Проектирование привода
Выбор электродвигателя и кинематический расчёт. Проверка зубьев передачи на изгиб. Предварительный расчёт валов. Конструктивные размеры шестерен и колёс. Выбор муфты на входном валу привода. Конструктивные размеры корпуса редуктора. Эпюры моментов.
Рубрика | Производство и технологии |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 29.10.2017 |
Размер файла | 380,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Mx1 = = = -9191,091 H x мм
Mx2 = = = -6900,204 H x мм
My = = = -21884,198 H x мм
M1 = = = 23735,927 H x мм
M2 = = = 22946,262 H x мм
4 - е сечение
Mx = 0 Н x мм
My = 0 Н x мм
M = = = 0 H x мм
10.2 Эпюры моментов 1-го вала
10.3 Расчёт моментов 2-го вала
1 - е сечение
Mx = 0 Н x мм
My = 0 Н x мм
M = = = 0 H x мм
2 - е сечение
Mx1 = = = 19674,041 H x мм
Mx2 = = = 28723,054 H x мм
My1 = = = -6093,446 H x мм
My2 = = = -6093,446 H x мм
M1 = = = 20596,067 H x мм
M2 = = = 29362,287 H x мм
3 - е сечение
Mx = = = 32305,8 H x мм
My = = = -55955,287 H x мм
M = = = 64611,6 H x мм
4 - е сечение
Mx = 0 Н x мм
My = 0 Н x мм
M = = = 0 H x мм
10.4 Эпюры моментов 2-го вала
Расчёт моментов 3-го вала
1 - е сечение
Mx = 0 Н x мм
My = 0 Н x мм
M = = = 0 H x мм
2 - е сечение
Mx = = = -34459,52 H x мм
My = = = 59685,639 H x мм
M = = = 68919,04 H x мм
3 - е сечение
Mx = 0 Н x мм
My = 0 Н x мм
M = = = 0 H x мм
4 - е сечение
Mx = 0 Н x мм
My = 0 Н x мм
M = = = 0 H x мм
10.5 Эпюры моментов 3-го вала
11. Проверка долговечности подшипников
11.1 1-й вал
Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 305 средней серии со следующими параметрами:
d = 25 мм - диаметр вала (внутренний посадочный диаметр подшипника);
D = 62 мм - внешний диаметр подшипника;
C = 22,5 кН - динамическая грузоподъёмность;
Co = 11,4 кН - статическая грузоподъёмность.
Радиальные нагрузки на опоры:
Pr1 = 431,562 H;
Pr2 = 417,205 H.
Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 1.
Эквивалентная нагрузка вычисляется по формуле:
Рэ = (Х x V x Pr1 + Y x Pa) x Кб x Кт,
где - Pr1 = 431,562 H - радиальная нагрузка; Pa = Fa = 113,399 H - осевая нагрузка; V = 1 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,6 (см. табл. 9.19[1]); температурный коэффициент Кт = 1 (см. табл. 9.20[1]).
Отношение 0,01; этой величине (по табл. 9.18[1]) соответствует e = 0,135.
Отношение 0,263 > e;? e; тогда по табл. 9.18[1]: X = 0,56; Y = 2,358.
Тогда: Pэ = (0,56 x 1 x 431,562 + 2,358 x 113,399) x 1,6 x 1 = 814,492 H.
Расчётная долговечность, млн. об. (формула 9.1[1]):
L = = = 21080,8 млн. об.
Расчётная долговечность, ч.:
Lh = 379834,234 ч,
что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n1 = 925 об/мин - частота вращения вала.
11.2 2-й вал
Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 307 средней серии со следующими параметрами:
d = 35 мм - диаметр вала (внутренний посадочный диаметр подшипника);
D = 80 мм - внешний диаметр подшипника;
C = 33,2 кН - динамическая грузоподъёмность;
Co = 18 кН - статическая грузоподъёмность.
Радиальные нагрузки на опоры:
Pr1 = 374,474 H;
Pr2 = 1725,443 H.
Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 2.
Эквивалентная нагрузка вычисляется по формуле:
Рэ = (Х x V x Pr2 + Y x Pa) x Кб x Кт,
где - Pr2 = 1725,443 H - радиальная нагрузка; Pa = Fa = 113,399 H - осевая нагрузка; V = 1 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,6 (см. табл. 9.19[1]); температурный коэффициент Кт = 1 (см. табл. 9.20[1]).
Отношение 0,006; этой величине (по табл. 9.18[1]) соответствует e = 0,085.
Отношение 0,066 ? e; тогда по табл. 9.18[1]: X = 1; Y = 0.
Тогда: Pэ = (1 x 1 x 1725,443 + 0 x 113,399) x 1,6 x 1 = 2760,709 H.
Расчётная долговечность, млн. об. (формула 9.1[1]):
L = = = 1739,211 млн. об.
Расчётная долговечность, ч.:
Lh = 125348,541 ч,
что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n2 = 231,25 об/мин - частота вращения вала.
11.3 3-й вал
Выбираем шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 309 средней серии со следующими параметрами:
d = 45 мм - диаметр вала (внутренний посадочный диаметр подшипника);
D = 100 мм - внешний диаметр подшипника;
C = 52,7 кН - динамическая грузоподъёмность;
Co = 30 кН - статическая грузоподъёмность.
Радиальные нагрузки на опоры:
Pr1 = 1435,813 H;
Pr2 = 574,325 H.
Будем проводить расчёт долговечности подшипника по наиболее нагруженной опоре 1.
Эквивалентная нагрузка вычисляется по формуле:
Рэ = (Х x V x Pr1 + Y x Pa) x Кб x Кт,
где - Pr1 = 1435,813 H - радиальная нагрузка; Pa = Fa = 0 H - осевая нагрузка; V = 1 (вращается внутреннее кольцо подшипника); коэффициент безопасности Кб = 1,6 (см. табл. 9.19[1]); температурный коэффициент Кт = 1 (см. табл. 9.20[1]).
Отношение 0; этой величине (по табл. 9.18[1]) соответствует e = 0.
Отношение 0 ? e; тогда по табл. 9.18[1]: X = 1; Y = 0.
Тогда: Pэ = (1 x 1 x 1435,813 + 0 x 0) x 1,6 x 1 = 2297,301 H.
Расчётная долговечность, млн. об. (формула 9.1[1]):
L = = = 12071,97 млн. об.
Расчётная долговечность, ч.:
Lh = 2697152,701 ч,
что больше 10000 ч. (минимально допустимая долговечность подшипника), установленных ГОСТ 16162-85 (см. также стр.307[1]), здесь n3 = 74,597 об/мин - частота вращения вала.
Подшипники
Валы |
Подшипники |
||||||
1-я опора |
2-я опора |
||||||
Наименование |
d, мм |
D, мм |
Наименование |
d, мм |
D, мм |
||
1-й вал |
шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 305средней серии |
25 |
62 |
шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 305средней серии |
25 |
62 |
|
2-й вал |
шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 307средней серии |
35 |
80 |
шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 307средней серии |
35 |
80 |
|
3-й вал |
шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 309средней серии |
45 |
100 |
шарикоподшипник радиальный однорядный (по ГОСТ 8338-75) 309средней серии |
45 |
100 |
12. Уточненный расчёт валов
12.1 Расчёт 1-го вала
Крутящий момент на валу Tкр. = 16076,539 Hxмм.
Для данного вала выбран материал: сталь 45Л. Для этого материала:
- предел прочности sb = 540 МПа;
- предел выносливости стали при симметричном цикле изгиба
s-1 = 0,43 x sb + 100 = 0,43 x 540 + 100 = 289 МПа;
- предел выносливости стали при симметричном цикле кручения
s-1 = 0,58 x s-1 = 0,58 x 289 = 167,62 МПа.
1 - е сечение.
Диаметр вала в данном сечении D = 22 мм. Это сечение при передаче вращающего момента через муфту рассчитываем на кручение. Концентрацию напряжений вызывает наличие шпоночной канавки.
Коэффициент запаса прочности по касательным напряжениям:
St = , где:
- амплитуда и среднее напряжение отнулевого цикла:
tv = tm = 0,5 x 4,333 МПа,
здесь
Wк нетто = 1855,094 мм 3
где b=8 мм - ширина шпоночного паза; t1=4 мм - глубина шпоночного паза;
где b=8 мм - ширина шпоночного паза; t1=4 мм - глубина шпоночного паза;
- yt = 0.1 - см. стр. 166[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].
- kt = 1,5 - находим по таблице 8.5[1];
- et = 0,83 - находим по таблице 8.8[1];
Тогда:
St = 19,706.
ГОСТ 16162-78 указывает на то, чтобы конструкция редукторов предусматривала возможность восприятия консольной нагрузки, приложенной в середине посадочной части вала. Величина этой нагрузки для редукторов должна быть 2,5 x .
Приняв у ведущего вала длину посадочной части под муфту равной длине полумуфты l = 80 мм, получим Мизг. = 2,5 x 2,5 x 12679,329 Нxмм.
Коэффициент запаса прочности по нормальным напряжениям:
St = , где:
- амплитуда цикла нормальных напряжений:
t v = 20,356 МПа,
здесь
Wнетто = 809,729 мм 3,
где b=8 мм - ширина шпоночного паза; t1=4 мм - глубина шпоночного паза;
- среднее напряжение цикла нормальных напряжений:
s m = 0 МПа, где
Fa = 0 МПа - продольная сила в сечении,
Fa = 0 МПа - продольная сила в сечении,
- ys = 0,27 - см. стр. 164[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];
- ks = 1,6 - находим по таблице 8.5[1];
- es = 0,83 - находим по таблице 8.8[1];
Тогда:
Ss = 7,144.
Результирующий коэффициент запаса прочности:
S = = = 6,716
Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.
12.2 Расчёт 2-го вала
Крутящий момент на валу Tкр. = 62072,803 Hxмм.
Для данного вала выбран материал: сталь 45. Для этого материала:
- предел прочности sb = 780 МПа;
- предел выносливости стали при симметричном цикле изгиба
s-1 = 0,43 x sb = 0,43 x 780 = 335,4 МПа;
- предел выносливости стали при симметричном цикле кручения
t-1 = 0,58 x t-1 = 0,58 x 335,4 = 194,532 МПа.
2 - е сечение.
Диаметр вала в данном сечении D = 40 мм. Концентрация напряжений обусловлена наличием шпоночной канавки. Ширина шпоночной канавки b = 12 мм, глубина шпоночной канавки t1 = 5 мм.
Коэффициент запаса прочности по нормальным напряжениям:
Ss =
- амплитуда цикла нормальных напряжений:
sv = 5,474 МПа,
Wнетто = 5364,435 мм 3,
где b=12 мм - ширина шпоночного паза; t1=5 мм - глубина шпоночного паза;
- среднее напряжение цикла нормальных напряжений:
sm = 0,09 МПа, Fa = 113,399 МПа - продольная сила, - ys = 0,2 - см. стр. 164[1]; - b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1]; - ks = 1,8 - находим по таблице 8.5[1]; - es = 0,88 - находим по таблице 8.8[1];
Тогда:
Ss = 29,011.
Коэффициент запаса прочности по касательным напряжениям:
St = где:
- амплитуда и среднее напряжение от нулевого цикла:
tv = tm = 2,665 МПа,
здесь
Wк нетто = 11647,621 мм 3,
где b=12 мм - ширина шпоночного паза; t1=5 мм - глубина шпоночного паза;
- yt = 0.1 - см. стр. 166[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].
- kt = 1,7 - находим по таблице 8.5[1];
- et = 0,77 - находим по таблице 8.8[1];
Тогда:
St = 30,721.
Результирующий коэффициент запаса прочности:
S = = = 21,093
Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.
3 - е сечение.
Диаметр вала в данном сечении D = 35 мм. Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом (см. табл. 8.7[1]).
Коэффициент запаса прочности по нормальным напряжениям:
Ss =
- амплитуда цикла нормальных напряжений:
sv = 15,35 МПа,
здесь
Wнетто = 4209,243 мм 3
- среднее напряжение цикла нормальных напряжений:
sm = 0,118 МПа, Fa = 113,399 МПа - продольная сила,
- ys = 0,2 - см. стр. 164[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];
- s = 3,102 - находим по таблице 8.7[1];
Тогда:
Ss = 6,829.
Коэффициент запаса прочности по касательным напряжениям:
St = где:
- амплитуда и среднее напряжение отнулевого цикла:
tv = tm = 3,687 МПа,
здесь
Wк нетто = 8418,487 мм 3
- yt = 0.1 - см. стр. 166[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].
- = 2,202 - находим по таблице 8.7[1];
Тогда:
St = 22,261.
Результирующий коэффициент запаса прочности:
S = = = 6,529
Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.
12.3 Расчёт 3-го вала
Крутящий момент на валу Tкр. = 176205,069 Hxмм.
Для данного вала выбран материал: сталь 45. Для этого материала:
- предел прочности sb = 780 МПа;
- предел выносливости стали при симметричном цикле изгиба
s-1 = 0,43 x sb = 0,43 x 780 = 335,4 МПа;
- предел выносливости стали при симметричном цикле кручения
s-1 = 0,58 x s-1 = 0,58 x 335,4 = 194,532 МПа.
2 - е сечение.
Диаметр вала в данном сечении D = 45 мм. Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом (см. табл. 8.7[1]).
Коэффициент запаса прочности по нормальным напряжениям:
St =
- амплитуда цикла нормальных напряжений:
sv = 7,704 МПа,
здесь
Wнетто = 8946,176 мм 3
- среднее напряжение цикла нормальных напряжений:
sm = 0 МПа, Fa = 0 МПа - продольная сила,
- ys = 0,2 - см. стр. 164[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1];
- s = 3,102 - находим по таблице 8.7[1];
Тогда:
Ss = 13,614.
Коэффициент запаса прочности по касательным напряжениям:
St = где:
- амплитуда и среднее напряжение отнулевого цикла:
tv = tm = 4,924 МПа,
здесь
Wк нетто = 17892,352 мм 3
- yt = 0.1 - см. стр. 166[1];
- b = 0.97 - коэффициент, учитывающий шероховатость поверхности, см. стр. 162[1].
- = 2,202 - находим по таблице 8.7[1];
Тогда:
St = 16,669.
Результирующий коэффициент запаса прочности:
S = = = 10,544
Расчётное значение получилось больше минимально допустимого [S] = 2,5. Сечение проходит по прочности.
13. Тепловой расчёт редуктора
Для проектируемого редуктора площадь теплоотводящей поверхности А = 0,73 мм 2 (здесь учитывалась также площадь днища, потому что конструкция опорных лап обеспечивает циркуляцию воздуха около днища).
По формуле 10.1[1] условие работы редуктора без перегрева при продолжительной работе:
Dt = tм - tв = Ј [Dt],],
где Ртр = 1,573 кВт - требуемая мощность для работы привода; tм - температура масла; tв - температура воздуха.
Считаем, что обеспечивается нормальная циркуляция воздуха, и принимаем коэффициент теплоотдачи Kt = 15 Вт/(м 2x oC). Тогда:
Dt = 20,399 o Ј [Dt],
где [t] = 50 oС - допускаемый перепад температур.
Температура лежит в пределах нормы.
14. Выбор сорта масла
Смазывание элементов передач редуктора производится окунанием нижних элементов в масло, заливаемое внутрь корпуса до уровня, обеспечивающего погружение элемента передачи примерно на 10-20 мм. Объём масляной ванны V определяется из расчёта 0,25 дм 3 масла на 1 кВт передаваемой мощности:
V = 0,25 x 1,573 = 0,393 дм 3.
По таблице 10.8[1] устанавливаем вязкость масла. При контактных напряжениях H = 317,826 МПа и скорости v = 1,957 м/с рекомендуемая вязкость масла должна быть примерно равна 34 x 10 -6 м/с 2. По таблице 10.10[1] принимаем масло индустриальное И-30А (по ГОСТ 20799-75*).
Выбираем для подшипников качения пластичную смазку УТ-1 по ГОСТ 1957-73 (см. табл. 9.14[1]). Камеры подшинпиков заполняются данной смазкой и периодически пополняются ей.
15. Выбор посадок
Посадки элементов передач на валы - Н7/р6, что по СТ СЭВ 144-75 соответствует легкопрессовой посадке.
Посадки муфт на валы редуктора - Н8/h8.
Шейки валов под подшипники выполняем с отклонением вала k6.
Остальные посадки назначаем, пользуясь данными таблицы 8.11[1].
16. Технология сборки редуктора
Перед сборкой внутреннюю полость корпуса редуктора тщательно очищают и покрывают маслостойкой краской. Сборку производят в соответствии с чертежом общего вида редуктора, начиная с узлов валов.
На валы закладывают шпонки и напрессовывают элементы передач редуктора. Мазеудерживающие кольца и подшипники следует насаживать, предварительно нагрев в масле до 80-100 градусов по Цельсию, последовательно с элементами передач. Собранные валы укладывают в основание корпуса редуктора и надевают крышку корпуса, покрывая предварительно поверхности стыка крышки и корпуса спиртовым лаком. Для центровки устанавливают крышку на корпус с помощью двух конических штифтов; затягивают болты, крепящие крышку к корпусу. После этого в подшипниковые камеры закладывают смазку, ставят крышки подшипников с комплектом металлических прокладок, регулируют тепловой зазор. Перед постановкой сквозных крышек в проточки закладывают войлочные уплотнения, пропитанные горячим маслом. Проверяют проворачиванием валов отсутствие заклинивания подшипников (валы должны проворачиваться от руки) и закрепляют крышку винтами. Затем ввертывают пробку маслоспускного отверстия с прокладкой и жезловый маслоуказатель. Заливают в корпус масло и закрывают смотровое отверстие крышкой с прокладкой, закрепляют крышку болтами. Собранный редуктор обкатывают и подвергают испытанию на стенде по программе, устанавливаемой техническими условиями.
Заключение
При выполнении курсового проекта по “Деталям машин” были закреплены знания, полученные за прошедший период обучения в таких дисциплинах как: теоретическая механика, сопротивление материалов, материаловедение.
Целью данного проекта является проектирование привода цепного конвейера, который состоит как из простых стандартных деталей, так и из деталей, форма и размеры которых определяются на основе конструкторских, технологических, экономических и других нормативов.
В ходе решения поставленной передо мной задачей, была освоена методика выбора элементов привода, получены навыки проектирования, позволяющие обеспечить необходимый технический уровень, надежность и долгий срок службы механизма.
Опыт и навыки, полученные в ходе выполнения курсового проекта, будут востребованы при выполнении, как курсовых проектов, так и дипломного проекта.
Можно отметить, что спроектированный редуктор обладает хорошими свойствами по всем показателям.
По результатам расчета на контактную выносливость действующие напряжения в зацеплении меньше допускаемых напряжений.
По результатам расчета по напряжениям изгиба действующие напряжения изгиба меньше допускаемых напряжений.
Расчет вала показал, что запас прочности больше допускаемого.
Необходимая динамическая грузоподъемность подшипников качения меньше паспортной.
При расчете был выбран электродвигатель, который удовлетворяет заданные требования.
Список использованной литературы
1. Чернавский С.А., Боков К.Н., Чернин И.М., Ицкевич Г.М., Козинцов В.П. 'Курсовое проектирование деталей машин': Учебное пособие для учащихся. М.:Машиностроение, 1988 г., 416с.
2. Дунаев П.Ф., Леликов О.П. 'Конструирование узлов и деталей машин', М.: Издательский центр 'Академия', 2003 г., 496 c.
3. Шейнблит А.Е. 'Курсовое проектирование деталей машин': Учебное пособие, изд. 2-е перераб. и доп. - Калининград: 'Янтарный сказ', 2004 г., 454 c.: ил., черт. - Б.ц.
4. Березовский Ю.Н., Чернилевский Д.В., Петров М.С. 'Детали машин', М.: Машиностроение, 1983г., 384 c.
5. Боков В.Н., Чернилевский Д.В., Будько П.П. 'Детали машин: Атлас конструкций.' М.: Машиностроение, 1983 г., 575 c.
6. Гузенков П.Г., 'Детали машин'. 4-е изд. М.: Высшая школа, 1986 г., 360 с.
7. Детали машин: Атлас конструкций / Под ред. Д.Р.Решетова. М.: Машиностроение, 1979 г., 367 с.
8. Дружинин Н.С., Цылбов П.П. Выполнение чертежей по ЕСКД. М.: Изд-во стандартов, 1975 г., 542 с.
9. Кузьмин А.В., Чернин И.М., Козинцов Б.П. 'Расчеты деталей машин', 3-е изд. - Минск: Вышейшая школа, 1986 г., 402 c.
10. Куклин Н.Г., Куклина Г.С., 'Детали машин' 3-е изд. М.: Высшая школа, 1984 г., 310 c.
11. Мотор-редукторы и редукторы': Каталог. М.: Изд-во стандартов, 1978 г., 311 c.
12. Перель Л.Я. 'Подшипники качения'. M.: Машиностроение, 1983 г., 588 c.
13. Подшипники качения': Справочник-каталог / Под ред. Р.В. Коросташевского и В.Н. Нарышкина. М.: Машиностроение, 1984 г., 280 с.
Размещено на Allbest.ru
...Подобные документы
Выбор электродвигателя и кинематический расчёт привода. Проверка зубьев передачи на изгиб. Расчёт 2-й зубчатой цилиндрической передачи. Конструктивные размеры шестерен и колёс. Выбор муфт. Построение эпюр моментов на валах. Технология сборки редуктора.
курсовая работа [145,3 K], добавлен 20.01.2011Выбор электродвигателя и кинематический расчёт привода. Предварительный расчёт валов редуктора. Конструктивные размеры шестерни и колеса, корпуса редуктора. Расчёт ременной передачи. Подбор подшипников. Компоновка редуктора. Выбор сорта масла, смазки.
курсовая работа [143,8 K], добавлен 27.04.2013Конструктивные размеры шестерни, колеса и корпуса. Подбор муфты для привода. Расчет закрытой червячной передачи. Предварительный расчёт валов. Проверка прочности шпоночных соединений. Посадка деталей редуктора. Выбор сорта масла и сборка редуктора.
курсовая работа [333,9 K], добавлен 26.09.2014Выбор электродвигателя и его кинематический расчет. Расчёт клиноременной передачи и зубчатых колёс. Предварительный расчёт валов редуктора и выбор подшипников. Размеры корпуса редуктора. Проверка долговечности подшипников. Расчёт шпонок на смятие.
курсовая работа [1,1 M], добавлен 09.06.2015Проектирование электропривода с ременной передачей с клиновым ремнём и закрытой зубчатой цилиндрической передачей. Выбор электродвигателя и кинематические расчеты передач, предварительный расчёт валов. Конструктивные размеры шестерен и колёс, выбор муфты.
курсовая работа [141,8 K], добавлен 29.07.2010Кинематический расчёт привода. Расчет зубчатых колес редуктора. Конструктивные размеры шестерни и колеса. Проверка прочности шпоночных соединений. Расчет цепной передачи. Конструктивные размеры корпуса и крышки редуктора. Выбор основных посадок деталей.
курсовая работа [378,9 K], добавлен 18.08.2009Выбор электродвигателя. Кинематический расчет привода. Расчет зубчатых колес редуктора. Предварительный расчет валов. Выбор подшипников. Конструктивные размеры вала шестерни, ведомого вала и зубчатого колеса. Конструктивные размеры корпуса редуктора.
курсовая работа [614,5 K], добавлен 13.04.2015Выбор электродвигателя и кинематический расчёт. Расчёт зубчатых колёс редуктора. Предварительный расчёт валов редуктора. Определение конструктивных размеров шестерни и колеса, корпуса редуктора. Уточнённый расчёт валов. Выбор сорта масла для редуктора.
курсовая работа [249,4 K], добавлен 24.07.2011Расчет привода, первой косозубой передачи и подшипников. Предварительный расчет валов редуктора. Конструктивные размеры шестерни, колеса, корпуса редуктора. Ориентировочный и уточненный расчет валов. Выбор муфты и расчет смазки. Выбор режима работы.
курсовая работа [435,4 K], добавлен 27.02.2009Выбор электродвигателя и кинематический расчет. Расчёт зубчатой передачи, валов, открытой передачи. Конструктивные размеры вала, шестерни, корпуса и крышки. Проверка долговечности подшипника, прочности шпоночных соединений. Компоновка и сборка редуктора.
курсовая работа [964,7 K], добавлен 05.05.2015Проектирование привода к ленточному транспортёру. Выбор электродвигателя и кинематический расчет. Расчет зубчатых колёс редуктора. Расчет валов. Конструктивные размеры шестерни и колеса. Расчёт ременной передачи, выбор посадок, сборка редуктора.
курсовая работа [898,8 K], добавлен 24.01.2010Проектирование привода для ленточного транспортера. Кинематический расчет и выбор электродвигателя. Расчет зубчатых колес редуктора, валов и выбор подшипников. Конструктивные размеры шестерни и колеса корпуса редуктора. Этапы компоновки, сборка редуктора.
курсовая работа [224,9 K], добавлен 29.01.2010Выбор электродвигателя и кинематический расчет привода цепного транспортера конически-цилиндрического редуктора. Расчет тихоходной ступени; предварительный расчет валов. Конструктивные размеры шестерен и колес корпуса; проверка прочности, компоновка.
курсовая работа [4,4 M], добавлен 16.05.2013Кинематический расчет силового привода. Определение передаточного числа для закрытой и открытой передачи. Оценка вращающего момента на валу электродвигателя. Конструктивные размеры зубчатых колёс и корпуса редуктора. Анализ прочности шпоночных соединений.
курсовая работа [2,0 M], добавлен 10.03.2013Выбор электродвигателя и кинематический расчет привода. Расчет тихоходной и быстроходной ступеней, зубчатых передач редуктора. Предварительный расчет валов. Конструктивные размеры зубчатых колес. Размеры корпуса редуктора, его эскизная компоновка.
курсовая работа [347,0 K], добавлен 27.09.2012Кинематический расчёт и выбор электродвигателя редуктора. Расчёт зубчатых колёс и валов. Конструктивные размеры шестерни, колеса и корпуса. Проверка долговечности подшипников, прочности шпоночных соединений. Этапы компоновки; посадки основных деталей.
курсовая работа [544,3 K], добавлен 19.04.2015Выбор электродвигателя и кинематический расчет. Расчет клиноременной передачи привода, зубчатых колес редуктора, валов редуктора. Конструктивные размеры шестерни и колеса, корпуса редуктора. Компоновка редуктора. Проверка долговечности подшипников.
курсовая работа [505,0 K], добавлен 11.11.2008Кинематический расчет привода. Расчет зубчатых передач редуктора, ременной передачи, валов редуктора. Предварительный расчет валов. Конструктивные размеры корпуса редуктора. Проверка подшипников на долговечность. Проверка прочности шпоночных соединений.
курсовая работа [555,6 K], добавлен 20.12.2014Особенности подбора электродвигателя. Кинематический расчет привода, валов и плоскоременной передачи. Анализ цилиндрической прямозубой и шевронной передачи. Конструктивные размеры корпуса редуктора. Характеристика подбора муфты и компоновка редуктора.
курсовая работа [610,2 K], добавлен 17.05.2011Выбор электродвигателя и кинематический расчет. Расчет зубчатых колес редуктора. Предварительный расчет валов редуктора. Конструктивные размеры шестерни и колеса, корпуса редуктора. Расчет цепной передачи. Эскизная компоновка редуктора. Выбор масла.
курсовая работа [144,3 K], добавлен 21.07.2008