Обогащение алмазосодержащих руд
Основные месторождения алмазов в России, оценка объема запасов. Схема кимберлитовой трубки. Отечественная технология обогащения алмазного сырья. Основные операции рудоподготовки. Способы дезинтеграции песков. Гравитационное обогащение руд и россыпей.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 10.10.2017 |
Размер файла | 1,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Министерство образования и науки российской федерации
Федеральное государственное бюджетное образовательное учреждение высшего образования
Санкт-Петербургский горный университет
Кафедра обогащения полезных ископаемых
Реферат
По дисциплине: Переработка руд цветных металлов
Тема: Обогащение алмазосодержащих руд
Выполнил: студент Смирнова Д.А.
Проверил: Зав. каф. проф. Александрова Т.Н.
Санкт-Петербург
2017
СОДЕРЖАНИЕ
Введение
1. Общие сведения
2. Обогащение алмазов
2.1 Дезинтеграция песков и руд коренных месторождений
2.2 Гравитация
2.3 Фотометрическая сепарация
2.4 Люминесцентная сепарация
2.5 Флотация
2.6 Жировой процесс
2.7 Электрическая и магнитная сепарация
2.8 Ручная сортировка
2.9 Схемы извлечения алмазов. извлечение месторождение обогатительный
3.Технология обогащения месторождения «Удачный» (Якутия)
4.Технология обогащения алмазосодержащих руд за рубежом
Заключение
Библиографический список
ВВЕДЕНИЕ
В настоящее время добыча алмазов осуществляется более чем в 25 странах мира. В том числе основных относятся Ботсвана (27%), Россия (20%), ЮАР (15%), Ангола (10%), Канада (7%), Конго (7%), Австралия (5%) и другие (порядка 5%).
Несмотря на ряд особенностей вещественного состава сырья, уровня развития горнодобывающих комплексов, климатических условий и других составляющих современные технологии добычи и обогащения алмазосодержащих кимберлитов в России в зарубежных странах имеют общие тенденции развития.
Современная зарубежная фабрика по добыче алмазов за последние десятилетия постепенно на макроуровне становится практически стандартной.
Общепринятая зарубежная технологическая схема состоит из следующих элементов: первичное дробление, скруббирование и грохочение, вторичное дробление, тяжёлосредная сепарация, додрабливание валковым прессом высокого давления, осушка, магнитная сепарация, рентгено-люминесцентная сепарация, ручная сортировка, пневматическая транспортировка алмазов.
Отечественная технология обогащения алмазосодержащих кимберлитов на первых этапах своего становления опиралась на Южно-Африканский опыт обогащения кимберлитов. Проектная технология обогащения алмазного сырья на фабрике № 3 МГОКа (Мирнинского горно-обогатительного комбината) являлась модернизированной копией технологических схем обогащения, используемых при переработке кимберлитов, принятых в корпорации Де Бирс. В силу существенных различий (природно-климатических, экономико-географических, технических) отечественной технологии пришлось во многом отказаться от первоначальных принципов построения технологических схем за рубежом.
Отечественная технологическая схема обогащения кимберлитов сводится к следующему. Исходный материал через стадию крупного начального дробления (или без него) поступает на самоизмельчение в замкнутом цикле с обесшламливающим классификатором. После классификации материал рассеивается на классы, более крупные из которых идут на рентгенолюминесцентную сепарацию, а затем на доводку, а более мелкие - на отсадку и на РЛ- и жировую сепарации. Класс 2 мм обогащается с помощью винтовых сепараторов и флотацией.
В данном реферате рассмотрим отечественные технологии обогащения алмазосодержащих руд.
1. ОБЩИЕ СВЕДЕНИЯ
Алмаз - самый дорогой драгоценный камень. Его высокая стоимость обусловлена, прежде всего, его редкостью и сложностью добычи. Для того чтобы получить один карат алмаза, требуется извлечь из кимберлитового алмазного месторождения, а затем перебрать несколько десятков тонн алмазной породы.
Месторождения алмазов подразделяются на две большие группы: коренные (первичные), связанные с магматическими горными породами, и россыпные (вторичные), возникшие при разрушении коренных месторождений. Коренными месторождениями алмазов являются кимберлиты и лампроиты, во всем мире они приурочены к древним платформам -- Индийской, Китайской, Сибирской, Восточно-Европейской, Австралийской. Из россыпей можно выделить следующие геолого-генетические типы, источники которых могут быть объектами рентабельной добычи алмазов: делювиальные, пролювиальные, аллювиальные и морские (прибрежно-морские и шельфовые).
Примерное распределение алмазных ресурсов между коренными источниками и россыпями -- соответственно 85% и 15%, поэтому важнейшими источниками промышленной добычи алмазов являются кимберлитовые и лампроитовые трубки. Трубками они называются, потому что алмазоносная порода сосредоточена в объеме, напоминающем конусообразную трубку (рис. 1.1) [15].
Кимберлитовая трубка представляет собой гигантских размеров столб, оканчивающийся в верхней части раздувом конической формы. С глубиной коническое тело сужается, напоминая по форме гигантскую морковь, и на какой-то глубине переходит в жилу.
Рис. 1.1. Кимберлитовая трубка -- коренное месторождение алмазов
Кимберлитовые трубки -- своеобразные древние вулканы, наземная часть которых в большой степени разрушена в результате эрозионных процессов. Кимберлитом называется ультраосновная горная порода брекчиевидного строения, которая состоит из оливина, флогопита, пиропа и других минералов. Имеет черный цвет с синеватым и зеленоватым оттенком. В настоящее время известно свыше 1500 тел кимберлита, из которых 8-10% -- алмазоносные породы.
По оценкам специалистов, около 90% запасов алмазов коренных источников сосредоточены в кимберлитовых трубках, а около 10% -- в лампроитовых трубках.
Российские запасы алмазов сосредоточены в следующих местах:
1. Алмазные россыпи Красновишерского района на Урале - 0,2%
2. Ломоносовское месторождение и трубка Верхотина в Архангельской области - 17,5%
3. Якутские месторождения - 82%
Добыча алмазов в Якутии ведется как из коренных, так и из россыпных месторождений. Алмазы (Саха) различны по размеру - от 0,1 мг до сотен карат. Основные запасы добычи алмазов России сосредоточены в Якутии - 80%, остальное приходится на Архангельскую и Пермскую области.
Свойства алмазов:
1. Удельный вес алмазов колеблется от 3,47 до 3,56 г/см3
2. Бесцветны и прозрачны, но встречаются с различными оттенками коричневого, красного, желтого, синего, голубого, зеленого
3. Хорошо проводит тепло.
4. Крупность алмазов измеряется в метрических каратах: один метрический карат равен 0,2 г
5. Обычные алмазы не электропроводны, но некоторые разновидности обладают пиро- и пьезоэлектрическими свойствами
6. Не растворяются в кислотах и царской водке.
7. Алмаз не магнитен, но отдельные его разновидности обладают слабыми парамагнитными свойствами, близкими к свойствам кварца.
По назначению алмазы разделяют на ювелирные и технические, 80 % добываемых в мире алмазов используется в промышленности, а около 20 % применяется как ювелирные [13].
Обогащение алмазов:
1. Дезинтеграция песков и руд коренных месторождений
2. Гравитация
ь Концентрация в чашах
ь Отсадка
ь Концентрация на винтовых сепараторах
ь Обогащение в тяжелых суспензиях
3. Фотометрическая сепарация
4. Люминесцентная сепарация
5. Флотация
6. Жировой процесс
7. Электрическая и магнитная сепарация
8. Ручная сортировка
9. Схемы извлечения алмазов.
ь Дезинтеграцию исходного сырья и превращение его в рыхлую смесь для освобождения алмазов от их связи с другими компонентами;
ь Получение первичных концентратов разделением рыхлой смеси на два продукта, в одном из которых, значительно меньшем по объему, Сконцентрированы алмазы;
ь Извлечение алмазов из полученных таким образом первичных концентратов.
2. ОБОГАЩЕНИЕ АЛМАЗОВ
При обогащении кимберлитов и песков россыпных месторождений применяют в основном одни и те же процессы.
2.1 ДЕЗИНТЕГРАЦИЯ ПЕСКОВ И РУД КОРЕННЫХ МЕСТОРОЖДЕНИЙ
Дезинтеграция имеет целью высвободить из вмещающей массы алмазы. В результате этого процесса получается рыхлая смесь, позволяющая отделить алмазы от пустой породы. Россыпи уже в естественном состоянии в значительной степени разрыхлены, поэтому при их обработке применяют простейшие способы дезинтеграции и промывку.
Дезинтеграция руд коренных месторождений более сложна, так как в них кристаллы алмаза прочно связаны с пустой породой. В этом случае применяют дробление или разрыхление в процессе выветривания. В качестве способа активации процесса разрушения кимберлитовых пород испытан электрохимический метод обработки минерализованной воды перед подачей ее в мельницу самоизмельчения. Разработанный способ обеспечивает сохранность кристаллического материала и целенаправленное изменение свойств поверхности алмазов в момент их раскрытия для подготовки алмазосодержащего материала перед физико-химическими процессами обогащения.
Для решения вопроса повышения качественных и цветовых характеристик алмазных кристаллов предложен метод очистки их поверхности электрохимически обработанными водными системами, позволяющими без применения химических реагентов не только повысить качество обрабатываемой поверхности, но и сократить расход концентрированных кислот и щелочей на аналогичные операции в цехе окончательной доводки алмазных концентратов. Высокое насыщение продуктов электрохимической обработки мелкодисперсными электролизными газами позволяет им проникать по поверхностным трещинам в глубь кристалла, а высокая концентрация содержащихся в них определенных химических веществ, полученных электрохимическим путем и обладающих высокой химической активностью, делает возможным растворение мазутных и нефтяных вкраплений внутри трещин с последующим выделением на поверхности кристалла.
С целью доочистки поверхности алмазов, а также для снижения расхода кислот и щелочей и нейтрализации кислых продуктов в схеме ЦОД МГОКа были разработаны экспериментальные модули электрохимической установки ЭХАН, предназначенной для получения продуктов электрохимически обработанной воды с различными кислотно-основными и окислительно-восстановительными свойствами. В процессе испытаний были выполнены эксперименты по использованию кислых и щелочных продуктов электролиза водных систем для сокращения расхода кислот и щелочей в технологическом процессе очистки и окончательной доводки алмазных концентратов, а также для нейтрализации кислых стоков. Была установлена технологическая целесообразность применения щелочного продукта электролиза - католита для нейтрализации кислых стоков технологического процесса с исключением химического реагента - едкого натрия.
В настоящее время проводится реконструкция ЦОД с учетом применения разработанной технологии электрохимической подготовки водных систем в технологической схеме окончательной доводки алмазных концентратов. Алмазоносные кимберлитовые трубки разбросаны по обширной территории в практически неосвоенных, малопригодных для постоянного проживания, незаселенных районах. Поэтому строительство в таких местах крупных горно-обогатительных комбинатов, которые окажутся невостребованными после завершения эксплуатации коренных источников или россыпей, нецелесообразно.
Создание модульных обогатительных установок - одно из возможных направлений освоения месторождений заполярных территорий. Все операции рудоподготовки и предварительного обогащения на отдаленных и малопродуктивных месторождениях могут быть осуществлены на связанных между собой модульных установках по типу промывочных приборов, широко используемых при обогащении россыпного золота. С помощью такого комплекса с 1 000 т переработанной руды может быть получено лишь несколько сотен килограммов обогащенного продукта, который может быть доставлен, например вертолетом, на ближайшую действующую обогатительную фабрику для дальнейшего обогащения и окончательной доводки.
Компания Diamond Claimer начала производство передвижных автономных машин для извлечения алмазов, в которых процесс извлечения включает засасывание алмазоносного материала с разгрузкой в промывочный барабан отверстиями диаметром 6 мм, оборудованный орошающими штангами. Для обезвоживания первичного концентрата используется грохот с отверстиями диаметром 1 мм. Концентрат поступает в концентрационный лоток с вертикальным валом, оборудованным горизонтальными рукоятями с полиуретановыми скребками. Вращение лопастей приводит к перемещению тяжелых минералов на периферию лотка с разгрузкой через небольшой бункер на жировой концентрационный стол с тремя наклонными ступенчатыми качающимися плитами.
Пески россыпных месторождений представляют собой в основном разрыхленный материал, в котором составляющие компоненты находятся в свободном состоянии. Поэтому при их обработке ограничиваются обычно простыми способами дезинтеграции - отмывкой глины и грохочением. Дезинтеграция песков часто совмещается с операцией классификации по крупности. Для этой цели широко применяют барабанные грохоты, которые во многих случаях вытеснили другие типы грохотов.
Крупные фракции песков и коренных пород отделяются на колосниковых грохотах. Разрыхление глин в простом дезинтеграторе, например в бутаре, часто не дает положительных результатов, поэтому для такого типа песков применяют специальные аппараты. Дезинтеграция коренных пород - более сложный процесс, так как кристаллы алмазов прочно связаны с пустой породой.
Известны два способа дезинтеграции коренных пород: выветривание и механическое дробление. За последнее время почти все фабрики перешли на механическое дробление и редко где применяется выветривание. Чтобы не повредить алмазы, не допускают большой степени дробления. Степень дробления определяют опытным путем на каждом предприятии и колеблется она от 2 до 5. Необходимость полной сохранности кристаллов алмазов заставляет производить дробление в несколько стадий с включением после каждой из них обогатительных операций, благодаря которым из дальнейшей обработки исключается часть материала, уже не требующая дробления.
Как правило, дробление является трехстадиальным, кроме того, часто производится додрабливание хвостов. Для крупного и среднего дробления обычно используются конусные дробилки. Мелкое дробление производится в конусных и валковых дробилках. При дроблении на валках степень дробления принимается минимальной - не более 1,5-2. Кимберлитовая порода при дроблении раскалывается по плоскостям спайности отдельных компонентов, в результате чего алмазы легко выкрашиваются из нее.
В настоящее время на передовых зарубежных предприятиях для дезинтеграции алмазоносных кимберлитов применяется стадиальное дробление в дробилках безударного действия с обогащением между стадиями.
Дробление руд в России (Якутских) алмазных месторождений с высоким содержанием глины и ископаемого льда имеет весьма низкую эффективность. Поэтому на отечественных алмазоизвлекательных фабриках основным процессом дезинтеграции исходного сырья и промпродуктов стал процесс мокрого самоизмельчения в мельницах большого диаметра (мельницы типа MMC 70x23, СТЭ 90x30А, Роксайл). Вместе с тем крупные промпродукты не содержат глины и, следовательно, могут успешно додрабливаться.
Сочетание самоизмельчения со стадиальным дроблением в схемах рудоподготовки отечественных фабрик позволило бы снизить удельный расход электроэнергии, так как процесс дробления менее энергоемок и сократить число дорогостоящих мельниц. Однако еще более важными показателями в данном случае могут служить выход алмазов из сырья и их товарная стоимость, что определяется избирательностью процессов дезинтеграции. Для прогноза эффективности применения указанной схемы достаточно определить относительную избирательность процессов. Внедрение вибромельниц ВМ-200м на обогатительных фабриках позволило значительно повысить извлечение алмазов физико-химическими методами обогащения.
2.2 ГРАВИТАЦИЯ
Для получения грубых концентратов используют гравитационные процессы - концентрацию в чашах, отсадку, обогащение в тяжелых суспензиях, на винтовых сепараторах и столах. Эти процессы основаны на несколько большем удельном весе алмазов по сравнению с минералами пустой породы. Конечная обработка гравитационных концентратов для сокращения их объема и извлечения алмазов осуществляется различными методами. Для этой цели используют обогащение на липких поверхностях (жировой процесс), электрическую сепарацию, избирательное измельчение, рентгенолюминесцентную сепарацию, флотацию, разделение в тяжелых жидкостях и ручную сортировку [5].
Концентрация в чашах применяется с равным успехом как для обработки песков, так и для обработки руд коренных месторождений. Чаша представляет собой металлический кольцеобразный сосуд с вертикальными стенками. Иногда стенки по внешней окружности делаются слегка наклонными. Для удаления хвостов и шламов в чашах предусмотрен сливной порог в виде прямоугольного выреза со стороны внутренней стенки. Высота и ширина порога регулируется в зависимости от характера обрабатываемого материала. Для взмучивания материала и перемещения концентрата по дну чаши к выпускному отверстию имеется специальный механизм. Производительность чаши зависит от ее размеров (производительность чаши диаметром 4 270 мм колеблется от 25 до 40 т/ч) и в большей степени от характера обогащаемого сырья.
Так, при обработке алмазосодержащих туфов месторождения Маджагаван (Индия) максимальная производительность чаши диаметром 2 440 мм составляет только 5 т/ч. Извлечение алмазов в концентрационных чашах составляет 80-90 %, иногда оно достигает 95 % и более. Слив первичных чаш часто обрабатывают вторично в контрольных чашах. Концентраты с обеих чаш объединяют и направляют в дальнейшую обработку. Иногда применяется трехкратная обработка в концентрационных чашах. Концентрационные чаши применяют на многих предприятиях: они установлены не только на старых, но и на вновь построенных или реконструированных фабриках.
Достоинствами этих аппаратов является простота устройства, большая производительность, малый расход воды и сравнительно высокая степень концентрации. Отделение тяжелых минералов от пустой породы в концентрационных чашах особенно эффективно, если в руде имеется соответствующее количество глины для образования пульпы (ванны), которая способствует выносу легких частиц руды, не препятствуя осаждению тяжелых минералов.
Отсадка до недавнего времени была одним из наиболее распространенных процессов гравитационного обогащения алмазосодержащих руд и россыпей. При обогащении алмазов отсадка может производиться без постели с разгрузкой концентрата с решета и с искусственной постелью с разгрузкой концентрата под решето. Отсадка без постели обычно применяется при незначительном содержании тяжелой фракции в обогащаемом материале. В этом случае концентрат снимают с решета два-три раза в смену. Чаще всего отсадку проводят с искусственной постелью с получением подрешетного концентрата. Обогащаемый материал перед отсадкой подвергается классификации по узкой шкале. Коэффициент шкалы классификации обычно не превышает 2. К недостаткам отсадки относятся большой удельный расход воды, значительное число работающих агрегатов, необходимость большого штата обслуживающего персонала, большой расход сит на предварительное грохочение перед отсадкой и в отсадочных машинах. В России для обогащения алмазов с разгрузкой с решета используются отсадочные машины типа МОД-4, с разгрузкой концентрата под решето - машины серии MО-105, МО-212, MО-318, а также применяются машины типа ОПМ-12, ОПМ-13 и ОПМ-14.
Концентрация на винтовых сепараторах применяется для обогащения мелкого класса (менее 2 мм). У нас используются винтовые сепараторы типа СВ-2-200, СВ-1500A. Сепаратор CB-1500A состоит из винтового желоба в 3,5 витка, укрепленного на каркасе. В середине имеется центральная труба, к которой крепится желоб. Внешний борт винтового сепаратора желоба выше внутреннего и верхняя кромка предотвращает перелив питания. Выход концентрата составляет 35-40 %.
Обогащение в тяжелых суспензиях в настоящее время получило широкое применение на многих фабриках. Благодаря простоте, высокой эффективности и экономичности этот метод во многих случаях вытеснил отсадку и концентрацию в чашах. Обогащение в тяжелых суспензиях осуществляется в сепараторах, а мелкого материала (менее 1,5 мм) - в гидроциклонах, которые обеспечивают достаточную четкость разделения при плотности суспензии значительно меньшей, чем в обычном сепараторе. В качестве утяжелителя используют измельченный магнетит или ильменит, которые часто получают попутно в процессе извлечения алмазов при доводке концентратов, а также молотый гранулированный ферросилиций. На протяжении нескольких лет у нас и за рубежом ведутся исследования по обогащению алмазосодержащих руд и россыпей в тяжелых жидкостях - Клеричи, М-45, сульфамате свинца, тетрабромэтане и др. При испытаниях с применением гидроциклона получено извлечение более 99 % алмазов крупностью до 0,000 33 кар. Для хорошего разделения в тетрабромэтане необходимы гидроциклоны малого диаметра. Предполагается, что в результате этих исследований может быть разработан комбинированный процесс с применением последовательной обработки в тяжелых суспензиях и тяжелых жидкостях, который сможет заменить обогащение в концентрационных чашах, отсадку, жировой процесс и ручную сортировку. Для гравитационного обогащения алмазов в зарубежной практике большое внимание уделяется трубчатому гидравлическому сепаратору «Лаводюн». Для обогащения более тонкого материала сконструирован аппарат «Лавофлукс», разделение в котором происходит в ламинарном потоке. Обогащение производится в наклонных трубках прямоугольного сечения. Обогащаемый материал подается в аппарат несколько ниже середины трубы. Тяжелые минералы оседают в нижней части трубы, образуя в этом месте подвижную постель. Осевшие частицы скользят в сторону разгрузки тяжелой фракции и попадают в боковое отверстие, через которое тяжелая фракция поступает в трубку и удаляется из аппарата.
2.3 ФОТОМЕТРИЧЕСКАЯ СЕПАРАЦИЯ
При фотометрической сепарации используется высокая отражательная и рассеивающая способность алмазов, резко отличающая их от сопутствующих минералов. В этом процессе на алмазосодержащий материал направляется пучок света, который, отражаясь, попадает на фотоэлемент, представляющий собой часть электрической цепи. В цепи возбуждается ток и срабатывает автоматическое устройство, позволяющее отделить алмазы с некоторым количеством зерен пустой породы от материала, не содержащего алмазы.
Впервые фотометрический сепаратор был испытан в производственных условиях на руднике «Премьер» (ЮАР), где алмазы извлекают из кимберлитов, а затем на предприятии фирмы КДМ, где алмазы встречаются в аллювиальных песках. Исследовательской лабораторией в Иоганнесбурге разработана установка с сепаратором для извлечения крупных алмазов. Она состоит из бункера для исходного материала, конвейера с резиновой лентой, ленточного питателя, обеспечивающего равномерное распределение на ленте обрабатываемого материала при достаточном расстоянии между частицами алмазов и породы. На пути от бункера к световому потоку располагается экран, заслоняющий световой поток, который падает на движущийся по ленте материал от оптической системы, воспринимающей свет, отраженный поверхностями алмазов. Частично свет отражают и некоторые минералы пустой породы, но его интенсивность очень мала и при достаточно больших расстояниях между частицами этих минералов оптическое устройство не приводит в действие исполнительный механизм.
2.4 ЛЮМИНЕСЦЕНТНАЯ СЕПАРАЦИЯ
Люминесцентная сепарация - это метод разделения, основанный на избирательной способности алмазов излучать видимый свет - люминесцировать. Явление люминесценции алмазов слагается из двух процессов - поглощения возбуждаемой энергии и ее излучения. Люминесценция алмазов возбуждается поглощением ультрафиолетового, рентгеновского и гамма-излучения, а также бомбардировкой частицами высокой энергии (катодными лучами, бета- и альфа-частицами).
Для извлечения алмазов практическое применение нашли рентгенолюминесценция и радиолюминесценция. Причина люминесценции алмазов до сих пор точно не установлена. Принято считать, что она обусловлена примесями, присутствующими в кристаллической решетке алмаза, но этой точке зрения противо поставляются соображения индийских физиков, которые объясняют люминесценцию алмазов особенностью их структуры. Цвет и интенсивность рентгенолюминесценции отличаются у различных алмазов. Цвет изменяется от голубого и желтого до розового. С увеличением размера кристаллов алмаза интенсивность свечения повышается, но встречаются алмазы, не подчиняющиеся этой закономерности. Черные, непрозрачные алмазы (баллас, карбонадо), состоящие из мелких, беспорядочно ориентированных кристаллов, не люминесцируют
В простейшем виде люминесцентная сепарация осуществляется в аппарате с визуальным обнаружением алмазов, светящихся в рентгеновских лучах, и ручным удалением кристаллов.В автоматически действующих рентгенолюминесцентных сепараторах вместо визуального обнаружения и ручного удаления алмазов транспортерной ленты применяется фотоэлектронный умножитель, преобразовывающий световой импульс люминесценции в электрический, и исполнительный механизм, отбрасывающий светящиеся кристаллы алмаза в приемник.
Работа люминесцентного сепаратора основана на использовании избирательной люминесценции алмазов при возбуждении их источником ионизирующего излучения. Световая вспышка усиливается фотоумножителем, и электрический импульс заставляет срабатывать механическое устройство, отделяющее алмаз и некоторое количество породы приемник. Наряду с алмазами люминесцируют и некоторые сопутствующие минералы (циркон, шеелит, разновидности кальцита и др.). Количество световых вспышек на сепараторе поэтому обычно превышает количество содержащихся в материале кристаллов алмаза. В связи с этим выход концентрата увеличивается.
В случае большого количества других люминесцирующих минералов этот метод извлечения алмазов становится непригодным. На обогатительных фабриках АК «Алмазы России - Саха» рентгенолюминесцентной сепарацией получают алмазы в количестве, определяющем более 90 % стоимости товарной продукции. Эффективность применения РЛ-сепараторов российского производства определяется низкими затратами на обогащение руды крупностью +5 мм, высокими показателями извлечения алмазов, степенью сокращения руды и автоматизации технологического процесса, экологической чистотой технологии. Спецификой северных условий является необходимость разогрева мерзлых руд перед обогащением, который осуществляется в мельницах самоизмельчения.
Процесс рудоподготовки заканчивается формированием потоков мокрой руды различных классов крупности. Добыча алмазов из руды крупностью +5 мм производится с применением только РЛ-сепараторов. При добыче алмазов из руды крупностью -5 мм РЛ-сепараторы используют на стадиях предварительной и окончательной доводки, в перечистных и контрольных операциях. Основным направлением дальнейшего развития и совершенствования РЛ-сепарации алмазосодержащих руд с целью снижения эксплуатационных затрат и повышения качества продукции является создание гибких, управляемых, адаптируемых к изменению свойств обогащаемой руды и условиям эксплуатации РЛ-сепараторов повышенной производительности, селективности, надежности и стабильности работы.
Повысить эффективность селективности процесса сепарации можно за счет использования различий в кинетике рентгенолюминесценции сепарируемых минералов. Для этого устройство содержит транспортирующий механизм, источник импульсного возбуждения, фотоприемник, установленный со стороны падающего рентгеновского излучения или со стороны, противоположной падающему рентгеновскому излучению, выход которого соединен с входом блока выработки сигналов интенсивности люминесценции, блок выработки команд с исполнительным механизмом. При этом оно снабжено блоком вычисления величины соотношения компонента люминесценции, один вход которого соединен с выходом источника импульсного возбуждения, выход соединен с входом блока выработки команд с исполнительным механизмом, а второй вход соединен с выходом блока обработки сигналов интенсивности люминесценции.
В течение последних 20 лет более 600 установок, созданных ПО «Буревестник» на основе рентгеновского излучения, использованы в ПО «Якуталмаз», а также большое количество продано за пределы России. В ПО «Якуталмаз» применяются все виды выпускаемых нашей промышленностью рентгенолюминесцентных сепараторов. В план ближайших и перспективных работ ПО «Буревестник» включено создание рентгенолюминесцентных сепараторов для алмазодобывающей промышленности с использованием микропроцессорной техники и адаптации к изменяющимся технологическим условиям. В план ближайших и перспективных работ ПО «Буревестник» включено создание рентгенолюминесцентных сепараторов для алмазодобывающей промышленности с использованием микропроцессорной техники и адаптации к изменяющимся технологиям.
2.5 ФЛОТАЦИЯ
Процесс флотации основан на том, что чистые алмазы гидрофобны и при размере до 1,65 мм быстро всплывают на поверхность, в то время как минералы пустой породы, когда их поверхность очищена, гидрофильны и остаются в воде. В настоящее время применяют пенную сепарацию и пленочную флотацию. Пенная сепарация алмазов осуществляется в машинах пенной сепарации ПС-1.4, ПФМ-8, ПФМ-10. В машинах ПФМ-8 и ПФМ-10 реализуется принцип пенной сепарации для разделения материала 1,0-2,0 мм (в пенном слое) и принцип флотации из объема пульпы материала крупностью 0,2 - 1,0.
Разделение частиц минералов при пенной сепарации основано на различии в величине гистерезиса смачивания и возможности локального роста значений на участках поверхности пузырьков, прилегающих к периметру трехфазного контакта. При этом реагенты, обеспечивающие резкое различие между динамическим и статическим поверхностным натяжением, будут, как и в случае пенной флотации, способствовать росту флотационной силы и крупности удерживаемых в пене частиц. При пенной сепарации применяются реагенты: полифосфат натрия (50-80 г/т), аэрофлот (10-15 г/т), ОПСБ (10-30 мг/л), мазут (500-800 г/т).
При подготовке исходного материала к пенной сепарации предъявляются определенные требования к методу кондиционирования его с реагентами. Материал должен обязательно пройти операцию предварительного контактирования с реагентами-пептизаторами-собирателями, т.е. до начала сепарации он должен быть полностью обработан реагентами. Задача кондиционирования состоит в том, чтобы обеспечить частицам руды такие свойства, при которых сепарация проходила бы наиболее эффективно. Это относится к свойствам минеральной поверхности, которые, в результате адсорбции на ней реагентов, изменяются.
Кондиционирование алмазосодержащего сырья крупностью -2 мм с аполярными реагентами (мазутом) должно осуществляться при высокой плотности исходного питания, так как в данном случае передача реагента из нефтепродуктов происходит по твердой фазе (с частицы на частицу). К одним из визуальных методов контроля за качеством обработки исходного материала аполярными реагентами является наличие явно выраженных радужных пленок (мазутная побежалость) в твердой фазе материала, выходящего из кондиционера.
При ведении процесса пенной сепарации существенное влияние на технологические показатели оказывают:
ь наличие в руде, поступающей на контактирование с реагентами, частиц менее 0,2 мм и тонких шламов (-0,040 мм);
ь закрупнение исходного питания частицами крупнее 2 мм;
ь температура руды при агитации с реагентами;
ь порядок и место подачи реагентов;
ь время агитации руды с реагентами;
ь отношение Ж:Т при кондиционировании.
Отрицательное действие частиц крупностью менее 0,2 мм связано с тем, что флотационные реагенты сорбируются (закрепляются) на частицах пропорционально их поверхности, а так как суммарная поверхность шламистых частиц во много раз больше поверхности крупных, то основная часть реагентов поглощается мелкими частицами.
Для крупных частиц, при наличии большого количества мелких, плотность покрытия реагентом их поверхности окажется недостаточной, чтобы они сфлотировались. В данном случае даже увеличение расхода реагентов не дает эффективных результатов, так как развитая поверхность шламистых частиц и в этом случае адсорбирует на себя основную часть реагентов. Тщательное обесшламливание (отмывка шламов) руды и использование (в присутствии шламов) полифосфата натрия или его заменителей как пептизаторов шламов (при малых его концентрациях в фазе) и как деэмульгатора стабилизированного шламами мазута (при повышенных концентрациях) является техническим требованием процесса. Отрицательное влияние имеет температура руды при контакте ее с реагентами, если она ниже 16 °С. При низких температурах ухудшаются условия закрепления аполярных реагентов на частицах минерала. Отрицательное влияние на показатели пенной сепарации также оказывает закрупнение исходного питания, т.е. присутствие в питании частиц крупнее 2 мм. Это ведет к дополнительным потерям алмазов в отвальных хвостах.
Пленочная флотация применяется как доводочная операция, в основном, для извлечения алмазов мельче 0,5 мм. Перед флотацией материал подвергают очистке. Сначала производятся обезжиривание в горячей воде и оттирка в мельнице. Иногда для повышения активности алмазов и депрессии минералов пустой породы используют хлористый натрий и жидкое стекло. На южноафриканских алмазоизвлекательных фабриках соответствующим образом подготовленную фракцию крупностью -1,65+0,47 мм эффективно обогащают в лабораторном стакане, где используется свойство алмазов всплывать в воде.
На многих предприятиях применявшаяся ручная разборка была целиком заменена этим способом обработки. В республике Гана в промышленном масштабе применяется процесс пленочной флотации алмазов крупностью до 1 мм. Для этого используется ленточная машина, позволяющая механизировать процесс пленочной флотации. Флотационная машина состоит из стального каркаса, на котором смонтирована бесконечная лента шириной 300 мм и длиной между центрами 7,5 м, изготовленная из тканей проволочной фосфористо-бронзовой сетки с отверстиями размером 0,2 мм. В направлении движения лента на протяжении 2/3 длины горизонтальна, затем она опускается вниз под крутым углом в бак с водой. Обогащаемый материал распределяется на ленте тонким слоем (толщиной примерно в два диаметра частиц) и медленно продвигается вперед. По мере того, как лента пересекает поверхность воды, алмазы и небольшое количество сопутствующих минералов всплывают на поверхность воды и переносятся через сливной порог в сборный карман, а хвосты оседают в баке.
В процессе пленочной флотации применяют небольшое количество нефтяного масла, которое добавляют в питание на небольшом расстоянии от места погружения ленты в воду. В России разработан процесс флотомагнитной сепарации. В этом процессе разделение минералов определяется элементарным пленочным процессом флотации - переходом гидрофобных частиц с движущейся твердой поверхности на поверхность воды и последующее их транспортирование потоком воды в отдельный сборник. Переход гидрофобных минеральных частиц на поверхность воды обусловлен взаимодействием нескольких сил, действующих на частицу. Причинами, препятствующими флотации, являются вес частицы и сила ее адгезии к твердой поверхности. Им противодействуют капиллярная сила и сила гидростатического давления на нижнюю грань частицы. При определенном соотношении этих сил происходит отрыв частицы от твердой поверхности.
Для дополнительного удержания на ленте магнитных минеральных частиц с достаточно гидрофобными свойствами поверхности во флотомагнитном сепараторе используется магнитное поле, создаваемое постоянными магнитами. Для более эффективного разделения применяются предварительная обработка материала реагентами-собирателями и регулирование ионного состава воды.
Удовлетворительная флотация природно-гидрофобных алмазов крупностью 0,79 мм может быть осуществлена с применением аэрофлота -25 вместе с крезиловой кислотой в качестве вспенивателя и с керосином, который играет роль вспомогательного реагента в качестве стабилизатора пены. Расход реагентов составляет около 68 г/т аэрофлота и 82 г/т крезиловой кислоты. Лучшие результаты получаются при рН от 7 до 9.
Для полного извлечения всех флотируемых алмазов необходима продолжительность флотации от 5 до 10 мин. Алмазы крупнее 1,15 мм флотацией извлекаются неудовлетворительно. Ксантогенаты как собиратели не действуют на алмазы. Гидрофобные алмазы мельче 0,59 мм хорошо флотируют с добавкой только вспенивателя - соснового масла или реагента дюпон.
Частичная флотация мелких классов упорных гидрофильных алмазов может быть достигнута после предварительной обработки жирно-кислотными мылами, катионными собирателями или другими реагентами, которые образуют гидрофобную пленку на алмазах. После промывки для удаления избытка реагента гидрофильные алмазы хорошо флотируются, но извлечение их значительно ниже, чем при флотации гидрофобных алмазов. Извлечение дробленого борта из отходов промышленного производства лучше всего достигается флотацией после обработки алмазов смесью жирных кислот или катионными собирателями.
Наиболее подходящими для этой цели оказались флотационные реагенты дюпон-23 и аэрофлот вместе с крезиловой кислотой. Оптимальные расходы составляют: 1,2 г реагента дюпон, 0,55 г аэрофлота и 1,4 г крезиловой кислоты на 1 л пульпы в ячейке. Оптимальное отношение твердого к жидкому - 1:4, для получения хороших результатов необходима щелочная среда. Алмазы крупнее 0,6 мм извлекаются неудовлетворительно, но для более мелких кристаллов флотация является хорошим процессом для извлечения алмазов из промышленных отходов [2].
2.6 ЖИРОВОЙ ПРОЦЕСС
Жировой процесс основан на избирательной способности алмазов удерживаться липкими (жировыми) поверхностями на границе раздела их с водой. При поступлении пульпы, содержащей алмазы, на жировую поверхность частицы гидрофильных минералов (кварца, кальцита и др.) не прилипают к ней и сносятся потоком воды, тогда как гидрофобные алмазы при контакте с жировой поверхностью прочно прилипают и удерживаются на ней. Этот процесс позволяет извлекать алмазы крупностью от 16 до 0,5 мм.
В настоящее время разработаны и применяются усовершенствованные конструкции жировых столов и аппаратов. На столах вибрационного типа поперечное движение деки создается электрическим вибратором, лотки делаются длиннее, шириной до 1 200 мм. Они могут быть расположены под меньшим углом, чем на обычном качающемся столе.
На фабрике в Бакванга (Конго, Киншас) создана конструкция стола с поперечным качанием, которая состоит из параллельной группы желобков, расположенных в направлении потока и покрытых жировой смазкой с обеих сторон.
Такая конструкция значительно увеличивает поверхность улавливания алмазов, так как не прилипшие ко дну желобка алмазы отбрасываются на боковые стенки и прилипают к ним.
В последнее время широко используются барабанные сепараторы. Сепаратор представляет собой барабан, на который нанесен жировой слой (петралатум, подобный парафину, твердый и липкий, и индустриальное масло). Слой смазки составляет около 8 мм. Эта смазка имеет свойство переходить в жидкость при 90 °С, что используется при регенерации жирового слоя. Возле барабана с жировой смазкой установлен поролоновый валик, обтянутый войлоком.
Материал подается между валиком и барабаном. Валик мягко прижимает алмазы на жировую смазку, а хвосты проходят дальше. Жировой слой по мере накопления в нем алмазов подвергается регенерации. Слой срезается ножом и подается в жировую топку. В топке находится вода.
При нагревании до 90 °С жировой слой плавится, зернистый материал оседает вниз, а жир остается на поверхности. Затем алмазы спускают внизу топки до чистоты слива, доливают воду, жир поднимается на поверхность воды и со сливом уходит.
Алмазы подвергаются доводке и сушке. Эффективность жирового процесса зависит от свойств поверхности алмазов, сопутствующих минералов и пустой породы, а также от характера изменения этих свойств в различных условиях.
В результате исследований, проведенных в России, было установлено, что на поверхности алмазов при обычных температурах адсорбируется кислород, который в определенных условиях может увеличивать гидратацию поверхности алмаза. Это и является причиной повышенной смачиваемости поверхности алмазов из россыпных месторождений по сравнению с алмазами коренных месторождений. Для увеличения гидрофобности алмазов рекомендуется применение реагентов-собирателей гетерополярного и аполярного типов.
Наряду с этим предлагается также вакуумирование под нагревом с целью десорбции кислорода. Механизм воздействия продуктов электролиза воды на процесс липкостной сепарации заключается в активации поверхности алмазов слабощелочными продуктами электролиза с рН 8,5-10,6 и Eh = -300-500 мВ за счет растворения поверхностных полиминеральных пленок, снижения толщины двойного электрического слоя и сохранения физико-химических свойств жирового покрытия.
В работе предложен метод бездиафрагменной электрохимической водоподготовки в процессе липкостной сепарации, обеспечивающий получение оптимальных физико-химических характеристик оборотной воды, очистку и активацию поверхности алмазов, максимальную адгезионную способность жирового покрытия и, как следствие, повышение эффективности процесса липкостной сепарации.
Внедрение данного метода позволило получить прирост извлечения алмазов по переделу липкостной сепарации на фабрике № 3 МГОКа по классу -5+2 мм в среднем на 2-3 %; удельный расход электроэнергии составил ~0,15-0,25 кВт ·ч/м3 обрабатываемой воды. Для повышения извлечения алмазов на промышленном сепараторе должно обеспечиваться многократное контактирование зерен с липкой поверхностью. Процесс липкостной сепарации используется для доводки гравитационных концентратов крупностью -5+2 мм на всех фабриках и драгах АК «Алмазы России - Саха». Процесс основан на различии гидрофобных свойств алмазов и сопутствующих минералов, проявляющееся на границе раздела фаз аполярное вещество (липкий состав) - вода.
С целью совершенствования технологии и оборудования липкостной сепарации проведены исследования свойств обогащаемых руд, закономерностей адгезионной связи минералов с липкими свойствами, свойств поверхности алмазов и адгезионных характеристик липких композиций.
Результаты исследований реализованы в новой конструкции сепаратора, внедренного на одной из фабрик компании. Сепаратор оснащен лентой шириной 1 000 мм, огибающей два барабана, питателем, устройствами для нанесения и съема липкого покрытия, вибратором, обеспечивающим вибрацию обеих ветвей ленты с заданными параметрами и вынесенным из зоны абразивного износа. В комплектацию сепаратора входят шкаф управления и устройства, обеспечивающие работу как в ручном, так и в автоматическом режимах.
В качестве липкого покрытия рекомендуется двух- или трехкомпонентная смесь нефтепродуктов, включающая петролатум и товарные масла. Включение в состав покрытия модифицирующих добавок (низкомолекулярных веществ) увеличивает его адгезию к поверхности алмазов и обеспечивает высокую степень концентрации при сепарации.
Институтом Якутнипроалмаз разработан сепаратор СЛ-10, предназначенный для доводки алмазосодержащих гравитационных и других концентратов первичного обогащения. Принцип работы аппарата основан на различии адгезионного взаимодействия гидрофобных и гидрофильных минералов с липкой поверхностью в присутствии воды. В качестве липкого состава используется запатентованная смесь нефтепродуктов специального состава, включающая высокомолекулярные ингредиенты, оптимальное соотношение которых подбирается с учетом особенностей обогащаемого сырья.
Конструкция сепаратора предусматривает наложение определенной вибрации на движущуюся ленту, что позволяет повысить извлечение алмазов. Процесс управления сепаратором автоматизирован и предусматривает автоматическое нанесение липкого состава на ленту, обеспечение заданного программой цикла работы, включая подачу воды и питания, а также съем липкого покрытия [6].
2.7 ЭЛЕКТРИЧЕСКАЯ И МАГНИТНАЯ СЕПАРАЦИЯ
алмаз месторождение обогащение россыпь
Электрическая сепарация основана на использовании небольшой разницы в электропроводности алмазов и сопутствующих минералов. Алмаз плохой проводник электричества, тогда как большинство минералов породы являются сравнительно хорошими проводниками.
Для обогащения алмазов получила распространение сепарация в поле коронного разряда. Коронный разряд в отличие от искрового возникает только в неоднородном электрическом поле в небольшой области около тонкого проводника и не распространяется до противоположного электрода. Для электросепарации алмазов применяются только барабанные сепараторы, работающие при напряжении 20-25 кВ. Разработаны барабанные сепараторы, позволяющие выделять алмазы крупностью до 9,5 мм.
Для повышения эффективности процесса материал перед электросепарацией подвергается специальной подготовке. Влажность является основным фактором, влияющим на электропроводность минералов. Изменяя ее, можно регулировать эффективность процесса. Оптимальная влажность, при которой различие в электропроводности разделяемых минералов достигает максимальных значений, имеет довольно узкие пределы. С увеличением содержания влаги выше этих пределов степень извлечения алмазов понижается, при уменьшении влажности резко падает степень концентрации.
В ряде случаев бывает необходимо перед сепарацией подогреть материал. Температура подогрева зависит от свойств обогащаемого материала. Для повышения степени извлечения алмазов применяют также обработку материала перед электросепарацией различными реагентами. Такая обработка способствует изменению поверхности отдельных минералов в результате образования пленок различных веществ или, наоборот, очищает поверхности минералов.
В процессе наблюдения выяснилось, что лучшее отделение алмазов от пустой породы получается при использовании растворов, содержащих 0,5 % NaCl. Аналогичные результаты получаются при обработке KCl и NaF. Есть результаты исследований по изучению свойств минералов руды карьера (Юбилейный), входящих в состав концентрата отсадки крупностью -6,0+3,0 мм и концентрата винтовых сепараторов крупностью -3,0+1,2 мм обогатительной фабрики № 8 АК «AJIPOCA». Исследована зависимость технологических показателей обогащения от величины магнитной индукции и производительности сепаратора. Перспективно использование мокрых магнитных сепараторов Механобра типа ЭВМ.
2.8 РУЧНАЯ СОРТИРОВКА
Ручная сортировка иногда используется для выделения пустой породы и выборки алмазов из исходной руды. Чаще она применяется в последней стадии обработки для извлечения алмазов из концентратов жирового процесса и электросепарации. Для извлечения алмазов из концентратов на конечной стадии обработки ручная сортировка производится при ярком рассеянном свете. В прямых лучах солнечного света ручную сортировку никогда не производят. Ручная сортировка осуществляется на конвейерах и столах, поверхность которых покрывают черной резиной. Для обеспечения хорошего освещения над каждым столом вмонтированы флуоресцентные лампы.
2.9 СХЕМЫ ИЗВЛЕЧЕНИЯ АЛМАЗОВ. ИЗВЛЕЧЕНИЕ МЕСТОРОЖДЕНИЕ ОБОГАТИТЕЛЬНЫЙ
Современная технологическая схема российских обогатительных фабрик включает следующие операции: самоизмельчение исходной руды и циркулирующих продуктов; обезвоживание; гидроклассификацию и грохочение разгрузки мельниц; рентгенолюминесцентную сепарацию классов -50+20, -20+10 и -10+5 мм; отсадку класса -6+2 мм; обогащение на винтовых сепараторах класса -5+0,5 мм и флотацию материала крупностью -2 мм. Доводку концентратов осуществляют по сложным комбинированным схемам с использованием липкостной, пенной, электрической, магнитной и рентгенолюминесцентной сепарации, флотации и обжига. На стадии окончательной доводки применяют тяжелые жидкости, химическую обработку алмазного продукта.
Различия в схемах извлечения алмазов из песков россыпных месторождений и кимберлитов имеются главным образом в начальных стадиях процесса. При обогащении песков для раскрытия минералов применяют дезинтеграцию и промывку, а при обработке плотных кимберлитов - дробление и измельчение. Для песков россыпных месторождений, в которых алмазы находятся в свободном состоянии, первичное обогащение может быть достигнуто за счет удаления в отвал значительной части материала в виде крупной гальки и тонких шламов с помощью простейшего метода - грохочения. Для кимберлитов же требуются более сложные процессы. На выбор схемы обработки алмазосодержащих песков оказывают влияние минералогический состав и гранулометрическая характеристика, промывиcтость песков, степень окатанности и форма зерен песчано-галечного материала.
В зависимости от степени промывистости песков изменяется начальная стадия их обработки. Пески с небольшим содержанием глины направляют непосредственно на грохочение. При промывке и грохочении песков с высоким содержанием глины образуются глинистые окатыши, для выделения которых и извлечения из них алмазов в схемах предусматриваются специальные операции, что связано с дополнительными затратами. Для получения высоких степеней обогащения, достигающих 20 000 000 и более при условии сохранения целостности кристаллов алмаза, обогащение производится стадиально. В каждой стадии материал, содержащий алмазы, отделяется от пустой породы, которая удаляется в отвал, а обогащенная фракция поступает на следующую стадию обработки.
3. ТЕХНОЛОГИЯ ОБОГАЩЕНИЯ МЕСТОРОЖДЕНИЯ «УДАЧНЫЙ» (ЯКУТИЯ)
Горные работы на одноименном месторождении были начаты в 1971 г. и в течение последних 25 лет комбинат является ведущим предприятием алмазодобывающей отрасли России и одним из крупнейших открытых карьеров в мире (рис. 3.1).
Рис.3.1 Карьер Удачнинского горнообогатительного комбината - «Удачный».
В России кимберлитовые трубки были открыты только в середине прошлого века - в Якутии. Это открытие положило начало «Алросе» - сегодня мировому лидеру по добыче алмазов. Прогнозные запасы компании составляют около трети от общемировых, а разведанных хватит для поддержания текущего уровня добычи в течение 25 лет без снижения качества сырья. В цифрах запасы алмазов на месторождениях принадлежащих «Алросе» составляют (по данным 2011 года) 1,23 млрд карат по российской классификации (1,014 млрд - доказанных и 0,211 млрд - вероятных).
На своих месторождениях «Алроса» добывает около 35 млн карат алмазов в год, являясь крупнейшим в мире производителем этого сырья в физическом выражении: на ее долю приходится около 97% российской добычи и 25% мировой. При этом содержание алмазов в руде кимберлитовых трубок традиционно невелико - обычно несколько карат на тонну. Якутские месторождения в этом плане выигрышны, и считаются одними из наиболее богатых по содержанию.
...Подобные документы
Современные изменения в области гравитационного обогащения. Особенности использования концентрационных стол. Общие принципы разделения частиц при гравитационном обогащении. Обогащение в тяжелых суспензиях, в шлюзах, в желобах и на винтовых сепараторах.
реферат [1,6 M], добавлен 20.09.2009Свойства алмазов и области их применения. Технология извлечения алмазов. Дезинтеграция песков и руд коренных месторождений. Отражательная и рассеивающая способность алмазов. Электрическая и магнитная сепарация. Технологическая схема обогатительных фабрик.
реферат [42,9 K], добавлен 13.01.2015Способы обогащения руд. Технология флотации: обогащение марганцевых руд, дообогащение железорудных концентратов, извлечение металлов из "хвостов" магнитного и гравитационного обогащений. Технологическая схема обогащения апатит-штаффелитовой руды.
реферат [665,6 K], добавлен 14.11.2010Технология обогащения железной руды на Гусевогорском месторождении. Расчёт технологии рудоподготовительного цикла, схема и технологический режим дробления. Расчёт основного оборудования обогащения. Модернизация сепараторов 2пбс 90/250а в цехе обогащения.
дипломная работа [11,8 M], добавлен 02.06.2010Технологический процесс обогащения полезного ископаемого (угля) в тяжелосредных трехпродуктовых гидроциклонах ГТ-710. Анализ исходного сырья. Выбор схемы его обработки. Выбор основного и вспомогательного оборудования. Расчёт потребности в аппаратах.
курсовая работа [200,6 K], добавлен 14.02.2015История металлургического производства. Экономическая классификация запасов полезных ископаемых. Щековая и конусная, валковая, молотковая дробилки. Процесс грохочения и обогащения. Шаровая мельница. Схема фабрики окатышей. Производство чугуна и стали.
презентация [5,2 M], добавлен 30.01.2016Технология обогащения железной руды и концентрата, анализ опыта зарубежных предприятий. Характеристика минерального состава руды, требования к качеству концентрата. Технологический расчет водно-шламовой и качественно-количественной схемы обогащения.
курсовая работа [218,3 K], добавлен 23.10.2011Характеристика железных руд и концентратов. Группа магнетитовых руд осадочно-метаморфического происхождения. Рекомендуемое оборудование, гравитационный метод обогащения. Комплексность использования сырья в Ковдорском ГОКе. Охрана окружающей среды.
курсовая работа [1,8 M], добавлен 07.08.2013Качественно-количественные операции флотации железной руды. Расчет процесса дробления-грохочения, крупности и выхода продуктов. Показатели обогащения: выход концентратов, хвостов; содержание компонентов. Технологическая эффективность процессов обогащения.
курсовая работа [66,6 K], добавлен 20.12.2014Основные понятия физико-химического процесса обогащения. ОАО ГМК "Норильский никель" – крупнейший в мире производитель никеля и палладия, платины и меди. Роль ТОФ в ОАО "ГМК "Норильский никель". Основные переделы производства. Схема реконструкции.
реферат [78,7 K], добавлен 21.09.2016Геологическое строение Лебединского месторождения и состав железистых кварцитов. Выбор и обоснование технологической схемы обогащения. Технология транспортировки хвостов. Принципы высокоселективной магнитной сепарации и конструкции магнитных сепараторов.
дипломная работа [493,7 K], добавлен 12.09.2012Мероприятия по выбору и обоснованию технологии обогащения для заданного сырья, на основе анализа вещественного состава и технологических свойств минералов, входящих в состав исследуемого сырья. Расчет качественно-количественной и водно-шламовой схемы.
дипломная работа [421,6 K], добавлен 01.02.2011Общая характеристика, свойства и природа алмазов, их крупнейшие месторождения и способы добычи. Необходимость и особенности развития и применения технологии производства искусственных алмазов. Анализ современных технологий выращивания и обработки алмазов.
контрольная работа [750,5 K], добавлен 30.03.2010Современные направления в развития измельчения. Характеристика сырья Шатыркульской группы месторождения. Обогащение и гидрометаллургическая обработка руд. Разделительный процесс и оборудования при измельчении. Расчет водно-шламовой схемы, баланс воды.
курсовая работа [117,9 K], добавлен 28.05.2014Выбор процесса обогащения и машинных классов. Построение кривых обогатимости для шихты и машинных классов. Составление практического баланса продуктов обогащения. Расчет оборудования для грохочения, обезвоживания концентратов и обесшламливания.
курсовая работа [1,0 M], добавлен 25.03.2023Производство глинозема, обогащение полиметаллических руд Майкаинского месторождения. Основные компоненты электролита, их свойства и состав. Основные электродные реакции и поведение примесей при электролизе. Конструкция электролитических ванн.
отчет по практике [229,7 K], добавлен 10.02.2013Выбор и обоснование схемы измельчения, классификации и обогащения руды. Вычисление выхода продукта и содержания в нем металла. Расчет качественно-количественной и водно-шламовой схемы. Методы контроля технологического процесса средствами автоматизации.
курсовая работа [1,2 M], добавлен 23.10.2011Выбор технологической схемы обогащения железной руды. Расчет мощности и выбор типа обогатительного сепаратора. Определение производительности сепараторов для сухой магнитной сепарации с верхним питанием. Технические параметры сепаратора 2ПБС-90/250.
контрольная работа [433,6 K], добавлен 01.06.2014Сырьевая база и качественная характеристика угля, поступающего на переработку. Проектная мощность обогатительной фабрики. Технологическая схема обогащения. Принцип работы колосниковых и инерционных грохотов, центрифуг, гидроциклонов, ленточных конвейеров.
отчет по практике [1,7 M], добавлен 12.10.2015Обработка результатов ситового и фракционного анализа углей шахт. Выбор машинных классов и шкалы грохочения. Фракционный состав шихты. Результаты дробной флотации угля. Фракционный состав машинных классов. Теоретический баланс продуктов обогащения.
контрольная работа [75,4 K], добавлен 13.05.2011