсмольной воды в закалочное устройство (Е-1) регулируется температура пирогаза после 2-й ступени закалки (поз.12), подачей топлива регулируется температура пирогаза после печи (П-1, поз.6). При регулировании температуры куба и верха колонны К-1 подачей легкой смолы (поз.13, 14), температуры в колонне К-2 (поз.29) подачей пара, в качестве первичного прибора используется термометр сопротивления платиновый ТСПУ-205 ЕХ.

Таблица 17 Спецификация средств контроля и автоматики

Позиция

Измеряемый параметр

Наименование и техническая характеристика

Марка

Кол-во

1

2

3

4

5

5-1, 6-1, 9-1, 10-1, 12-1, 13-1

Температура

Термопара хромель-алюминиевая. Предел измерений от 0 до 900оС. Выходной сигнал 4-20 мА. Ру = 6,3 МПа

ТХАУ-205 ЕХ

6

14-1, 16-1, 19-1, 24-1, 29-1

Термометр сопротивления платиновый с диапазоном измерения от 0 до 200 0С. Выходной сигнал 4-20 мА

ТСПУ-205 ЕХ

5

5-2, 6-2, 12-2, 13-2, 14-2, 29-2

Вторичный прибор со встроенным ПИД регулятором, самопишущий, класс точности 0,3. Входной сигнал 4-20 мА

UP-750

6

9-2, 10-2, 16-2, 19-2, 24-2

Вторичный прибор регистрирующий. Входной сигнал 4-20 мА.

А-100

5

5-4, 6-3, 12-4, 13-3, 14-3, 29-3

Клапан регулирующий с электрическим мембранным механизмом, класс точности 1,5, Ду = 50-150 мм, Ру = 40 МПа

241-4

6

11-1, 15-1, 17-1, 18-1, 20-1, 21-1, 22-1, 23-1, 25-1, 26-1, 28-1

Уровень

Буйковый уровнемер. Выходной сигнал 4-20 мА

сапфир 22ДУ-ВН

11

11-2, 15-2, 17-2, 18-2, 21-2, 23-2, 25-2, 26-2, 28-2

Вторичный прибор со встроенным ПИД регулятором, самопишущий, класс точности 0,3. Входной сигнал 4-20 мА

UP-750

9

20-2, 22-2

Вторичный прибор регистрирующий. Входной сигнал 4-20 мА

А-100

2

11-5, 15-3, 17-4, 18-5, 21-3, 23-3, 25-5, 26-5, 28-3

Клапан регулирующий с электрическим мембранным механизмом, класс точности 1,5, Ду = 50-150 мм, Ру = 40 МПа

241-4

9

1-1, 4-1, 7-1, 27-1

Расход

Диафрагма камерная, материал камеры и диска - сталь Х12Н10Т, класс точности 1,5. Ду = 50-150 мм

ДКС-10-150

4

1-2, 4-2, 7-2, 27-2

Дифманометр. Выходной сигнал 4-20 мА, класс точности 1,5

метран-44 ДД

4

1-3, 4-3, 7-3

Вторичный прибор со встроенным ПИД регулятором, самопишущий, класс точности 0,3. Входной сигнал 4-20 мА

UP-750

3

27-3

Вторичный прибор регистрирующий. Входной сигнал 4-20 мА.

А-100

1

1-4, 4-4, 7-4

Клапан регулирующий с электрическим мембранным механизмом, класс точности 1,5, Ду = 50-150 мм, Ру = 40 МПа

241-4

3

2-1, 3-1, 8-1, 30-1

Давление

Электрический манометр. Предел измерения от 0 до 6 МПа Выходной сигнал - 4-20 мА.

Сапфир-22М-ДА-2060

4

2-2, 3-2, 8-2, 30-2

Вторичный прибор регистрирующий. Входной сигнал 4-20 мА.

А-100

4

8. Безопасность жизнедеятельности и экологичность технологического процесса

Технологические процессы при получении этилена и пропилена в объекте 2-3-5/Ш протекают в условиях высоких давлений до 4 МПа, высоких и низких температур от +900оС до -150оС, при наличии открытого огня, с применением исходного сырья углеводородов, пары которого в смеси с воздухом дают взрывоопасные смеси и получением углеводородных фракций и газов, которые с воздухом дают взрывоопасные смеси и отравляюще действуют на организм человека.

Основные опасности производства

Опасность технологического процесса определяет:

1. Применение в качества сырья и реагентов жидких, газообразных токсичных углеводородов С1 ч С5 предельного и непредельного ряда, имеющих низкий нижний предел воспламенения и достаточно широкий диапазон между нижним и верхним пределами воспламенения некоторых продуктов (водород, этилен) (см. таблицу 7.1).

2. Возможность завышения допустимых параметров в аппаратах и трубопроводах, в связи с чем возможен разрыв, нарушение герметичности торцевых и сальниковых уплотнений в аппаратах, насосно-компрессорном оборудовании и выход пожаровзрывоопасных продуктов в атмосферу.

3. Наличие тока высокого напряжения до 6 кВ.

4. Возможность поражения электрическим током при нарушении изоляции и заземления в электрических устройствах, статическим электричеством и проявлением молний, возможность термических ожогов.

5. Возможность получения острых отравлений из-за неприменения средств газозащиты при проведении газоопасных работ, разгерметизации трубопроводов и аппаратов, когда в атмосферу выделяются газы, пары, жидкости, пыли в количествах, превышающих ПДК.

6. Возможность загораний, пожаров из-за нарушений технологического режима, недостаточной и неправильной подготовки оборудования, трубопроводов к огневым работам.

7. Возможность самовозгорания полимеров, цеолитов, катализатора, пирофорных соединений при их выгрузке и чистке оборудования.

8. Наличие пара и едких жидкостей могут вызвать термические и химические ожоги.

9. Возможность выхода из строя насосов и компрессоров из-за наличия механических примесей в перекачиваемых продуктах.

10. Наличие оборудования с вращающимися и движущимися узлами и деталями, в связи с чем возможно травмирование обслуживающего персонала.

11. Возможность выбросов углеводородов в атмосферу при завышении давления в аппаратах и срабатывании ППК.

12. Возможность размораживания аппаратов и трубопроводов с токсичными и пожаровзрывоопасными продуктами.

13. Многие процессы и работающее оборудование создают повышенную вибрацию и шум, которые отрицательно действуют на работников.

В отделении пиролиза опасность обусловлена наличием газообразных и жидких углеводородов, высоких температур до 900°С, использованием в качестве хладагента жидкого аммиака, работой электрооборудования напряжением до 380 В.

Взрывопожароопасные, токсичные свойства сырья, полупродуктов, готовой продукции и отходов производства

Сырье - смесь углеводородов, обладает высокой испаряемостью при обычной температуре. Огнеопасен. Вдыхание большого количества паров бензина вызывает отравление, приводящее к потере сознания или смерти. Пары углеводородов в смеси с воздухом взрывоопасны.

В процессе пиролиза сырье расщепляется на водород, метан, этилен, этан, пропилен, пропан, углеводороды С4, С5, С6 и выше, которые в смеси представляют собой пирогаз, подвергающийся в дальнейшем разделению.

Пирогаз горит и в смеси с кислородом воздуха образуют взрывоопасные смеси. При концентрации этих веществ в воздухе между нижним и верхним пределами взрываемости и при наличии источника загорания (открытый огонь, искра, нагретые части оборудования) происходит взрыв.

Все указанные вещества, имеющиеся в цехе оказывают вредное влияние на организм человека.

Аммиак - взрывоопасен, относится к категории сильнодействующих ядовитых веществ. При разливе его в больших количествах мгновенно образуется сильная загазованность, приводящая к отравлению.

Таблица 18 Взрывопожароопасные, токсичные свойства сырья, полупродуктов, готовой продукции и отходов производства

Вещество

Температура, оС

Концентрационный предел воспламенения,

% об.

Характеристика токсичности

(воздействие на организм человека)

ПДК, мг/м3

вспышки

самовоспламенения

нижний

предел

верхний

предел

1

2

3

4

5

6

7

Сырье

10,6

474

0,76

8,1

Обладает наркотическим действием. Действует на центральную нервную систему, кроветворные органы.

300

Водород

510

4,15

75

Физиологически инертный газ

--

Метан

537

5

15

Газ наркотического действия. Поражает центральную нервную систему, действует на сердечно-сосудистую систему, раздражает дыхательные пути.

300

Этилен

-160

427

3,11

32

Наркотическое удушье

100

Этан

515

2,9

15

Наркотическое удушье

300

Пропан

466

2,1

9,5

Наркотическое удушье

300

Пропилен

410

2,3

11,1

Наркотическое удушье

100

Бутан

405

1,8

9,1

Наркотическое удушье

300

Бутилен

334

1,6

9,4

Наркотическое удушье

100

У/в конденсат (С5-С8, толуол).

10

430

0,92

9,5

Действует на центральную нервную систему и кроветворные органы

20

Бензол

-11

562

1,4

7,1

Действует на центральную нервную систему и кроветворные органы, при попадании на кожу вызывает зуд, пузырьковые высыпи.

5

Аммиак

-2

650

15,0

28,0

Сильнодействующее ядовитое вещество, раздражает дыхательные пути, вызывает удушье, при попадании на кожу вызывает раздражение и ожоги

20

Мероприятия по обеспечению безопасности производства. В соответствии с ГОСТ-12.3.002-88 безопасность производственного процесса обеспечивается выбором режима работы технологического процесса, оборудования, размещения производственного оборудования.

Предусмотрено следующее:

1. Процесс осуществляется по непрерывной схеме в герметичных аппаратах. Все основные аппараты, кроме компрессорного и насосного оборудования, располагаются на открытой площадке.

2. Технологическое оборудование запроектировано в соответствии с ГОСТ 26-291-71.

3. В основу разработки мероприятий по безопасному ведению технологического процесса положены действующие нормы и правила ПБ 09-170-97, ПБ 10-115-96, ПБ 09-310-99, РД 38.13.004-86.

4. Отделение разделено на технологические блоки, снабженные запорными и отсекающими устройствами в соответствии с требованиями ОПВ-88. Кроме того на трубопроводах приема сырья, приема отдувок из цеха полипропилена предусмотрена арматура с дистанционным управлением из ЦПУ.

5. Управление технологическим процессом осуществляется автоматически и дистанционно с помощью пневматических регуляторов, расположенных на щите в ЦПУ.

6. Пневмодатчики используются для замера и регулирования давления, уровня, расхода в различных аппаратах. Дистанционный замер температуры производится с помощью термопар и термометров сопротивления, работающих со вторичными приборами с искробезопасным входом.

7. При наиболее опасных отклонениях технологического режима предусмотрены сигнализация и блокировка для быстрой ликвидации аварийной ситуации и защиты оборудования.

8. При аварийной ситуации (прекращение подачи воды, водяного пара, электроэнергии, воздуха КИП, отсутствие сырья и др.) предусмотрена остановка объекта или отдельных её узлов в соответствии с технологическими регламентом, инструкциями и планом локализации аварийных ситуаций (ПЛАС).

9. Компрессорные установки оборудованы местными и дистанционными приборами контроля температуры, давления и других параметров.

10. Освобождение токсичных, а также пожаро- и взрывоопасных продуктов из технологических аппаратов в канализационные системы не допускается.

11. Выполнено рабочее и аварийное освещение помещений и наружных установок. На объекте имеются пожарные извещатели и оперативная связь.

12. Для обеспечения нормальных санитарных условий труда на объекте предусмотрена приточно-вытяжная механическая вентиляция.

13. Установка снабжена средствами пожаротушения, пожарными извещателями и телефонной связью.

14. Смонтирована схема дистанционного отключения насосов перекачивающих легковоспламеняющиеся жидкости. СВК НАСОС и наружные установки.

15. Для перекачки сжиженных газов применяются герметичные насосы типа ХГВ, ЦНГ.

Действия, направленные на предотвращение аварийных ситуаций

1. Продуть аппараты и коммуникации перед пуском ингазом до содержания кислорода в отходящем после продувки газе не более 2% об.

2. Перед розжигом пиролизных печей на 15 минут включить дымосос и после чего отобрать анализ на взрываемость из топки печи.

3. Необходимо следить за отсутствием жидкости в межступенчатых сепараторах, ресиверах, влагомаслоотделителях, так как завышение уровня ведет к попаданию жидкости в компрессор и к гидроударам.

4. Не допускать вибрации трубопроводов.

5. Обеспечить непрерывную работу приточно-вытяжных вентсистем для создания необходимой кратности воздухообмена в производственных помещениях.

6. Запрещается устранять пропуски в резьбовых и фланцевых соединениях на работающих компрессорах, насосах, действующих трубопроводах, колоннах и другом технологическом оборудовании без их отключения и освобождения от продуктов.

Пожарная и взрывобезопасность

Отделение печей пиролиза является огневзрывоопасным объектом объекта 2-3-5/Ш.

Источниками пожара на объекте являются: бензин, углеводородные фракции и газы, масла и промасленная ветошь, пирофорные соединения, углеводородные полимеры.

Способы и необходимые средства пожаротушения (ГОСТ 12.1.003-81 ССБТ)

1. Все производственные помещения и наружные установки объекта обеспечены средствами пожаротушения (ящиками с песком, носилками, совковыми лопатами, огнетушителями типа ОПУ-5, ОХП-10, асбестовыми одеялами, пожарными кранами, пожарными рукавами).

2. В отделении пиролиза установлена система дистанционного паротушения печей пиролиза, которая приводится в действие из ЦПУ при прогаре змеевиков, выхода пламени наружу печи или загазованности в районе печей.

3. Компрессорные залы, помещение ЦПУ укомплектованы углекислотными огнетушителями ОУ-25.

4. Для тушения пожара на всех наружных установках смонтированы сухотрубы и лафетные стволы.

5. В насосной пиролиза и насосной первой наружной установки установлены стационарные пеногасительные установки находящиеся под давлением азота.

6. При загорании электрооборудования снимается напряжение с агрегата. Тушение очага при загорании электрооборудования производится асбестовыми одеялами, ингазом, огнетушителями ОУ-25, ОПУ-5. Одновременно производится остановка технологического узла объекта.

7. При возникновении пожара в производственных помещениях объекта немедленно прекращается работа вентсистем. При загорании различных продуктов в объекте тушение очага пожара производится огнетушителями ОХП-10, ОПУ-5, ОУ-25, песком, асбестовым одеялом.

8. Тушение очагов пожаров при загорании покраски оборудования, изоляционных материалов, деревянных конструкций производится водой.

Электробезопасность. Электрооборудование и электроаппаратура, устанавливаемые на установке, по своему исполнению должны соответствовать классу взрывоопасных зон, категориям и группе взрывоопасных смесей по ПУЭ.

В данном технологическом процессе, для электродвигателей насосов, применяется ток высокого напряжения, существует опасность образования статического электричества при движении газов и жидкостей по аппаратам и трубопроводам, возникновение искрообразования от механических ударов.

Защита от статического электричества

На объекте проводится перемещение продуктов, имеющих удельное электрическое сопротивление, в связи с чем возможно накопление статического электричества.

Опасные потенциалы могут возникать также в результате прямых и вторичных проявлений молнии.

Молниезащита зданий и сооружений установки, защита от вторичного проявления молнии выполнена на основании РД.34.21.122-87 и относится ко II категории.

Для уменьшения и исключения накопления статического электричества предусмотрено во всех емкостях поступление потоков под уровень жидкости и подбор оптимальных диаметров трубопроводов для уменьшения скоростей потоков жидкости.

Скорость движения продуктов в аппаратах и трубопроводах не должна превышать значений, предусмотренных проектом.

Анализ надежности защиты рабочих, служащих и инженерно-технического комплекса в ЧС.

Методы и средства защиты работающих от производственных опасностей.

1. Во всех производственных помещениях и на рабочих местах в объекте установлены средства коллективной защиты согласно ГОСТ-12.4.011-75.

2. Для нормализации воздушной среды и температурного режима производственные помещения в объекте имеют приточные, вытяжные и аварийные вентиляционные системы.

3. В местах выделения вредных паров у насосов, перекачивающих токсичные жидкости, установлены местные отсосы.

4. Для нормализации освещения производственных помещений и рабочих мест применяются источники света: естественное, искусственное и аварийное освещение.

5. В целях защиты от воздействия инфракрасного излучения технологическое оборудование и трубопроводы, температура которых превышает 45оС, покрыты теплоизоляционными материалами.

6. Д...


Подобные документы

  • Сырьё, условия проведения и химизм процесса пиролиза, особенности технологического оформления. Расчёт материального баланса и теплового эффекта процесса пиролиза. Расчёт трубчатого реактора пиролиза, камеры конвекции и закалочно-испарительного аппарата.

    курсовая работа [1,1 M], добавлен 13.10.2013

  • Пиролиз нефтяного сырья как термодеструктивный процесс, предназначенный для получения низших олефинов. Знакомство с особенностями и проблемами проектирования трубчатого реактора пиролиза пропановой фракции. Рассмотрение принципа действия трубчатых печей.

    дипломная работа [865,3 K], добавлен 29.05.2015

  • Анализ способов переработки резинотехнических изделий. Физико-химические основы процесса низкотемпературного пиролиза. Маркетинговое исследование рынка вторичной переработки резинотехнических изделий. Переработка изношенных автомобильных покрышек.

    дипломная работа [1,0 M], добавлен 20.03.2011

  • Свойства этилен-пропиленовых каучуков, особенности их синтеза. Технология получения, физико-химические основы процесса, катализаторы. Характеристика сырья и готовой продукции. Материальный и энергетический баланс реакционного узла, контроль производства.

    курсовая работа [515,8 K], добавлен 24.10.2011

  • Понятие пиролиза как превращения органических соединений в результате их деструкции под действием высокой температуры. Пиролиз углеводородов, выход основных продуктов. Конструкция печей, сырьевая база. Особенности пиролиза древесины и угля, копчение.

    реферат [51,9 K], добавлен 26.11.2012

  • Физико-химическое обоснование основных процессов производства этилового спирта. Сернокислая гидратация этилена. Структурная и операторская схема процесса спиртового брожения. Материальный баланс ХТС производства этанола на 7900 кг этиленэтановой фракции.

    реферат [172,6 K], добавлен 03.10.2014

  • Выбор метода производства карбамида (мочевины). Основные физико-химические свойства сырья, вспомогательных материалов и готовой продукции. Материальный баланс выпарной установки и стадии кристаллизации. Тепловой баланс выпарки в аппарате пленочного типа.

    дипломная работа [391,5 K], добавлен 03.11.2013

  • Физико-химические основы процесса абсорбции. Описание технологической схемы сульфатного отделения. Выбор и конструкция основного аппарата для производства сульфата аммония. Материальный и тепловой балансы абсорберов и сборников, расчет испарителя.

    курсовая работа [551,4 K], добавлен 04.01.2015

  • Физико-химические, эксплуатационные свойства нефти. Абсолютная плотность газов при нормальных условиях. Методы определения плотности и молекулярной массы. Важный показатель вязкости. Предельная температура фильтруемости, застывания и плавления нефти.

    презентация [1,1 M], добавлен 21.01.2015

  • Физико-химические основы приготовления сырьевой смеси для производства портландцемента по мокрому способу: измельчение, обжиг сырьевой смеси, получение и измельчение клинкера. Портландцементный клинкер как продукт спекания при обжиге сырьевой шихты.

    курсовая работа [1000,6 K], добавлен 14.07.2012

  • Характеристика химического продукта (криолита). Методы получения, основное и вспомогательное сырье. Физико-химические характеристики стадий процесса. Отходы и проблемы их обезвреживания и полезного использования. Материальный баланс производства.

    курсовая работа [3,3 M], добавлен 15.04.2011

  • Характеристика методов производства карбинола. Обоснование выбранного метода в месте строительства. Физико-химические данные процесса производства карбинола. Технико-технологические расчеты. Строительные и економические расчеты проекта. Безопасность.

    дипломная работа [766,9 K], добавлен 29.11.2007

  • Производство фосфорной кислоты экстракционным и электротермическим методами. Физико-химические основы процесса. Изображение графических моделей ХТС. Условия разложения фторапатита. Процесс гидратации димера оксида фосфора. Башни сгорания и гидратации.

    курсовая работа [516,6 K], добавлен 05.04.2009

  • Химическая технология получения полиэфирного волокна непрерывным методом из диметилтерефталата и этиленгликоля: общая характеристика процесса, его стадии; физико-химические свойства исходных реагентов и продуктов. Формование и отделка полиэфирных волокон.

    курсовая работа [2,8 M], добавлен 22.10.2011

  • Физико-химические свойства нефтяных эмульсий и их классификация. Теоретические основы обезвоживания нефти. Характеристика сырья, готовой продукции и применяемых реагентов. Описание технологической схемы с автоматизацией и материальный баланс установки.

    дипломная работа [150,0 K], добавлен 21.05.2009

  • Процесс селективной очистки масляных дистиллятов. Комбинирование процессов очистки. Фракция > 490 С величаевской нефти, очистка селективным методом. Характеристика продуктов процесса и их применение. Физико-химические основы процесса. Выбор растворителя.

    курсовая работа [1,1 M], добавлен 26.02.2009

  • Теоретические основы проведения процесса пиролиза в трубчатых печах, его модификация. Расчет материального и теплового балансов, основного и вспомогательного оборудования трубчатой печи, закалочно-испарительного аппарата и выбор средств контроля.

    дипломная работа [557,2 K], добавлен 21.06.2010

  • Физико-химические свойства никеля. Технологические особенности процесса никелирования. Выбор толщины покрытия. Приготовление и корректировка электролитов. Определение продолжительности обработки деталей. Расход химикатов на выполнение годовой программы.

    курсовая работа [467,8 K], добавлен 13.10.2017

  • Выбор района и площади под строительство. Химические и физико-химические основы производства полиэфира ПБА. Осуществление процесса поликонденсации гликолей с адипиновой кислотой периодическим способом. Анализ определения фланцевых соединений и штуцера.

    курсовая работа [658,9 K], добавлен 21.04.2021

  • Характеристика ассортимента продукции. Физико-химические и органолептические показатели сырья. Рецептура сыра плавленого колбасного копчёного. Технологические процесс производства. Технохимический и микробиологический контроль сырья и готовой продукции.

    курсовая работа [125,5 K], добавлен 25.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.