Процесс пиролиза этановой фракции
Физико-химические свойства исходных, промежуточных и конечных продуктов пиролиза этановой фракции. Химизм процесса по стадиям, физико-химические основы. Рабочие технологические параметры. Аналитический контроль и материальный баланс производства.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 02.10.2017 |
Размер файла | 457,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В зависимости от объекта аналитического контроля и его цели различают следующие виды анализов, с помощью которых производят оценку химического состава: маркировочные, скоростные, арбитражные. Маркировочные анализы проводят для контроля химического состава и свойств сырья и материалов, поступающих на предприятие. Они предназначены также для объективной оценки работы предприятия. По результатам маркировочных анализов определяют качество полупродуктов и готовой продукции, ее соответствие установленным нормам. Маркировочные анализы должны отличаться большой достоверностью и правильностью, так как на их основе делают технологические и экономические расчеты.
Скоростные (экспрессные) методы применяют при текущем контроле промежуточных и готовых продуктов, с их помощью устанавливают правильность технологического режима. Основное требование, предъявляемое к анализам этого вида, - повышенная скорость, чтобы результаты могли быть своевременно использованы в процессе производства.
Арбитражные анализы производят в случае необходимости получения особенно точных сведений о химическом составе, при разногласиях между заводом-поставщиком и предприятием-потребителем, например по поводу химического состава сырья.
Заключения о качестве вещества основаны на сопоставлении данных анализа, выполненного на предприятии аналитической службой (в лаборатории), с определенными показателями. Ниже перечислены некоторые типы таких показателей.
Таблица 12 Нормативы показателей
Оцениваемый объект |
Тип норматива |
|
Сырье |
Допускаемые пределы изменения содержания компонентов (допуск на состав) |
|
Полупродукты |
Допустимые технологическим регламентом колебания состава среды в реакторе |
|
Готовая продукция |
Содержание компонентов в продуктах, аттестуемых на Знак качества или предназначенных на экспорт |
|
Окружающая среда |
Фоновые содержания элементов или их соединений в природе |
При осуществлении контроля химического состава особенно важно получение правильных и достоверных результатов, для достижения которых используют теорию ошибок и математическую обработку результатов анализа (см. гл. 7). При этом можно исходить из двух общих задач: 1) согласование норм на содержание тех или иных ком'нонентов или стабильности значений содержаний во множестве партий оцениваемых объектов и выявление доли неверно аттестованных партий и 2) индивидуальный контроль отдельной партии. Для решения первой задачи необходим сплошной контроль, а для решения второй - выборочный. Сплошной контроль, т.е. анализ каждой партии, необходим в следующих случаях: а) ответственное назначение продукта; б) высокая стои-мо. сть партии; в) недостаточная стабильность контролируемых объектов, например полупродуктов технологического процесса, и др. Точность анализа во всех указанных случаях также лимитирована нормативами. Желательно, чтобы доверительная вероятность составляла 0,99 или 0,95.
При проведении химического анализа используют химические, физико-химические и физические методы в сочетании с химическими, физико-химическими методами разделения и концентрирования элементов. Выбор метода обнаружения или количественного определения компонентов зависит от фазового состояния объекта анализа, его химико-аналитических свойств и способа проведения анализа (мокрым или сухим путем, с разрушением или без разрушения пробы и т.п.). При выборе метода учитывают также требуемую точность определения, чувствительность метода, необходимую скорость проведения анализа, оснащение лаборатории и другие факторы.
Аналитическая служба предприятия (заводская лаборатория) связана с другими службами предприятия и другими организациями, в частности с отраслевыми научно-исследовательскими институтами. Она включает аппаратуру, вещества, производственные площади, обслуживающий персонал, энергетические ресурсы и т.д. Эта сложная система постоянно развивается и совершенствуется, что связано с непрерывным развитием всего народного хозяйства. Постоянно повышаются требования к получению аналитической информации с технической и экономической точек зрения. Аналитический контроль должен характеризоваться небольшой продолжительностью анализа, небольшими затратами рабочей силы и экономией мощности, высокими избирательностью, точностью и чувствительностью определения. Это достигается путем внедрения технических средств аналитического контроля: механизации, инструментальных методов анализа, автоматизации и использования ЭВМ.
Таблица 13 Аналитический контроль производства
№№ п/п |
Что контролируется |
Частота и способ контроля |
Нормы и технологические показатели |
Предельно- допустимые параметры |
Кто контролирует |
|
1. |
Состав пирогаза после аппарата Т-2 |
1 раз в смену с 2-х работающих печей Хроматографический |
Не регламен-тируется. |
Не регламентируется |
Лаборатория по контролю цехов по производству этилена -пропилена УК. |
|
Содержание СО2 в пирогазе |
1 раз в смену с 2-х остальных работающих печей Хроматографический |
Не регламентируется |
Не регламентируется |
"-" |
||
Содержание СО2 в пирогазе |
По требованию со всех работающих печей Хроматографический |
Не регламен-тируется |
Не регламен-тируется |
"-" |
||
2. |
Содержание СО2 в газах выжига кокса |
Через час по прибору ОРСа. В конце выжига через каждые 30 минут. Поглощением |
(0,2-6) % об., не более 0,2% об. в конце выжига |
Не более 6% об. не более 0,2 об. в конце выжига |
Аппаратчик |
|
3. |
Продувочная вода из аппарата Е-4 печей пиролиза: |
|||||
3.1. |
Cолесодержание |
Кондуктометрический, 1 раз в неделю с записью в документации |
(1200-1500) мг/дм3 |
Не более 1500 мг/дм3 |
Лаборатория по контролю цехов по производству фенола-ацетона УК |
|
3.2. |
Общая щелочность |
Титриметрический 1 раз в неделю с записью в документации |
Не более 5 мг-экв/дм3 |
Не более 5 мг-экв/дм3 |
"-" |
|
3.3. |
Содержание шлама |
Визуально, 1 раз в неделю с записью в документации |
Отсутствие |
Отсутствие |
"-" |
|
3.4. |
Содержание кремнекислоты в пересчете на SiO2 |
Колориметрический, 1 раз в неделю с записью в документации. |
Не регламентируется |
Не регламентируется |
"-" |
|
3.5. |
Значение РН |
Потенциометрический 1 раз в неделю с записью в документации. |
Не менее 9,0 |
Не менее 9,0 |
Лаборатория по контролю цехов по производству этилена -пропилена УК. |
|
3.6. |
Удельная электропроводност |
Кондуктометрический, 1 раз в неделю с записью в документации. |
Не более 500 мСм/см |
Не более 500 мСм/см |
"-" |
Таблица 14 Сигнализация предельных параметров
№№ пп |
Параметр |
Позиция прибора |
Сигнализирует когда |
Место сигнала |
|
1. |
Температура пирогаза на выходе I, II, III, IV потоков |
44-1 44-2 44-3 44-4 |
Температура повышена до 835оС |
Щит КИПиА корп.0776 |
|
2. |
Расход этана на I, II, III, IV потоки |
63-1 63-2 63-3 63-4 |
Расход менее 1,0 т/ч |
То же |
|
3. |
Расход пара разбавления на I, II, III, IV потоков |
68-1 68-2 68-3 68-4 |
Расход менее 400 кг/ч |
То же |
|
4. |
Уровень в паросборнике Е-4 |
72 |
Минимальный 40% максимальный 80% |
То же |
|
5. |
Температура дымовых газов на своде печи |
47-3 47-6 47-9 47-12 |
Температура повышена до 1085оС |
То же |
|
6. |
Давление топливного газа после отсечного клапана |
104 |
Давление понижено до 3 кгс/см2 |
То же |
|
7. |
Давление этана на входе в печь |
103 |
Давление понижено до 3,0 кгс/см2 |
То же |
|
8. |
Давление воздуха КИП на от- сечной клапан на линии пожаротушения |
102 |
Давление на клапан 0,8 кгс/см2 |
То же |
|
9. |
Разряжение в печи |
105 |
Разряжение понижено до 3,0 мм.вод.ст. |
То же |
|
10. |
Загазованность в районе печей пиролиза П-1I-VI |
Поз. QISA 6511.10, QISA 6511.11, QISA 6511.12, QISA 6511.13, QISA 6511.14, QISA 6511.15. |
Выше 15% от нижнего концентрационного предела взрываемости газов |
То же |
|
11. |
Загазованность в районе печей пиролиза П-1I-VI |
Поз. QISA 6511.10, QISA 6511.11, QISA 6511.12, QISA 6511.13, QISA 6511.14, QISA 6511.15. |
Выше 35% от нижнего концентрационного предела взрываемости газов |
Щит КИПиА корпус 0776, включение звукового сигнала на наружной установке. |
Лабораторный контроль необходим для обеспечения устойчивой работы производства и выпуска качественной продукции.
В производстве используются следующие методы контроля:
- йодометрический - определяется количество водорода в сырье пиролиза, количество кислорода в питательной воде, подаваемой в котлы-утилизаторы и закалочные устройства;
- хроматографический - определяется количество этилена, пропилена, СО2 в пирогазе, полный состав легкой и тяжелой смолы, количество кислорода в газах продувки, полный состав пирогаза, идущий на компримирование;
- титрованием - определяется количество К2СО3 и КНСО3в рабочем растворе ингибитора;
- трилонометрический - определяется жесткость питательной воды;
- колориметрический - содержание солей железа в питательной воде;
- потенциометрически - определяется рН питательной воды в котле-утилизаторе и пара из котла-утилизатора.
6. Материальный баланс производства
Пиролиз этана осуществляют в трубчатых печах в среде водяного пара при температуре 830--900оС и давлении, близком к атмосферному.
Исходные данные: годовая производительность установки по этилену 200 000 т; годовой фонд рабочего времени 8000 ч; состав исходной этановой фракции (ц1, %): С2Н4 - 0,73; С2Н6 - 89,80; С3Н6 - 4,69; С3Н8 - 4,70; С4Н8 - 0,08; массовое отношение водяной пар: этановая фракция = 0,4: 1,0; температура процесса 845 °С.
Последовательность расчета:
а)определяем степень конверсии этана в этилен по целевой реакции пиролиза;
б)рассчитываем объемный расход компонентов этановой фракции на входе в трубчатую печь (основной аппарат пиролизной установки);
в)определяем изменение состава газа в процессе пиролиза и состав газа на выходе из трубчатой печи.
Кинетика основной реакции процесса пиролиза
С2Н6 ± С2Н4 + Н2
удовлетворительно описывается уравнением первого порядка:
К = (2,303/ф) · Lg ·[a/(a - x)],
где К - константа скорости реакции, с-1; ф - время, прошедшее от начала реакции (оптимальная продолжительность пребывания реагентов в зоне высоких температур), с; а, х - количество реагента исходное и вступившее в реакцию соответственно, %.
Константу скорости реакции определяют по формуле:
lg К = 14,676 - 15800/Т,
где Т - температура процесса, К (Т = 845 + 273 = 1118 К).
lg К = 14,676 - 15800/1118 = 0,544; К = 3,5 с-1.
Продолжительность пребывания реагентов в зоне высоких температур определяют по формуле:
lg ф = -12,75 + 13700/1118 = -0,496=1,504; ф =0,32 с.
Определяем степень конверсии этана:
3,5 = (2,303/0,32) · lg·[100/(100 - х)]; х=67,3%.
Следовательно, степень конверсии этана б - 0,673. Фактическая степень конверсии этана в этилен меньше за счет повышения давления до 0,5 МПа и наличия в этановой фракции более тяжелых компонентов. При температуре 845 °С и времени контакта ф = 0,32 с степень конверсии этана в этилен составляет 60% (а' = 0,6).
Селективность процесса по основной реакции равна:
Я = а'/а = 0,6/0,673 = 0,89.
Часовая производительность установки в расчете на 100%-й этилен составит:
200 000 - 1000/8000 = 25000 кг/ч или 25000/28 = 892,86 кмоль/ч.
Расход этана, находящегося в составе поступающей на пиролиз этановой фракции:
892,86/0,6 = 1488,1 кмоль/ч.
Общий расход этановой фракции:
1488,1/0,898=1657,1 кмоль/ч.
Определяем состав этановой фракции на входе в трубчатую печь (табл. 5).
Количество водяного пара на входе в трубчатую печь (поток 2):
51743 · 0,4 = 20697 кг/ч или 1149,844 кмоль/ч.
Таблица 13 Состав этановой фракции (поток 1)
Компонент |
цi(xi),% |
nф кмоль/ч |
Vф м3/ч |
mф кг/ч |
Wi, % |
|
С2Н4 С2Н6 С3Н6 С3Н8 С4Н8 |
0,73 4,69 89,80 4,69 4,70 0,08 |
12,1 1488,1 77,7 77,9 1,3 |
271 33333 1741 1745 29 |
339 44643 3263 3428 70 |
0,65 86,27 6,31 6,62 0,15 |
|
сумма |
100,00 |
16571,1 |
37119 |
51743 |
100,00 |
Количество парогазовой смеси на входе в трубчатую печь (поток 3):
51743 + 20697 = 72420 кг/ч.
По основной реакции:
С2Н6 = C2H4 + H2 (1)
расход этана составляет 892,86 кмоль/ч или 26786 кг/ч; образуется:
этилена: 892,86 кмоль/ч или 25000 кг/ч;
водород: 892,86 кмоль/ч или 1786 кг/ч.
Всего конвертируется этана:
1488,1 · 0,673 = 1001,5 кмоль/ч.
По реакции образования метана
С2Н6 + Н2 = 2СН4 (2)
расходуется:
этана: 1001,5 - 892,86 = 108,64 кмоль/ч или 3259 кг/ч;
водорода: 108,64 кмоль/ч или 217 кг/ч;
образуется метана:
108,64 · 2 = 217,28 кмоль/ч или 3476 кг/ч.
Остается этана в составе пирогаза:
1488,1 - 1001,5 = 486,6 кмоль/ч или 14598 кг/ч.
Пропилен в составе этановой фракции конвертируется по двум реакциям:
СзН6 = С2Н2 + СН4 (3)
С3Н6 + ЗН2 = ЗСН4 (4)
По реакции 3, согласно экспериментальным данным, расходуется 8,5% пропилена, что составляет:
77,7 · 0,085 = 6,6 кмоль/ч или 277 кг/ч;
образуется:
ацетилена: 6,6 кмоль/ч или 172 кг/ч;
метана: 6,6 кмоль/ч или 106 кг/ч.
По реакции 4 расходуется 26% пропилена, что составляет:
77,7 · 0,260 = 20,202 кмоль/ч или 848 кг/ч;
образуется метана:
20,202 ·3 = 60,61 кмоль/ч или 970кг/ч.
Расход водорода составляет 60,61 кмоль/ч или 121 кг/ч. Остается пропилена в составе пирогаза:
77,7 - 6,6 - 20,202 = 50,898 кмоль/ч или 2138 кг/ч.
Пропан в составе этановой фракции конвертируется по следующим реакциям:
2С3Н8 = С4Н6 + 2СН4 + Н2 (5)
2С3Н8 = С4Н8 + 2СН4 (6)
2С3Н8 = C5Hl0 + CH4 + H2 (7)
2СзН8 = С4Н10 + С2Н4 + Н2 (8)
С3Н8 + 2Н2 = ЗСН4 (9)
По реакции 5 расходуется 55,0% пропана, что составляет:
77,9 · 0,55 = 42,845 кмоль/ч или 1885 кг/ч;
образуется:
бутадиена: 42,845/2 = 21,423 кмоль/ч или 943 кг/ч;
метана: 42,845 кмоль/ч или 686 кг/ч;
водорода: 21,423 кмоль/ч или 42 кг/ч.
По реакции 6 расходуется 6,0% пропана, что составляет:
77,9 · 0,06 = 4,674 кмоль/ч или 206 кг/ч;
образуется:
бутиленов: 4,674/2=2,337 кмоль/ч или 135 кг/ч;
метана: 4,674 кмоль/ч или 74 кг/ч.
Всего содержится бутиленов в пирогазе:
2,337 + 1,3 = 3,637 кмоль/ч или 203 кг/ч.
По реакции 7 расходуется 8,5% пропана, что составляет:
77,9 · 0,085 = 6,6 кмоль/ч или 290 кг/ч;
образуется:
пентенов: 6,6/2=3,3 кмоль/ч или 231 кг/ч;
метана: 3,3 кмоль/ч или52 кг/ч;
водорода: 3,3 кмоль/ч или 6 кг/ч.
По реакции 8 расходуется 10% пропана, что составляет:
77,9 · 0,1 = 7,79 кмоль/ч или 342 кг/ч;
образуется:
бутана: 7,79/2 = 3,895 кмоль/ч или 225 кг/ч;
этилена: 3,895 кмоль/ч или 109 кг/ч;
водорода: 3,895 кмоль/ч или 7 кг/ч.
По реакции 9 расходуется 17,5% пропана, что составляет:
77,9 · 0,175 = 13,633 кмоль/ч или 600 кг/ч.
Расход водорода составляет:
13,633 · 2 = 27,268 кмоль/ч или 54 кг/ч.
Образуется метана:
13,633 ·3 = 40,899 кмоль/ч или 654 кг/ч.
Остается пропана в пирогазе:
77,9 - (42,845 + 4,674 + 6,6 + 7,79 + 13,633) = 2,358 кмоль/ч или 103 кг/ч.
Бутадиен взаимодействует с этиленом по реакции
С4Н6 + С2Н4 = С6Н6 + 2Н2 (10)
В эту реакцию вступает 23,5% образовавшегося бутадиена, что составляет:
21,423 · 0,235 = 5,034 кмоль/ч или 271 кг/ч.
Расход этилена составляет: 5,034 кмоль/ч или 140 кг/ч;
образуется:
бензола: 5,034 кмоль/ч или 392 кг/ч;
водорода: 5,034 · 2 = 10,068 кмоль/ч или 20 кг/ч.
Остается бутадиена:
21,423 - 5,034 = 16,389 кмоль/ч или 885 кг/ч.
Всего образуется метана по реакциям 2 - 7, 9:
217,28 + 6,6 + 60,61 + 42,845 + 4,674 + 3,3 + 40,899 = 376,208 кмоль/ч или 6019 кг/ч.
По реакции
СН4 + Н20 = СО + ЗН2 (11)
конвертируется 2,6% метана, что составляет:
376,208 · 0,026 =9,781 кмоль/ч или 156 кг/ч.
Расход водяного пара:
9,781 кмоль/ч или 176 кг/ч;
образуется:
оксида углерода: 9,781 кмоль/ч или 273 кг/ч;
водорода: 9,781 · 3 = 29,343 кмоль/ч или 58 кг/ч.
Остается:
метана: 376,208 - 9,781 = 366,427 кмоль/ч или 5862 кг/ч;
водяного пара: 1149,844 - 9,781 = 1140,063 кмоль/ч или 20521 кг/ч;
где 1149,844 - молярный поток водяного пара на входе в трубчатую печь (поток 2), кмоль/ч.
Образуется водорода по реакциям 1, 5, 7, 8, 10, 11:
892,86 + 21,423 + 3,3 + 3,895 + 10,668 + 29,343 = 960,886 кмоль/ч
или 1922 кг/ч.
Расход водорода по реакциям 2, 4, 9:
108,64 + 60,61 + 27,268 = 196,518 кмоль/ч или 393 кг/ч.
Остается водорода в пирогазе:
960,886 - 196,518 = 764,368 кмоль/ч или 1528 кг/ч.
Этилена в составе этановой фракции содержится 12,1 кмоль/ч (см. табл. 1), образуется по реакции 8: 3,895 кмоль/ч, расходуется по реакции 10: 5,034 кмоль/ч.
Остаток 12,1 + 3,895 - 5,034 = 10,961 кмоль/ч представляет собой потери на стадии выделения этилена из пирогаза. В составе пирогаза (на выходе из трубчатой печи) содержится этилена:
892,86 + 10,961 = 903,821 кмоль/ч или 25307 кг/ч.
Потери этилена составляют:
10,961 · 100/903,821 = 1,2%,
что соответствует оптимальному технологическому режиму. Коксообразованием в процессе пиролиза пренебрегают.
По результатам расчета составляем табл. 6.
Таблица14 Состав пирогаза (поток 6)
Компонент |
nф кмоль/ч |
Хi, % |
Vф м3/ч |
mф кг/ч |
Wi, % |
|
Сухой газ: |
||||||
метан |
366,427 |
13,97 |
8208 |
5862 |
11,29 |
|
ацетилен |
6,6 |
0,25 |
147 |
172 |
0,33 |
|
этилен |
903,821 |
34,46 |
20245 |
25307 |
48,74 |
|
этан |
486,6 |
18,55 |
10905 |
14598 |
28,11 |
|
пропилен |
50,898 |
1,94 |
1140 |
2138 |
4,12 |
|
пропан |
2,358 |
0,09 |
53 |
103 |
0,2 |
|
бутадиен-1,3 |
16,389 |
0,62 |
366 |
885 |
1,7 |
|
бутилены |
3,637 |
0,14 |
81 |
203 |
0,39 |
|
бутан |
3,895 |
0,15 |
87 |
225 |
0,44 |
|
пентены |
3,3 |
0,13 |
74 |
231 |
0,45 |
|
бензол |
5,034 |
0,19 |
113 |
392 |
0,76 |
|
водород |
764,368 |
29,14 |
17121 |
1528 |
2,94 |
|
оксид углерода |
9,781 |
0,37 |
218 |
273 |
0,53 |
|
Сумма |
2623,108 |
100 |
58758 |
51917 |
100 |
|
Водяной пар |
1140,063 |
25537 |
20521 |
|||
Всего |
3763,171 |
84295 |
72438 |
Необходимые округления при определении массовых потоков компонентов (в кг/ч) обусловлены точностью расчетов и необходимостью соблюдения закона сохранения масс.
Расчет основных расходных коэффициентов. Для получения 25000 кг/ч 100%-го этилена затрачивается 51743 кг/ч этановой фракции и 20697 кг/ч водяного пара (см. табл. 6).
Рассчитывают расходные коэффициенты:
по этановой фракции: 51743/25000 = 2,070 кг/кг;
по водяному пару: 20697/25000 = 0,828 кг/кг.
что соответствует показателям эксплуатации промышленных установок.
Образуется дополнительно на 1 т этилена, кг:
пропилена: 2138/25,00 = 85,5;
бутадиена -1,3: 885/25,00 = 35,4;
бензола: 392/25,00 = 15,7.
Исходные данные: в трубном пространстве ЗИА охлаждается пирогаз, который содержит: сухого газа - 58758/(9 - 3600) = 1,813 м3/с; водяного пара - 25537/(9 - 3600) = 0,788 м3/с;
компонентный состав пирогаза см. табл. 6; температура пирогаза, °С: на входе -- 845; на выходе -- 420; давление пирогаза 0,45 МПа;
в межтрубное пространство подают умягченную воду при температуре 323 °С, соответствующей температуре кипения при давлении 12 МПа.
Цель расчета - определение паропроизводительности и тепловой нагрузки (теплового потока) аппарата.
Уравнение теплового баланса аппарата в общем виде:
Ф1 + Ф2 = Ф3 + Ф4 + Фпот,
где Ф1,Ф2,Фз, Ф4 - тепловые потоки поступающего пирогаза, умягченной воды, уходящего пирогаза и получаемого насыщенного водяного пара соответственно, кВт; Фпот - теплопотери в окружающую среду, кВт.
Для определения значений Ф1 и Ф3 рассчитывают средние объемные теплоемкости пирогаза при температуре Т1 = 845 + 273=1118 К и Т3 = 420 + 273 = 693 К соответственно (см. табл. 4).
Объемная теплоемкость водяного пара:
при Т1 = 1118 К с = 42,00/22,4 =1,8750 кДж/(м3-К); при Т3 = 693 К с = 37,49/22,4 = 1,6737 кДж/(м3-К).
Тепловой поток пирогаза на входе в ЗИА (поток 6): Ф1 = (1,813 · 3,7634 + 0,788 · 1,8750) · 845 = 7013,96 кВт.
Таблица 15 Расчет средних объемных теплоемкостей
Т1 =1118 К |
Т3=693 К |
|||||
Компонент |
цi,,% |
СI, Дж/ /(моль·К) |
СIцi, /(100·22,4), кДж/(м3·К) |
СI, Дж/ /(моль·К) |
СIцi,/(100·22,4), кДж/(м3· К) |
|
СН4 С2Н2 С2Н4 С2Н6 С3Н6 С3Н8 С4Н6 С4Н8 С4Н10 С5Н10 С6Н6 Н 2 СО |
13,97 0,25 34,46 18,55 1,94 0,09 0,62 0,14 0,15 0,13 0,19 29,14 0,37 |
76,00 67,85 100,36 129,21 163,55 186,33 173,92 209,32 241,80 260,83 213,92 30,96 32,95 |
0,4740 0,0076 1,5439 1,0700 0,1416 0,0075 0,0481 0,0131 0,0162 0,0151 0,0181 0,4028 0,0054 |
57,69 59,91 77,67 99,32 120,13 143,98 139,51 161,72 184,10 199,39 174,61 29,64 31,15 |
0,3598 0,0067 1,1949 0,8225 0,1040 0,0058 0,0386 0,0101 0,0123 0,0116 0,0148 0,3856 0,0051 |
|
Сумма |
100,00 |
-- |
3,7634 |
-- |
2,9718 |
Тепловой поток пирогаза на выходе из ЗИА (поток 7) :
Ф3 = (1,813 · 2,9718 + 0,788 · 1,6737) · 420 = 2816,83 кВт.
Тепловой поток умягченной воды (поток 8):
Ф2 = mх ·1455 кВт,
где mх - массовый расход умягченной воды (паропроизводительность), кг/с; 1455 - удельная энтальпия кипящей воды при р =12 МПа, кДж/кг.
Общий приход теплоты:
Ф1 + Ф2 = 7013,96 + 1455 mх кВт.
Принимаем, что теплопотери в окружающую среду составляют 5% от общего прихода теплоты, тогда
Фпот = 0,05· (7013,96 + 1455mх) = 350,69 + 72,75mх кВт.
Тепловой поток насыщенного пара (поток 8):
Ф4 = / mх · 2638 кВт,
где 2638 -- удельная энтальпия насыщенного пара при р= 12 МПа, кДж/кг.
Паропроизводительность аппарата (поток 10) находят из уравнения теплового баланса:
7013,96 + 1455 mх = 2816,83 + 2638,00 mх + 350,69 + 72,75mх mх = 3846,44/1255,75 = 3,06306 кг/с или 3,06306 · 3600 = 11027 кг/ч.
Таблица 16 Тепловой баланс ЗИА
Приход |
кВт |
% |
Расход |
кВт |
% |
|
Тепловой поток поступающего пирогаза Тепловой поток умягченной воды |
7013,96 4456,75 |
61,1 38,9 |
Тепловой поток уходящего пирогаза Тепловой поток получаемого насыщенного водяного пара Теплопотери в окружающую среду |
2816,83 8080,35 573,33 |
24,6 70,4 5,0 |
|
Все го... |
11470,71 |
100,0 |
В с е г о... |
11470,71 |
100,0 |
Потерями воды в процессе парообразования пренебрегают. Уточняют статьи теплового баланса:
Ф2 = 3,06306 · 1455 = 4456,75 кВт;
Ф4 = 3,06306 · 2638 = 8080,35 кВт;
Фпот = 350,69 + 72,75 · 3,06306 = 573,33 кВт.
Тепловая нагрузка аппарата:
Фа = ф4 - ф2 = 8080,35 - 4456,75 = 3623,6 кВт. Составляем тепловой баланс ЗИА.
7. Автоматизация
Выбор средств контроля и регулирования зависит от условий технологического режима. При выборе средств контроля и регулирования руководствуются следующими принципами:
- приборы должны обеспечивать необходимую точность измерений, быть быстродействующими при измерении и регулировании;
- показывающие приборы должны быть доступны для наблюдения;
- приборы должны быть выполнены во взрыво и пожаробезопасном исполнении;
- средства автоматизации выполнены по государственной схеме приборов, использование которой даёт возможность применение приборов в различных состояниях и имеют ряд следующих достоинств:
а) повышается надежность, точность, быстродействие средств контроля и регулирования;
б) применение унифицированных блоков уменьшает номенклатуру и общее количество приборов, которое надо иметь в резерве при эксплуатации систем автоматизации;
в) уменьшение затрат на ремонт вследствие возможности замены модулей и блоков, а не всего устройства.
Первичные преобразователи. Датчик расхода - диафрагма камерная ДКС-10. Диаметр условного прохода 50-150 мм, Ру = 10 МПа, материал камеры и диска - сталь Х18Н10Т.
Датчики температур - термопара хромель-капелевая ТХАУ-205 ЕХ с диапазоном измерения от 0 до 900 0С, термометр сопротивления платиновый ТСПУ-205 ЕХ с диапазоном измерения от 0 до 200 0С для измерения высоких температур с унифицированными выходными сигналами 4-20 мА; метран-255 ТСП с диапазоном измерения от -200 до 500 0С для измерения низких температур. Ру = 6,3 МПа.
Датчик давления - электрический манометр Сапфир-22М-ДА-2060 с пределом измерения от 0 до 6 МПа. Выходной сигнал - 4-20 мА.
Датчик уровня - буйковый уровнемер сапфир 22ДУ-ВН.
Датчик состава - адресный анализатор состава S 4100C с выходным сигналом 4-20 мА.
Промежуточные преобразователи. Преобразователь сигнала диафрагмы - дифманометр метран-44 ДД. Выходной сигнал - 4-20мА.
Преобразователь сигнала термометра сопротивления метран-255 ТСП в стандартный токовый сигнал 4-20 мА - НП-01.
Вторичные приборы и регуляторы. Для регулирования, регистрации и сигнализации используется ПИД-регулятор UP-750. Для регистрации и контроля используется прибор типа А-100. Входной сигнал приборов 4-20 мА.
Исполнительные механизмы. В качестве исполнительных устройств применяются: электрический регулирующий клапан 241-4 (Ду = 50-150 мм, Ру = 40 МПа), отсечной клапан 33-51 (Ду = 50-150 мм, Ру = 40 МПа). Входной сигнал приборов 4-20 мА.
Описание системы контроля регулирования, сигнализации и блокировки. Поз (20). Контроль уровня в отстойнике (О-2).
Уровень измеряется буйковым уровнемером сапфир 22ДУ-ВН (20-1), выходной сигнал подаётся на вторичный регистрирующий прибор А-100 (20-2), осуществляющий непрерывный контроль за параметром. Аналогично контроль происходит в аппарате Е-2 (поз.22).
Поз (7). Контроль расхода топлива на горелки печи (П-1).
Расход измеряется камерной диафрагмой ДКС-10-150 (7-1), смонтированной в трубопроводе и преобразующей расход в перепад давления. Выходной сигнал диафрагмы воспринимается дифманометром метран-44 ДД (7-2). Стандартный токовый выходной сигнал дифманометра поступает на вторичный регистрирующий прибор А-100 (7-3), осуществляющий непрерывный контроль за параметром. Аналогично контролируется расход подсмольной воды на отпарку в колонну К-2 (поз.27), товарного этилена после емкости Е-10 (поз.74), товарного пропилена после гидрирования (поз.93).
Поз (9). Контроль температуры пирогаза на перевале печи (П-1)
Температура измеряется хромель-капелевой термопарой ТХАУ-205 ЕХ (9-1), стандартный токовый сигнал от которой подаётся на вторичный регистрирующий прибор А-100 (9-2), осуществляющий непрерывный контроль за параметром. Аналогично контроль осуществляется за температурой пирогаза после воздушного холодильника (ХВ, поз.16), после водяного холодильника (Х-2, поз.19), после аммиачного холодильника (апп.Х-3, поз.24), на входе в колонну К-3 (поз.35), но первичным прибором является термометр сопротивления платиновый ТСПУ-205 ЕХ.
Поз (2). Контроль давления сырья, подаваемого в печь (П-1).
Давление измеряется электрическим манометром Сапфир-22М-ДА-2060 (2-1), стандартный токовый сигнал от которого воспринимается вторичным регистрирующим прибором А-100 (2-2). Аналогично контролируется давление пара на смешение с сырьем (поз.3), топлива на горелки печи (П-1, поз.8), давление в отпарной колонне (К-2, поз.30).
Поз (18). Регулирование уровня в емкости-разделителе (Е-2).
Уровень измеряется буйковым уровнемером сапфир 22ДУ-ВН (18-1), выходной сигнал подаётся на вторичный прибор со встроенным ПИД регулятором UP-750 (18-2). С выхода регулятора командный сигнал поступает на электрический регулирующий клапан 241-4 (18-4). Аналогично регулирование происходит в емкостях Е-3, Е-4, Е-8, Е-10, Е-11, Е-12, Е-13 (поз.21, 22, 25, 26, 55, 73, 79, 87, 92), колоннах К-1 - К-2 (поз.15, 28). При достижении критического уровня в емкостях подается сигнал на отключение перекачивающего из рассматриваемой емкости насоса.
Поз (1). Регулирование расхода сырья на печь (П-1).
Расход измеряется камерной диафрагмой ДКС-10-150 (1-1), смонтированной в трубопроводе и преобразующей расход в перепад давления. Выходной сигнал диафрагмы воспринимается дифманометром метран-44 ДД (1-2). Стандартный токовый выходной сигнал дифманометра поступает на вторичный регулирующий прибор UP-750 (1-3), который передаёт команду на электрический регулирующий клапан 241-4 (1-4).
Унифицированный электрический сигнал с термопары хромель-капелевой ТХАУ-205 ЕХ (5-1) поступает на вторичный регулирующий прибор типа UP-750 (5-2), который также регистрирует величину данного параметра. Сигнал с регулятора поступает на исполнительный механизм - регулирующий клапан на линии топлива 241-4 (5-4). Аналогично подачей подсмольной воды в закалочное устройство (Е-1) регулируется температура пирогаза после 2-й ступени закалки (поз.12), подачей топлива регулируется температура пирогаза после печи (П-1, поз.6). При регулировании температуры куба и верха колонны К-1 подачей легкой смолы (поз.13, 14), температуры в колонне К-2 (поз.29) подачей пара, в качестве первичного прибора используется термометр сопротивления платиновый ТСПУ-205 ЕХ.
Таблица 17 Спецификация средств контроля и автоматики
Позиция |
Измеряемый параметр |
Наименование и техническая характеристика |
Марка |
Кол-во |
|
1 |
2 |
3 |
4 |
5 |
|
5-1, 6-1, 9-1, 10-1, 12-1, 13-1 |
Температура |
Термопара хромель-алюминиевая. Предел измерений от 0 до 900оС. Выходной сигнал 4-20 мА. Ру = 6,3 МПа |
ТХАУ-205 ЕХ |
6 |
|
14-1, 16-1, 19-1, 24-1, 29-1 |
Термометр сопротивления платиновый с диапазоном измерения от 0 до 200 0С. Выходной сигнал 4-20 мА |
ТСПУ-205 ЕХ |
5 |
||
5-2, 6-2, 12-2, 13-2, 14-2, 29-2 |
Вторичный прибор со встроенным ПИД регулятором, самопишущий, класс точности 0,3. Входной сигнал 4-20 мА |
UP-750 |
6 |
||
9-2, 10-2, 16-2, 19-2, 24-2 |
Вторичный прибор регистрирующий. Входной сигнал 4-20 мА. |
А-100 |
5 |
||
5-4, 6-3, 12-4, 13-3, 14-3, 29-3 |
Клапан регулирующий с электрическим мембранным механизмом, класс точности 1,5, Ду = 50-150 мм, Ру = 40 МПа |
241-4 |
6 |
||
11-1, 15-1, 17-1, 18-1, 20-1, 21-1, 22-1, 23-1, 25-1, 26-1, 28-1 |
Уровень |
Буйковый уровнемер. Выходной сигнал 4-20 мА |
сапфир 22ДУ-ВН |
11 |
|
11-2, 15-2, 17-2, 18-2, 21-2, 23-2, 25-2, 26-2, 28-2 |
Вторичный прибор со встроенным ПИД регулятором, самопишущий, класс точности 0,3. Входной сигнал 4-20 мА |
UP-750 |
9 |
||
20-2, 22-2 |
Вторичный прибор регистрирующий. Входной сигнал 4-20 мА |
А-100 |
2 |
||
11-5, 15-3, 17-4, 18-5, 21-3, 23-3, 25-5, 26-5, 28-3 |
Клапан регулирующий с электрическим мембранным механизмом, класс точности 1,5, Ду = 50-150 мм, Ру = 40 МПа |
241-4 |
9 |
||
1-1, 4-1, 7-1, 27-1 |
Расход |
Диафрагма камерная, материал камеры и диска - сталь Х12Н10Т, класс точности 1,5. Ду = 50-150 мм |
ДКС-10-150 |
4 |
|
1-2, 4-2, 7-2, 27-2 |
Дифманометр. Выходной сигнал 4-20 мА, класс точности 1,5 |
метран-44 ДД |
4 |
||
1-3, 4-3, 7-3 |
Вторичный прибор со встроенным ПИД регулятором, самопишущий, класс точности 0,3. Входной сигнал 4-20 мА |
UP-750 |
3 |
||
27-3 |
Вторичный прибор регистрирующий. Входной сигнал 4-20 мА. |
А-100 |
1 |
||
1-4, 4-4, 7-4 |
Клапан регулирующий с электрическим мембранным механизмом, класс точности 1,5, Ду = 50-150 мм, Ру = 40 МПа |
241-4 |
3 |
||
2-1, 3-1, 8-1, 30-1 |
Давление |
Электрический манометр. Предел измерения от 0 до 6 МПа Выходной сигнал - 4-20 мА. |
Сапфир-22М-ДА-2060 |
4 |
|
2-2, 3-2, 8-2, 30-2 |
Вторичный прибор регистрирующий. Входной сигнал 4-20 мА. |
А-100 |
4 |
8. Безопасность жизнедеятельности и экологичность технологического процесса
Технологические процессы при получении этилена и пропилена в объекте 2-3-5/Ш протекают в условиях высоких давлений до 4 МПа, высоких и низких температур от +900оС до -150оС, при наличии открытого огня, с применением исходного сырья углеводородов, пары которого в смеси с воздухом дают взрывоопасные смеси и получением углеводородных фракций и газов, которые с воздухом дают взрывоопасные смеси и отравляюще действуют на организм человека.
Основные опасности производства
Опасность технологического процесса определяет:
1. Применение в качества сырья и реагентов жидких, газообразных токсичных углеводородов С1 ч С5 предельного и непредельного ряда, имеющих низкий нижний предел воспламенения и достаточно широкий диапазон между нижним и верхним пределами воспламенения некоторых продуктов (водород, этилен) (см. таблицу 7.1).
2. Возможность завышения допустимых параметров в аппаратах и трубопроводах, в связи с чем возможен разрыв, нарушение герметичности торцевых и сальниковых уплотнений в аппаратах, насосно-компрессорном оборудовании и выход пожаровзрывоопасных продуктов в атмосферу.
3. Наличие тока высокого напряжения до 6 кВ.
4. Возможность поражения электрическим током при нарушении изоляции и заземления в электрических устройствах, статическим электричеством и проявлением молний, возможность термических ожогов.
5. Возможность получения острых отравлений из-за неприменения средств газозащиты при проведении газоопасных работ, разгерметизации трубопроводов и аппаратов, когда в атмосферу выделяются газы, пары, жидкости, пыли в количествах, превышающих ПДК.
6. Возможность загораний, пожаров из-за нарушений технологического режима, недостаточной и неправильной подготовки оборудования, трубопроводов к огневым работам.
7. Возможность самовозгорания полимеров, цеолитов, катализатора, пирофорных соединений при их выгрузке и чистке оборудования.
8. Наличие пара и едких жидкостей могут вызвать термические и химические ожоги.
9. Возможность выхода из строя насосов и компрессоров из-за наличия механических примесей в перекачиваемых продуктах.
10. Наличие оборудования с вращающимися и движущимися узлами и деталями, в связи с чем возможно травмирование обслуживающего персонала.
11. Возможность выбросов углеводородов в атмосферу при завышении давления в аппаратах и срабатывании ППК.
12. Возможность размораживания аппаратов и трубопроводов с токсичными и пожаровзрывоопасными продуктами.
13. Многие процессы и работающее оборудование создают повышенную вибрацию и шум, которые отрицательно действуют на работников.
В отделении пиролиза опасность обусловлена наличием газообразных и жидких углеводородов, высоких температур до 900°С, использованием в качестве хладагента жидкого аммиака, работой электрооборудования напряжением до 380 В.
Взрывопожароопасные, токсичные свойства сырья, полупродуктов, готовой продукции и отходов производства
Сырье - смесь углеводородов, обладает высокой испаряемостью при обычной температуре. Огнеопасен. Вдыхание большого количества паров бензина вызывает отравление, приводящее к потере сознания или смерти. Пары углеводородов в смеси с воздухом взрывоопасны.
В процессе пиролиза сырье расщепляется на водород, метан, этилен, этан, пропилен, пропан, углеводороды С4, С5, С6 и выше, которые в смеси представляют собой пирогаз, подвергающийся в дальнейшем разделению.
Пирогаз горит и в смеси с кислородом воздуха образуют взрывоопасные смеси. При концентрации этих веществ в воздухе между нижним и верхним пределами взрываемости и при наличии источника загорания (открытый огонь, искра, нагретые части оборудования) происходит взрыв.
Все указанные вещества, имеющиеся в цехе оказывают вредное влияние на организм человека.
Аммиак - взрывоопасен, относится к категории сильнодействующих ядовитых веществ. При разливе его в больших количествах мгновенно образуется сильная загазованность, приводящая к отравлению.
Таблица 18 Взрывопожароопасные, токсичные свойства сырья, полупродуктов, готовой продукции и отходов производства
Вещество |
Температура, оС |
Концентрационный предел воспламенения, % об. |
Характеристика токсичности (воздействие на организм человека) |
ПДК, мг/м3 |
|||
вспышки |
самовоспламенения |
нижний предел |
верхний предел |
||||
1 |
2 |
3 |
4 |
5 |
6 |
7 |
|
Сырье |
10,6 |
474 |
0,76 |
8,1 |
Обладает наркотическим действием. Действует на центральную нервную систему, кроветворные органы. |
300 |
|
Водород |
510 |
4,15 |
75 |
Физиологически инертный газ |
-- |
||
Метан |
537 |
5 |
15 |
Газ наркотического действия. Поражает центральную нервную систему, действует на сердечно-сосудистую систему, раздражает дыхательные пути. |
300 |
||
Этилен |
-160 |
427 |
3,11 |
32 |
Наркотическое удушье |
100 |
|
Этан |
515 |
2,9 |
15 |
Наркотическое удушье |
300 |
||
Пропан |
466 |
2,1 |
9,5 |
Наркотическое удушье |
300 |
||
Пропилен |
410 |
2,3 |
11,1 |
Наркотическое удушье |
100 |
||
Бутан |
405 |
1,8 |
9,1 |
Наркотическое удушье |
300 |
||
Бутилен |
334 |
1,6 |
9,4 |
Наркотическое удушье |
100 |
||
У/в конденсат (С5-С8, толуол). |
10 |
430 |
0,92 |
9,5 |
Действует на центральную нервную систему и кроветворные органы |
20 |
|
Бензол |
-11 |
562 |
1,4 |
7,1 |
Действует на центральную нервную систему и кроветворные органы, при попадании на кожу вызывает зуд, пузырьковые высыпи. |
5 |
|
Аммиак |
-2 |
650 |
15,0 |
28,0 |
Сильнодействующее ядовитое вещество, раздражает дыхательные пути, вызывает удушье, при попадании на кожу вызывает раздражение и ожоги |
20 |
Мероприятия по обеспечению безопасности производства. В соответствии с ГОСТ-12.3.002-88 безопасность производственного процесса обеспечивается выбором режима работы технологического процесса, оборудования, размещения производственного оборудования.
Предусмотрено следующее:
1. Процесс осуществляется по непрерывной схеме в герметичных аппаратах. Все основные аппараты, кроме компрессорного и насосного оборудования, располагаются на открытой площадке.
2. Технологическое оборудование запроектировано в соответствии с ГОСТ 26-291-71.
3. В основу разработки мероприятий по безопасному ведению технологического процесса положены действующие нормы и правила ПБ 09-170-97, ПБ 10-115-96, ПБ 09-310-99, РД 38.13.004-86.
4. Отделение разделено на технологические блоки, снабженные запорными и отсекающими устройствами в соответствии с требованиями ОПВ-88. Кроме того на трубопроводах приема сырья, приема отдувок из цеха полипропилена предусмотрена арматура с дистанционным управлением из ЦПУ.
5. Управление технологическим процессом осуществляется автоматически и дистанционно с помощью пневматических регуляторов, расположенных на щите в ЦПУ.
6. Пневмодатчики используются для замера и регулирования давления, уровня, расхода в различных аппаратах. Дистанционный замер температуры производится с помощью термопар и термометров сопротивления, работающих со вторичными приборами с искробезопасным входом.
7. При наиболее опасных отклонениях технологического режима предусмотрены сигнализация и блокировка для быстрой ликвидации аварийной ситуации и защиты оборудования.
8. При аварийной ситуации (прекращение подачи воды, водяного пара, электроэнергии, воздуха КИП, отсутствие сырья и др.) предусмотрена остановка объекта или отдельных её узлов в соответствии с технологическими регламентом, инструкциями и планом локализации аварийных ситуаций (ПЛАС).
9. Компрессорные установки оборудованы местными и дистанционными приборами контроля температуры, давления и других параметров.
10. Освобождение токсичных, а также пожаро- и взрывоопасных продуктов из технологических аппаратов в канализационные системы не допускается.
11. Выполнено рабочее и аварийное освещение помещений и наружных установок. На объекте имеются пожарные извещатели и оперативная связь.
12. Для обеспечения нормальных санитарных условий труда на объекте предусмотрена приточно-вытяжная механическая вентиляция.
13. Установка снабжена средствами пожаротушения, пожарными извещателями и телефонной связью.
14. Смонтирована схема дистанционного отключения насосов перекачивающих легковоспламеняющиеся жидкости. СВК НАСОС и наружные установки.
15. Для перекачки сжиженных газов применяются герметичные насосы типа ХГВ, ЦНГ.
Действия, направленные на предотвращение аварийных ситуаций
1. Продуть аппараты и коммуникации перед пуском ингазом до содержания кислорода в отходящем после продувки газе не более 2% об.
2. Перед розжигом пиролизных печей на 15 минут включить дымосос и после чего отобрать анализ на взрываемость из топки печи.
3. Необходимо следить за отсутствием жидкости в межступенчатых сепараторах, ресиверах, влагомаслоотделителях, так как завышение уровня ведет к попаданию жидкости в компрессор и к гидроударам.
4. Не допускать вибрации трубопроводов.
5. Обеспечить непрерывную работу приточно-вытяжных вентсистем для создания необходимой кратности воздухообмена в производственных помещениях.
6. Запрещается устранять пропуски в резьбовых и фланцевых соединениях на работающих компрессорах, насосах, действующих трубопроводах, колоннах и другом технологическом оборудовании без их отключения и освобождения от продуктов.
Пожарная и взрывобезопасность
Отделение печей пиролиза является огневзрывоопасным объектом объекта 2-3-5/Ш.
Источниками пожара на объекте являются: бензин, углеводородные фракции и газы, масла и промасленная ветошь, пирофорные соединения, углеводородные полимеры.
Способы и необходимые средства пожаротушения (ГОСТ 12.1.003-81 ССБТ)
1. Все производственные помещения и наружные установки объекта обеспечены средствами пожаротушения (ящиками с песком, носилками, совковыми лопатами, огнетушителями типа ОПУ-5, ОХП-10, асбестовыми одеялами, пожарными кранами, пожарными рукавами).
2. В отделении пиролиза установлена система дистанционного паротушения печей пиролиза, которая приводится в действие из ЦПУ при прогаре змеевиков, выхода пламени наружу печи или загазованности в районе печей.
3. Компрессорные залы, помещение ЦПУ укомплектованы углекислотными огнетушителями ОУ-25.
4. Для тушения пожара на всех наружных установках смонтированы сухотрубы и лафетные стволы.
5. В насосной пиролиза и насосной первой наружной установки установлены стационарные пеногасительные установки находящиеся под давлением азота.
6. При загорании электрооборудования снимается напряжение с агрегата. Тушение очага при загорании электрооборудования производится асбестовыми одеялами, ингазом, огнетушителями ОУ-25, ОПУ-5. Одновременно производится остановка технологического узла объекта.
7. При возникновении пожара в производственных помещениях объекта немедленно прекращается работа вентсистем. При загорании различных продуктов в объекте тушение очага пожара производится огнетушителями ОХП-10, ОПУ-5, ОУ-25, песком, асбестовым одеялом.
8. Тушение очагов пожаров при загорании покраски оборудования, изоляционных материалов, деревянных конструкций производится водой.
Электробезопасность. Электрооборудование и электроаппаратура, устанавливаемые на установке, по своему исполнению должны соответствовать классу взрывоопасных зон, категориям и группе взрывоопасных смесей по ПУЭ.
В данном технологическом процессе, для электродвигателей насосов, применяется ток высокого напряжения, существует опасность образования статического электричества при движении газов и жидкостей по аппаратам и трубопроводам, возникновение искрообразования от механических ударов.
Защита от статического электричества
На объекте проводится перемещение продуктов, имеющих удельное электрическое сопротивление, в связи с чем возможно накопление статического электричества.
Опасные потенциалы могут возникать также в результате прямых и вторичных проявлений молнии.
Молниезащита зданий и сооружений установки, защита от вторичного проявления молнии выполнена на основании РД.34.21.122-87 и относится ко II категории.
Для уменьшения и исключения накопления статического электричества предусмотрено во всех емкостях поступление потоков под уровень жидкости и подбор оптимальных диаметров трубопроводов для уменьшения скоростей потоков жидкости.
Скорость движения продуктов в аппаратах и трубопроводах не должна превышать значений, предусмотренных проектом.
Анализ надежности защиты рабочих, служащих и инженерно-технического комплекса в ЧС.
Методы и средства защиты работающих от производственных опасностей.
1. Во всех производственных помещениях и на рабочих местах в объекте установлены средства коллективной защиты согласно ГОСТ-12.4.011-75.
2. Для нормализации воздушной среды и температурного режима производственные помещения в объекте имеют приточные, вытяжные и аварийные вентиляционные системы.
3. В местах выделения вредных паров у насосов, перекачивающих токсичные жидкости, установлены местные отсосы.
4. Для нормализации освещения производственных помещений и рабочих мест применяются источники света: естественное, искусственное и аварийное освещение.
5. В целях защиты от воздействия инфракрасного излучения технологическое оборудование и трубопроводы, температура которых превышает 45оС, покрыты теплоизоляционными материалами.
6. Д...
Подобные документы
Сырьё, условия проведения и химизм процесса пиролиза, особенности технологического оформления. Расчёт материального баланса и теплового эффекта процесса пиролиза. Расчёт трубчатого реактора пиролиза, камеры конвекции и закалочно-испарительного аппарата.
курсовая работа [1,1 M], добавлен 13.10.2013Пиролиз нефтяного сырья как термодеструктивный процесс, предназначенный для получения низших олефинов. Знакомство с особенностями и проблемами проектирования трубчатого реактора пиролиза пропановой фракции. Рассмотрение принципа действия трубчатых печей.
дипломная работа [865,3 K], добавлен 29.05.2015Анализ способов переработки резинотехнических изделий. Физико-химические основы процесса низкотемпературного пиролиза. Маркетинговое исследование рынка вторичной переработки резинотехнических изделий. Переработка изношенных автомобильных покрышек.
дипломная работа [1,0 M], добавлен 20.03.2011Свойства этилен-пропиленовых каучуков, особенности их синтеза. Технология получения, физико-химические основы процесса, катализаторы. Характеристика сырья и готовой продукции. Материальный и энергетический баланс реакционного узла, контроль производства.
курсовая работа [515,8 K], добавлен 24.10.2011Понятие пиролиза как превращения органических соединений в результате их деструкции под действием высокой температуры. Пиролиз углеводородов, выход основных продуктов. Конструкция печей, сырьевая база. Особенности пиролиза древесины и угля, копчение.
реферат [51,9 K], добавлен 26.11.2012Физико-химическое обоснование основных процессов производства этилового спирта. Сернокислая гидратация этилена. Структурная и операторская схема процесса спиртового брожения. Материальный баланс ХТС производства этанола на 7900 кг этиленэтановой фракции.
реферат [172,6 K], добавлен 03.10.2014Выбор метода производства карбамида (мочевины). Основные физико-химические свойства сырья, вспомогательных материалов и готовой продукции. Материальный баланс выпарной установки и стадии кристаллизации. Тепловой баланс выпарки в аппарате пленочного типа.
дипломная работа [391,5 K], добавлен 03.11.2013Физико-химические основы процесса абсорбции. Описание технологической схемы сульфатного отделения. Выбор и конструкция основного аппарата для производства сульфата аммония. Материальный и тепловой балансы абсорберов и сборников, расчет испарителя.
курсовая работа [551,4 K], добавлен 04.01.2015Физико-химические, эксплуатационные свойства нефти. Абсолютная плотность газов при нормальных условиях. Методы определения плотности и молекулярной массы. Важный показатель вязкости. Предельная температура фильтруемости, застывания и плавления нефти.
презентация [1,1 M], добавлен 21.01.2015Физико-химические основы приготовления сырьевой смеси для производства портландцемента по мокрому способу: измельчение, обжиг сырьевой смеси, получение и измельчение клинкера. Портландцементный клинкер как продукт спекания при обжиге сырьевой шихты.
курсовая работа [1000,6 K], добавлен 14.07.2012Характеристика химического продукта (криолита). Методы получения, основное и вспомогательное сырье. Физико-химические характеристики стадий процесса. Отходы и проблемы их обезвреживания и полезного использования. Материальный баланс производства.
курсовая работа [3,3 M], добавлен 15.04.2011Характеристика методов производства карбинола. Обоснование выбранного метода в месте строительства. Физико-химические данные процесса производства карбинола. Технико-технологические расчеты. Строительные и економические расчеты проекта. Безопасность.
дипломная работа [766,9 K], добавлен 29.11.2007Производство фосфорной кислоты экстракционным и электротермическим методами. Физико-химические основы процесса. Изображение графических моделей ХТС. Условия разложения фторапатита. Процесс гидратации димера оксида фосфора. Башни сгорания и гидратации.
курсовая работа [516,6 K], добавлен 05.04.2009Химическая технология получения полиэфирного волокна непрерывным методом из диметилтерефталата и этиленгликоля: общая характеристика процесса, его стадии; физико-химические свойства исходных реагентов и продуктов. Формование и отделка полиэфирных волокон.
курсовая работа [2,8 M], добавлен 22.10.2011Физико-химические свойства нефтяных эмульсий и их классификация. Теоретические основы обезвоживания нефти. Характеристика сырья, готовой продукции и применяемых реагентов. Описание технологической схемы с автоматизацией и материальный баланс установки.
дипломная работа [150,0 K], добавлен 21.05.2009Процесс селективной очистки масляных дистиллятов. Комбинирование процессов очистки. Фракция > 490 С величаевской нефти, очистка селективным методом. Характеристика продуктов процесса и их применение. Физико-химические основы процесса. Выбор растворителя.
курсовая работа [1,1 M], добавлен 26.02.2009Теоретические основы проведения процесса пиролиза в трубчатых печах, его модификация. Расчет материального и теплового балансов, основного и вспомогательного оборудования трубчатой печи, закалочно-испарительного аппарата и выбор средств контроля.
дипломная работа [557,2 K], добавлен 21.06.2010Физико-химические свойства никеля. Технологические особенности процесса никелирования. Выбор толщины покрытия. Приготовление и корректировка электролитов. Определение продолжительности обработки деталей. Расход химикатов на выполнение годовой программы.
курсовая работа [467,8 K], добавлен 13.10.2017Выбор района и площади под строительство. Химические и физико-химические основы производства полиэфира ПБА. Осуществление процесса поликонденсации гликолей с адипиновой кислотой периодическим способом. Анализ определения фланцевых соединений и штуцера.
курсовая работа [658,9 K], добавлен 21.04.2021Характеристика ассортимента продукции. Физико-химические и органолептические показатели сырья. Рецептура сыра плавленого колбасного копчёного. Технологические процесс производства. Технохимический и микробиологический контроль сырья и готовой продукции.
курсовая работа [125,5 K], добавлен 25.11.2014