Автоматизированный электропривод совмещенного прокатно-волочильного проволочного стана
Разработка прокатно-волочильного проволочного стана, обеспечивающего энергоэффективное производство проволоки при одновременном увеличении производительности, снижении затрат и повышении качества продукции. Определение границ устойчивости проката.
Рубрика | Производство и технологии |
Вид | автореферат |
Язык | русский |
Дата добавления | 14.02.2018 |
Размер файла | 6,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Автореферат
диссертации на соискание ученой степени доктора технических наук
Специальность 05.09.03 - Электротехнические комплексы и системы
Автоматизированный электропривод совмещенного прокатно-волочильного проволочного стана
Радионов Андрей Александрович
Магнитогорск, 2009
Работа выполнена в ГОУ ВПО “Магнитогорский государственный технический университет им. Г.И. Носова”
Официальные оппоненты - доктор технических наук, профессор Усынин Ю.С.
доктор технических наук, профессор Осипов О.И.
доктор технических наук, профессор Микитченко А.Я.
Ведущее предприятие - ОАО “Магнитогорский металлургический комбинат”, г. Магнитогорск
Ученый секретарь диссертационного совета К.Э. Одинцов
1. Общая характеристика работы
прокатный волочильный проволочный стан
Актуальность работы. Доля производства длинномерных изделий, таких как проволока, сорт и т.п. в общем объеме выпуска стального проката составляет 10…12 % (или в целом по России до 10 млн. тонн/год). Металлическая проволока, являясь основной продукцией метизного передела, находит применение практически во всех отраслях промышленности и хозяйственной деятельности. Основным способом ее производства является волочение через монолитные, либо роликовые волоки, реже холодная, либо теплая прокатка в двух- и многовалковых калибрах.
Основным направлением развития проволочного передела в XXI веке является применение ресурсосберегающих технологий, позволяющих не только интенсифицировать технологический процесс, повышать экономическую эффективность производства, но и получать продукцию с заданными физико-механическими свойствами. Неоспоримым достоинством процесса прокатки перед волочением являются более высокие скорости обработки, меньшие энергозатраты при производстве, отсутствие ограничений суммарных и единичных обжатий, обусловленных прочностью переднего конца проволоки. В свою очередь, проволока, полученная при волочении, обладает более точными геометрическими размерами, что существенно сказывается на качестве изготавливаемых из нее метизных изделий.
Объединить достоинства указанных процессов возможно при их совмещении в единой технологической линии. Так, одним из наиболее перспективных агрегатов для производства металлической проволоки являются совмещенные прокатно-волочильные станы, имеющие в своем составе две последовательно расположенные секции - прокатную и волочильную. Оригинальным решением, позволяющим не только упростить оборудование и тем самым снизить капитальные и эксплуатационные затраты, но существенно повысить к.п.д. процесса прокатки за счет использования резерва сил трения в очагах деформации, является применение в непрерывной трехклетевой прокатной секции промежуточной неприводной клети. Энергия необходимая для деформации металла в такой клети подводится только посредством обрабатываемого металла путем подпора со стороны предыдущей и натяжения со стороны последующей клетей. Волочильная секция, имея прямоточную схему передачи металла, позволяет наиболее полно использовать достоинства процесса волочения. Кроме того, повысить производительность стана позволяет реализация непрерывного съема проволоки. Стан имеет в своем составе двухкатушечный намоточный аппарат с параллельным размещением вертикально расположенных катушек, осуществляющий автоматический переброс проволоки с заполненной катушки на пустую, и тем самым обеспечивающий непрерывную работу всего агрегата.
Технологическая линия вновь создаваемого агрегата - совмещенного прокатно-волочильного стана объединяет три группы электромеханических систем, имеющих принципиально новые взаимосвязи в непрерывном технологическом процессе. Очевидно, что при создании такого стана первоочередной задачей является разработка автоматизированных электроприводов, учитывающих весь комплекс принципиально новых взаимосвязей, конструктивных особенностей механизмов объекта и обеспечивающих как выполнение всех технологических требований, так и его безаварийную работу в целом.
Цель работы. Целью диссертационной работы является разработка автоматизированных электроприводов нового технологического объекта - совмещенного прокатно-волочильного проволочного стана, обеспечивающего гибкое, энергоэффективное производство проволоки при одновременном увеличении производительности, снижении капитальных и эксплуатационных затрат и повышении качества продукции.
Достижение поставленной цели потребовало решения следующих основных задач:
- проведения анализа особенностей технологических режимов электромеханических систем совмещенного прокатно-волочильного стана, а также анализа существующих электроприводов непрерывных проволочных прокатных, прямоточных волочильных станов и намоточных аппаратов непрерывного действия;
- определения критериев оптимального (с точки зрения экономической эффективности технологического процесса) управления прямоточной волочильной секцией, границ устойчивости проката в межклетевых промежутках при его прокатке в секции с неприводной клетью. Разработки инженерной методики определения величины начального натяжения и обоснования оптимального закона его изменения в процессе намотки проволоки;
- разработки обобщенных и индивидуальных требований к электроприводам и системам управления технологических узлов стана;
- разработки инженерной методики расчета нагрузочных режимов электроприводов катушек и поворотного стола двухкатушечного намоточного аппарата;
- разработки математической модели совмещенного прокатно-волочильного стана (электромеханических систем приводная - неприводная - приводная клети - волочильные блоки - двухкатушечный намоточный аппарат с учетом взаимосвязи электроприводов через обрабатываемый металл) как объекта автоматизации;
- теоретических исследований динамических свойств электромеханических систем совмещенного прокатно-волочильного стана методами математического моделирования;
- разработки способов и систем управления электроприводами совмещенного стана с учетом их силовой взаимосвязи в новом технологическом процессе;
- теоретических и экспериментальные исследований разработанных автоматизированных электроприводов, а также промышленной апробации и внедрения полученных научных результатов.
Методы исследования. Теоретические исследования основывались на положениях теории электропривода, теории автоматического регулирования, методах операционного исчисления, статистической обработки данных. Решение отдельных задач выполнялось с использованием аппарата передаточных функций, аналитических и численных методов решения алгебраических уравнений и систем дифференциального и интегрального исчислений, методов преобразования структурных схем и структурного моделирования, численных методов аппроксимации, методов анализа с использованием логарифмических частотных характеристик. Разработанные алгоритмы реализованы в виде программных модулей для пакета визуального программирования SIMULINK математического пакета MATLAB 6.0. Экспериментальные исследования проводились в промышленных условиях путем прямого осциллографирования основных параметров с последующей их обработкой на действующем прямоточном волочильном стане, а также на специально созданном экспериментально-промышленном образце прокатной секции и на опытно-промышленном образце двухкатушечного намоточного аппарата.
Научная новизна работы заключается в создании систем автоматизированного электропривода нового технологического агрегата - совмещенного прокатно-волочильного проволочного стана.
Теоретически обоснованы и экспериментально подтверждены технологические требования к электроприводам прокатной и волочильной секций и двухкатушечного намоточного аппарата с учетом особенностей прокатки с промежуточной неприводной клетью. Сформулированы критерии оптимального управления прямоточной волочильной секцией. Предложен энергетический подход к анализу взаимодействия проволоки и шпули двухкатушечного намоточного аппарата.
Создано математическое описание, разработаны структурные схемы, а также программный продукт для моделирования работы электроприводов совмещенного прокатно-волочильного стана с учетом их взаимосвязи через обрабатываемую проволоку, в основу которого положен закон сохранения энергии (впервые для описания электромеханических систем волочильных станов/секций).
Предложена концепция построения автоматизированного электропривода совмещенного прокатно-волочильного стана, основанная на разделении задач по регулированию скорости, натяжения, противонатяжения и контроля величин критических углов в очагах деформации прокатных клетей между электроприводами различных клетей и блоков. Доказано, что в качестве ведущего (регулирующего скорость процесса обработки проволоки) необходимо использовать электропривод последнего волочильного блока. Электроприводы остальных, ведомых клетей, блоков и шпуль намоточного аппарата, осуществляют регулирование натяжения и противонатяжения во всех межклетевых, межбарабанных промежутках и на участке смотки.
Разработаны системы управления электроприводами трехклетевой прокатной секции с промежуточной неприводной клетью, осуществляющие, в том числе, и контроль критических углов в очагах деформации приводных прокатных клетей. Доказана принципиальная невозможность косвенной оценки величины противонатяжений отдельно в каждом межбарабанном промежутке волочильной секции и разработаны системы регулирования противонатяжения прямого действия электропривода вытяжного барабана с использованием датчиков усилий, устанавливаемых перед каждым волокодержателем. Разработана система управления автоматизированного электропривода катушек двухкатушечного намоточного аппарата. К реализации предложена комбинированная система управления электроприводом катушек, включающая системы регулирования скорости и натяжения, автоматически переключающиеся в зависимости от режима работы намоточного аппарата.
Впервые в результате теоретических и экспериментальных исследований подтверждена возможность практической реализации в прокатной линии неприводных рабочих клетей, значительного снижения энергопотребления при прокатке и волочении, а также реализации непрерывного съема проволоки со стана средствами разработанных электроприводов и систем управления.
Практическая ценность и реализация работы состоит в том, что в результате разработки автоматизированных электроприводов и систем управления созданы технические предпосылки для промышленного исполнения принципиально нового совмещенного прокатно-волочильного стана, обеспечивающего гибкое, менее энергоемкое производство проволоки, отличающегося более высокими эксплуатационными характеристиками по сравнению с известными агрегатами.
Создан автоматизированный электропривод промышленно эксплуатируемого прямоточного волочильного стана, экспериментально-промышленного образца прокатной секции с промежуточной неприводной клетью, а также опытно-промышленного образца двухкатушечного намоточного аппарата.
Определены и экспериментально подтверждены алгоритмы управления электромеханическими системами совмещенного стана (отдельно волочильной, прокатной секций и двухкатушечного намоточного аппарата).
Доказаны возможность и целесообразность реализации средствами автоматизированного электропривода использования резерва втягивающих сил трения в прокатных клетях и снижения затрат на деформацию проволоки при волочении.
Разработанные системы автоматизированного электропривода опробованы и внедрены:
- на действующем волочильном стане ОАО “Белорецкий металлургический комбинат”, в результате чего снижены затраты электроэнергии при волочении на 9 % и повышена производительность стана за счет снижение обрывности проволоки на 12 %;
- на экспериментально-промышленном образце прокатной секции ОАО “Белорецкий металлургический комбинат”, в результате чего доказана возможность снижения затрат электроэнергии на изготовление проволоки до 24 %;
- на намоточном аппарате действующего волочильного стана ОАО “Магнитогорский калибровочный завод”, в результате чего увеличена производительность процесса волочения на 14 %.
Результаты диссертационной работы также переданы в ОАО “Магнитогорский ГИПРОМЕЗ”, где приняты к использованию при проектировании оборудования для производства проволоки.
Обоснованность и достоверность научных положений, выводов и рекомендаций подтверждаются правомерностью принятых исходных положений и предпосылок, корректным применением методов исследования, применением классических методов теории электропривода, теории автоматического управления и теории обработки металлов давлением, методов операционного исчисления и статистической обработки данных, а также практической реализацией и экспериментальными исследованиями разработанных систем электропривода в промышленных условиях.
К защите представляются следующие основные положения:
1. Требования к автоматизированным электроприводам принципиально нового технологического объекта - совмещенного прокатно-волочильного проволочного стана. Критерии оптимального управления прямоточной волочильной секцией с позиций повышения энергоэффективности процесса. Рациональный закон изменения натяжения в проволоке, при котором натяжение в процессе намотки изменяется по гиперболическому закону обратно пропорционально радиусу проволочной паковки. Инженерная методика определения величины начального натяжения проволоки при ее намотке на шпулю.
2. Математические модели электромеханических систем совмещенного прокатно-волочильного стана как объекта управления, учитывающие как взаимосвязи электроприводов через проволоку, так и принципиально новые особенности режимов прокатки с промежуточной неприводной клетью, вновь выявленные особенности влияния противонатяжения на поведение металла в очаге деформации при волочении, а также особенности процесса намотки проволоки на принципиально новом двухкатушечном намоточном аппарате непрерывного действия.
3. Методика расчета нагрузочных режимов электроприводов катушек и поворотного стола двухкатушечного намоточного аппарата, конструктивно отличающегося от известных и подобных ему устройств.
4. Концепция построения автоматизированного электропривода принципиально нового технологического агрегата - совмещенного прокатно-волочильного стана, реализующая выполнение противоречивых требований по точности регулирования скорости обработки, натяжения, противонатяжения и контролю величин критических углов в очагах деформации прокатных клетей путем разделения их на один ведущий (электропривод последнего волочильного блока) и остальные ведомые.
5. Системы и алгоритмы управления электроприводами прокатной секции, впервые имеющей в своем составе неприводную рабочую клеть, отличающиеся наличием дополнительного контуров регулирования противонатяжения и критических углов в очагах деформации приводных клетей, а также настройки контуров регулирования.
6. Системы и алгоритмы управления электроприводами катушек двухкатушечного намоточного аппарата новой конструкции, а также настройки контуров регулирования, учитывающие более высокие частоты возмущающих воздействий.
7. Экспериментально-промышленный образец прокатной секции, опытно-промышленный образец двухкатушечного намоточного аппарата, автоматизированный электропривод прямоточного волочильного стана, внедренный на действующем волочильном стане ВПТ 5/750 цеха № 16 ОАО “Белорецкий металлургический комбинат”.
8. Результаты теоретических и экспериментальных исследований статических и динамических свойств разработанных электроприводов и систем управления, подтверждающие принципиальную возможность использования резерва втягивающих сил трения в прокатных клетях, снижения затрат на деформацию проволоки при волочении и реализации процесса непрерывного съема проволоки, а также работоспособность разработанных электроприводов и систем управления.
Апробация работы. Основные положения и результаты диссертационной работы неоднократно докладывались и обсуждались на заседаниях и научно-технических семинарах энергетического факультета и кафедры электропривода и автоматизации промышленных установок ГОУ ВПО “Магнитогорский государственный технический университет им. Г.И. Носова”, на заседаниях научно-технического совета ОАО “Белорецкий металлургический комбинат” (сентябрь 2002 г., апрель 2005 г., октябрь 2007 г.).
Результаты работы докладывались на: IV, V международных (ХV, XVI Всероссийских) конференциях по автоматизированному электроприводу (г. Магнитогорск, 2004 г.; г. Санкт-Петербург, 2007 г.); I, II международной научно-технической конференции “Металлургия XXI века” (г. Москва, 2005, 2006 гг.); международной научно-технической конференции “Прогрессивные процессы и оборудование металлургического производства” (г. Череповец, 2006 г.); 64-й научно-технической конференции по итогам научно-исследовательских работ за 2004-2005 гг. (МГТУ, декабрь 2005 г.), также других семинарах и совещаниях, посвященных развитию автоматизированных электроприводов волочильных и прокатных станов метизно-металлургических предприятий Уральского региона.
Диссертационная работа рекомендована к защите объединенным заседанием кафедр энергетического факультета и факультета автоматики и вычислительной техники ГОУ ВПО “Магнитогорский государственный технический университет им. Г.И. Носова” (январь 2009 г.) и заседанием кафедры автоматизированного электропривода ГОУ ВПО “Московский энергетический институт (технический университет)” (декабрь 2008 г.).
Публикации. Основное содержание работы опубликовано в 44 печатных трудах, в том числе двух монографиях, одном пособии, рекомендованным учебно-методическим объединением вузов России по образованию в области энергетики и электротехники, 34 статьях и докладах, 4 патентах и 3 свидетельств о регистрации программ.
Структура и объем работы. Диссертационная работа состоит из введения, семи глав, заключения, списка литературы из 176 наименований и 2 приложений на 8 страницах. Работа изложена на 332 страницах машинописного текста, в том числе 119 рисунков и 14 таблиц.
2. Содержание работы
Во введении рассмотрено состояние проблемы, обоснована актуальность работы, сформулированы цель и основные задачи исследований.
В первой главе на основе литературно-патентных исследований дан анализ технологических процессов прокатки и волочения проволоки на создаваемом совмещенном прокатно-волочильном стане, определены его закономерности. В результате теоретического анализа показана экономическая целесообразность применения прокатки с промежуточными неприводными клетями, а также установлено, что оптимизацией величин противонатяжений возможно существенно повысить эффективность и стабильность процесса волочения проволоки. Представлен обзор конструкций агрегатов для производства металлической проволоки, известных способов построения систем управления электроприводами непрерывных проволочных прокатных и волочильных станов, намоточных аппаратов.
Применяемые в настоящее время способы производства проволоки - прокатка и волочение имеют как достоинства, так и недостатки. Наиболее широко применяется процесс волочения. Связано это в первую очередь с его относительной простотой, хорошо изученной теоретической и практической базой. Для его осуществление имеется необходимое оборудование, освоено производство инструмента.
Однако процесс волочения, в сравнении с прокаткой, обладает повышенной энергоемкостью деформации. Это определяет большие давления в очаге деформации, повышающие мощность сил трения, температуру, изменяющие структуру, физико-механические свойства проволоки и зачастую приводящие к появлению различных поверхностных дефектов в виде надрывов, рисок, трещин и т.п.
Особенно актуальным это является для обработки легированных и малопластичных сталей и сплавов. Поэтому при производстве высокопрочной проволоки целесообразнее применять процесс прокатки, не имеющий указанных недостатков. Однако проволока, полученная в процессе прокатки, имеет невысокие геометрические характеристики.
Достоинства прокатных станов - низкие затраты на деформацию и волочильных станов - высокая точность геометрии производимой проволоки и качество ее поверхности можно объединить, совместив эти два процесса в единой технологической линии.
На рис. 1 приведены технологическая и кинематическая схемы разрабатываемого принципиально нового совмещенного прокатно-волочильного стана. Стан состоит из прокатной секции, имеющей в своем составе две приводные и одну неприводную клети, и волочильной секции, состоящей из двух вытяжных барабанов.
Отличительной особенностью прокатной секции является отсутствие электропривода второй клети. Расстояние между 1-ой и 2-ей клетями (очагами деформации) выполняется минимально возможным по конструктивным соображениям и достигает 15...25 см. Энергия, необходимая для деформации металла в неприводной клети, подводится только посредством обрабатываемого металла путем подпора со стороны первой клети и натяжения со стороны третьей клети. Такое решение, за счет использования резерва сил трения в очагах деформации приводных клетей, позволяет существенно уменьшить капитальные затраты при строительстве стана и повысить к.п.д. процесса прокатки.
Рис. 1. Технологическая и кинематическая схемы совмещенного прокатно-волочильного стана: 1 - разматыватель; 2 - приводная прокатная клеть; 3 - неприводная прокатная клеть; 4 - волока; 5 - барабан волочильного блока; 6 - редуктор; 7 - приводной электродвигатель; 8 - намоточный аппарат
Волочильная секция, по сути, является непрерывным прямоточным волочильным станом с регулируемым противонатяжением. Стан снабжен также разматывателем и двухкатушечным намоточным аппаратом оригинальной конструкции (рис. 2).
Намоточные катушки 1 и 2 установлены на фиксирующих дисках 3, 4 с захватывающими устройствами 5, 6, крепящимися на приводных валах 7, 8. Последние, через соединительные муфты 9, 10, соединены с приводными электродвигателями 11 и 12. Двигатели расположены на столе 13, имеющем возможность вращения вокруг неподвижного вала 15 от электродвигателя 14. Между катушками 1, 2 установлены ножи 16, 17 и подвижная шторка 18. Переброс проволоки с заполненной катушки на пустую осуществляется следующим образом: проволока 19 (рис. 1, б) наматывается на катушку 1. После ее заполнения включается привод катушки 2, происходит ее разгон. Причем, направления вращения катушек противоположные. Разгон катушки 2 производится до уровня, когда линейная скорость вращения шейки катушки равна линейной скорости движения проволоки. При достижении равенства этих скоростей шторка 18 поднимается и начинается разворот стола. На рис. 1, в показано расположение элементов системы в момент разворота стола на 90°. По окончании разворота стола на 180° (рис. 1, г) шторка 18 опускается прижимая проволоку 19, которая, огибая шейку катушки 2 и нож 16, попадает в захват 6 и обрезается ножом 17. Катушка 1 останавливается, происходит намотка на катушку 2. После ее наполнения цикл повторяется с той разницей, что стол поворачивается в противоположную сторону.
Рис. 2. Устройство (а) и принцип действия (б-г) двухкатушечного намоточного аппарата
По сравнению с традиционными станами совмещенный прокатно-волочильный стан обеспечивает следующие основные преимущества:
- снижение удельных капитальных затрат при строительстве стана на 10...15 %;
- увеличение производительности за счет снижения времени простоев, обусловленных как обрывом обрабатываемой проволоки, так и исключением технологических операций связанных с заменой катушек на участке смотки на 30...36 %;
- снижение эксплуатационных затрат за счет использования резерва сил трения при прокатке и сил противонатяжения при волочении до 24 %;
- повышенная гибкость производства - более быстрая перенастройка на выпуск различного марочного сортамента, возможность отгрузки продукции в паковках различной емкости без дополнительных операций по ее перемотке.
Представлен обзор известных принципов построения систем управления электроприводами прямоточных волочильных и непрерывных проволочных прокатных станов, приведено их описание. Изучение принципа работы известных систем и опыта их эксплуатации показало невозможность непосредственного применения последних в прокатной секции, а также низкое качество управления процессом волочения.
Так, на непрерывных проволочных прокатных станах, как правило, применяется традиционный способ управления - с регулированием скоростей металла по клетям таким образом, чтобы обеспечивался требуемый режим межклетевых натяжений. Опыт эксплуатации подобных систем на таких станах показал их низкую надежность работы. Более эффективным оказались автоматизированные электроприводы с системами прямого, либо косвенного регулирования межклетевых натяжений, а также системы стабилизации размеров проката. На подавляющем большинстве действующих прямоточных волочильных станах эксплуатируется групповой электропривод, построенный на базе двигателей постоянного тока с последовательным, либо параллельным соединением якорей, не удовлетворяющий постоянно возрастающим технологическим требованиям, а потому не имеющим оснований быть принятыми в качестве электропривода волочильной секции разрабатываемого совмещенного стана.
Указано, что наиболее перспективным и универсальным устройством для непрерывного съема проволоки после волочильных станов является разрабатываемый двухкатушечный намоточный аппарат с параллельным расположением катушек.
На основе анализа технологических особенностей сформулированы общие технологические требования к автоматизированным электроприводам и системам управления. Определены диапазоны изменения регулируемых параметров - скоростей, натяжений и противонатяжений, требования по точности их регулирования. Установлено, что принципиально новыми требованиями, отличающими разрабатываемый электропривод от известных систем, являются:
- для электропривода прокатной секции - необходимость контроля величины критических (нейтральных) углов в очагах деформации приводных клетей;
- для электропривода волочильной секции - обеспечение регулирования величины противонатяжения и поддержания его на технически обоснованном уровне.
В результате проведенного сравнительного анализа возможных вариантов построения электроприводов предложена к реализации система преобразователь частоты - асинхронный короткозамкнутый двигатель с индивидуальным для двигателей всех прокатных клетей, волочильных блоков и намоточного аппарата инвертором и общим выпрямителем.
Определены задачи исследований.
Во второй главе на основе анализа технологического процесса определены критерии оптимального управления прямоточной волочильной секцией как электромеханической системой с позиции энергетической эффективности процесса. Под оптимальностью предложено понимать такие показатели экономической эффективности как максимальная производительность, минимум эксплуатационных затрат. Производительность стана при заданном технологическом режиме зависит от выбранной скорости волочения и в значительной степени от обрывности обрабатываемой проволоки. Эксплуатационные расходы, определяемые системой электропривода, зависят в первую очередь от количества энергии, потребляемой станом. Доказано, что критерием оптимального управления является достижение минимума тяговых усилий (потребляемой мощности) каждого вытяжного барабана; критерием оптимального регулирования - достижение минимума отклонения величины противонатяжения от заданных значений; критерием стабильности процесса является снижение заданного уровня противонатяжения на 30…40 % от энергетически оптимального значения.
Разработана методика определения границ устойчивости проката в межклетевых промежутках при его прокатке в секции с неприводной клетью. Доказано, что:
- границей устойчивости в промежутке после неприводной клети является условие исключения пластической деформации находящегося в нем проката;
- максимальное значение подпора, не приводящего к потере устойчивости проката в межклетевом промежутке перед неприводной клетью, зависит как от физико-механических свойств обрабатываемого металла, площади и формы его сечения, так и расстояния между неприводной и предшествующей ей приводной клетями.
Показано, что для всего диапазона сортамента металла, обрабатываемого на совмещенном прокатно-волочильном стане, мощностей сил натяжения и подпора достаточно для осуществления процесса прокатки в неприводной клети.
Предложен и обоснован энергетический подход к анализу взаимодействия проволоки и шпули намоточного аппарата, согласно которому деформация шпуль определяется долей потенциальной энергии упругого растяжения проволоки, воспринятой ею и зависящей от режима намотки. Обоснован рациональный закон изменения натяжения, при котором натяжение в процессе намотки снижается в функции радиуса проволочной паковки: . Применение этого закона уменьшает долю энергии, воспринимаемой шпулей от проволоки, и снижает ее деформацию. Разработана инженерная методика определения величины начального натяжения проволоки (при ее намотке на пустой барабан шпули). Для этого проведено обобщение экспериментальных исследований взаимодействия проволоки и шпули, проведенных на лабораторной установке и в промышленных условиях.
Разработана методика расчета нагрузочных режимов электроприводов катушек и поворотного стола нового двухкатушечного намоточного аппарата. На рис. 3 показаны тахограммы и нагрузочные диаграммы двигателей этих электроприводов. Момент двигателя барабана намоточного аппарата предложено рассчитывать по выражению
,
учитывающему влияние натяжения и изгиба проволоки, изменение радиуса и момента инерции паковки, физико-механические свойства сматываемой проволоки.
Здесь и далее , , , , - соответственно статическая и динамическая составляющие момента двигателя, момент необходимый для изгиба проволоки, момент от ее натяжения, момент холостого хода; , , , - соответственно площадь сечения, диаметр, модуль упругости и удельный вес (плотность) материала сматываемой проволоки, - передаточное число редуктора; , - радиус и ширина мотка; , - натяжение и скорость смотки; - суммарный момент инерции приведенный к валу двигателя.
Отмечено, что в период времени (см. рис. 3) происходит обрыв проволоки и натяжение для заполненной катушки возрастает до величины , а результирующая сила, прикладываемая к пустой катушке, направлена согласно ее вращению.
Момент двигателя барабана намоточного аппарата предложено рассчитывать по выражению
,
в котором х и у - координаты радиус-вектора описывающего в декартовой системе координат положение точки соприкосновения проволоки с наматываемой катушкой относительно центра вращения поворотного стола, выражение для определения которых получено в работе.
Рис. 3. Тахограмма и нагрузочная диаграмма двигателей намоточного аппарата
В третьей главе определены функциональные и структурные взаимосвязи между технологическими переменными (момент двигателя, скорость, межклетевые натяжения и подпор, усилие волочения, противонатяжение) для отдельных электроприводов совмещенного прокатно-волочильного стана. Разработано обобщенное математическое описание электромеханических систем с учетом упругих свойств обрабатываемого металла, на основании которого предложена структурная схема взаимосвязи электроприводов прокатной секции с промежуточной неприводной клетью, прямоточной волочильной секции и двухкатушечного намоточного аппарата.
При разработке математических моделей были сделаны следующие основные допущения, которые, по мнению автора, не вносят существенных погрешностей в результаты расчетов:
1. В промежутках между очагами деформации:
- вес проволоки незначителен и не оказывает влияния на ее деформацию;
- физико-механические свойства материала проволоки однородны;
- заготовка имеет неизменные площадь и форму сечения;
- напряжения в заготовке и обрабатываемой проволоке вне очагов деформации не достигают предела текучести материала, т.е. деформация носит исключительно упругий характер, а на участках размотки и намотки деформация носит упругопластический характер;
- упругая деформация равномерно распределена по всему сечению заготовки, волновые процессы, связанные с распределением деформации по длине, ничтожно малы и ими пренебрегается;
- изменение радиуса мотка происходит непрерывно (не рассматривается мгновенное изменение радиуса мотка при переходе проволоки со слоя на слой).
2. В очагах деформации:
- волока, прокатные валки и клеть рассматриваются как абсолютно жесткие механические системы;
- шероховатость поверхности инструмента одинакова по всему очагу деформации;
- свойства технологической смазки, а, следовательно, и коэффициент трения, по всему очагу деформации постоянны;
- границы очага деформации обусловлены теорией жестких концов и совпадают с входным и выходным сечениями обрабатываемого в очаге металла;
- процесс формирования (изменения) критического угла носит безинерционный характер.
3. В механических узлах стана:
- упругие свойства соединительных валов и редукторов не оказывают заметного влияния как на режимы работы электродвигателей, так и на процесс формирования натяжения (подпора) в проволоке;
- отсутствуют процессы буксовки прокатных валков и проскальзывание проволоки по барабану волочильных блоков.
Проведенный анализ физических процессов, происходящих в совмещенном прокатно-волочильном стане как электромеханической системе, позволил с целью создания математического описания разбить его на следующие части: электромеханические преобразователи (электродвигатели, силовая часть преобразователей частоты или тиристорных преобразователей), клети (включая редукторы), очаги деформации, межклетевые промежутки.
Математические описания системы ПЧ-АД либо ТП-Д, а также редукторов в реализованной модели подобны известным.
В основу построения математической модели очагов деформации был положен закон сохранения энергии, записанный в виде баланса мощностей (соответственно для прокатной клети и волочильного блока):
, ,
где Nв - мощность, подводимая к очагу деформации со стороны электропривода валков; NT - мощность, подводимая к очагу деформации тянущим усилием T через передний конец проволоки; NQ - мощность, подводимая к очагу деформации задним натяжением/подпором (противонатяжением) Q через задний конец проволоки; NФ - мощность, затрачиваемая на формоизменение (вытяжку) металла; Nт - мощность сил трения скольжения на контактной поверхности обрабатываемого металла с валками (волокой); Nуд - мощность, расходуемая на упругую деформацию проволоки в волоке.
Предложенное математическое описание очагов деформации представлено следующими системами уравнений:
- для приводных клетей
;
- для неприводной клети
;
- при волочении
,
где , , , , - соответственно площадь сечения, ширина и радиус обрабатываемого металла на входе в очаг деформации и на выходе из него; , - соответственно площади обрабатываемого металла в сечении угла и критической поверхности (поверхности внутри очага деформации, все точки которой имеют скорость, равную окружной скорости валков); , - скорость проволоки на входе в очаг деформации и на выходе из него; , , - истинное сопротивление деформации, предел пропорциональности и модуль упругости материала проволоки; - радиус валка; - угловая скорость вращения прокатного валка; , - соответственно угол захвата и критический угол очага деформации при прокатке; , , - длина обжимающей части волоки и ее полуугол; - коэффициент вытяжки; - коэффициент трения в очаге; - номер очага деформации в линии стана.
Разработанное математическое описание межклетевых промежутков представляется дифференциальными уравнениями, записанными в операторном виде
- перед приводной клетью
- перед неприводной клетью
,
где , - длина проволоки, на которой действуют соответственно силы Т и Q.
Разработанное математическое описание i - го межбарабанного промежутка представляется системой дифференциальных уравнений, записанной в операторном виде
,
где - угловая скорость барабана.
Разработанное математическое описание электромеханической системы “чистовой тянущий барабан - моталка” с учетом взаимодействия через проволоку представлено системой дифференциальных уравнений, записанной в операторном виде
.
Особенностью технологической нагрузки двухкатушечного намоточного аппарата является наличие режима обрыва проволоки на участке между двумя катушками - заполненной и свободной. В этом режиме происходит увеличение натяжения вплоть до значения, при котором удельные величины растягивающих сил в проволоке превышают ее предел прочности.
На рис. 4 приведена структурная схема разработанной математической модели переброса проволоки с заполненной катушки на пустую. Переключение режима работы осуществляется срабатыванием ключей S1-1, S1-2, S1-3 и S2. При этом
Рис. 4. Структурная схема математической модели переброса проволоки нормально замкнутый контакт S1-1 размыкается, а три других S1-2, S1-3 и S2 - замыкаются
Натяжение на выходе стана начинает формироваться между вытяжным барабаном и второй катушкой. В свою очередь момент от натяжения между катушками направлен против вращения первой катушки и согласно моменту двигателя второй. Контакт S2 размыкается при обрыве проволоки на участке между катушками, т.е. по окончании режима переброса проволоки.
На основании разработанных математических моделей различных частей совмещенного прокатно-волочильного стана составлена его комплексная математическая модель как объекта автоматизации. Укрупненный вид структурной схемы модели представлен на рис. 5. С целью создания условий для исследования совместной работы электроприводов стана, оценки степени их взаимного влияния модель была реализована в виде программных модулей для пакета визуального программирования SIMULINK математического пакета MATLAB 6.0.
Четвертая глава посвящена аналитическим исследованием электромеханических систем стана. При исследовании был использован метод логарифмических амплитудно-частотных характеристик.
Анализ динамических свойств электромеханической системы приводная - неприводная - приводная клети показал, что:
- натяжение, подпор и критические углы очагов деформации как по отношению к управляющим воздействиям - скорости и момента электродвигателей, так и возмущающим воздействиям - условий деформации, натяжений проволоки до секции и после нее, носят колебательный характер с диапазоном частот колебаний 120…240 рад/с;
- скорости двигателей 1-ой и 3-ей клетей по ходу технологического процесса, а также электромагнитный момент 3-его двигателя как управляющие воздействия существенно влияют на установившиеся значения межклетевых натяжения, подпора и критических углов очагов деформации;
- имеется принципиальная возможность создания систем автоматизированного электропривода, обеспечивающих регулирование основных координат - скорости, межклетевых натяжения и подпора, а также контроль критических углов очагов деформации в системе приводная - неприводная - приводная клети.
Исследования динамических свойств известных систем электроприводов прямоточных волочильных станов показали, что:
- процесс формирования противонатяжений как по отношению к управляющему воздействию - моменту электродвигателей, так и возмущающим воздействиям - изменению скорости волочения, условий деформации, натяжений проволоки до стана и после него, носит колебательный характер;
- электромагнитный момент двигателя как управляющее воздействие оказывает существенное влияние на установившееся значения противонатяжений во всех межбарабанных промежутках, в динамике же наиболее ощутимое воздействие наблюдается лишь в следующем по ходу технологического процесса межбарабанном промежутке;
- применяемые в настоящее время системы электропривода вытяжных блоков прямоточных волочильных станов не обеспечивают регулирование противонатяжения с необходимой точностью и требуют совершенствования.
Теоретический анализ двухкатушечного намоточного аппарата как электромеханической системы выявил следующие особенности:
Рис. 5. Укрупненная структурная схема обобщенной математической модели совмещенного прокатно-волочильного стана как объекта автоматизации
- процесс формирования натяжения при намотке проволоки носит колебательный характер как по управляющему, так и по возмущающему воздействиям;
- возможный диапазон частот колебаний натяжения составляет 44…66 рад/с;
- эксцентриситет паковки оказывает существенное влияние на процесс формирования натяжения, вызывая в нем колебания по амплитуде, соизмеримые со значением натяжения смотки, что на практике приводит к обрыву проволоки, а значит накладывает ограничения на скорость намотки, а следовательно и на производительность всего стана в целом;
- в случае построения системы косвенного регулирования натяжения в нем в режимах разгона и торможения возникают динамические отклонения, превышающие по величине максимально допустимый уровень;
- при синтезе системы регулирования электроприводов катушек необходимо компенсировать влияние эксцентриситета паковки на натяжение проволоки, а также исключить динамические отклонения последнего при разгоне и торможении стана.
Полученные результаты аналитических исследований показали необходимость более подробного рассмотрения вопросов построения систем управления электроприводами клетей, блоков и катушек, а также позволили сделать вывод о принципиальной возможности реализации технологических требований средствами современного автоматизированного электропривода.
В пятой главе разработаны системы управления электроприводов клетей, блоков и катушек совмещенного прокатно-волочильного стана. Проработана идеология и разработан новый способ построения системы автоматизированного электропривода совмещенного прокатно-волочильного стана, укрупненная функциональная схема которого приведена на рис. 6.
Реализацию противоречивых требований по точности регулирования скорости обработки, натяжения во 2-ом межклетевом промежутке, контроля величин критических углов в очагах деформации прокатной секции, а также противонатяжений в каждом межбарабанном промежутке волочильной секции и натяжения смотки предложено выполнить распределением задач между электроприводами - разделением их на один ведущий и остальные ведомые. Анализ динамических свойств электромеханических систем стана показал, что направление распространения колебаний совпадает с ходом технологического процесса, а потому в качестве ведущего был выбран электропривод последнего волочильного блока. Тогда электродвигатели первого блока волочильной секции и обоих приводных прокатных клетей являются ведомыми и регулируют противонатяжения (межклетевое натяжение) в последующих промежутках, где они и оказывают наиболее ощутимое воздействие.
Алгоритм работы электроприводов следующий. С помощью блоков задания скорости, противонатяжений и натяжения последовательно задаются величины натяжения проволоки на участке смотки, противонатяжений в волочильной секции и натяжения во втором межклетевом промежутке в соответствии с маршрутом волочения (прокатки), при этом задание на скорость равно нулю. После установки противонатяжений и межклетевого натяжения во всех промежутках формируется сигнал на разгон стана. Стан разгоняется до рабочей скорости. При отклонении, например, противонатяжения от заданной величины - его увеличении в последнем межбарабанном промежутке, сигнал с датчика противонатяжения уменьшится, увеличивая тем самым разность сигналов на входе регулятора противонатяжения. Сигнал на выходе регулятора противонатяжения увеличится, а значит, последовательно увеличатся задание на скорость (входной сигнал регулятора скорости), ток (входной сигнал регулятора тока) и сигнал задания на входе преобразователя частоты. Это приведет к увеличению момента двигателя, который в свою очередь кратковременно увеличит скорость, а поскольку мощность деформации не изменяется, то произойдет уменьшение величины противонатяжения. Таким образом, величина противонатяжения во втором межбарабанном промежутке примет свое исходное значение.
Отличительной особенностью прокатной секции совмещенного прокатно-волочильного стана от известных непрерывных прокатных станов является наличие промежуточной клети, не имеющей привода. Этот факт делает невозможным непосредственное применение известных систем электропривода. Проведенный анализ влияния технологических параметров на работу электропривода клетей позволил обосновать возможность реализации двух вариантов построения систем управления электроприводов клетей. В обоих вариантах САР электропривода 3-ей клети обеспечивает регулирование противонатяжения в следующем по ходу технологического процесса промежутке перед волокой и во взаимосвязи с волочильным блоком задает скорость прокатки. САР электропривода 1-ой клети в первой системе (рис. 7, а) обеспечивает стабилизацию скорости вращения рабочих валков, а во второй системе (рис. 7, б) - натяжения во 2-ом межклетевом промежутке. На обе системы получены патенты РФ на полезную модель.
Дополнительный контур регулирования критического угла (входящий в узел вычисления задания на скорость и натяжение и на рис. 7 не показан) обеспечивает его контроль в 1-ой клети и не допускает его уменьшения ниже заданной минимальной величины, либо обеспечивает выравнивание критических углов в очагах деформации приводных клетей.
Принцип регулирования при выравнивании критических углов может быть пояснен следующим образом. Согласно закону сохранения энергии, записанному выше в виде баланса мощностей, любое возмущающее воздействие приводит к изменению условий деформации - изменению соотношения величин мощностей формоизменения, упругой деформации, трения и т.д. Причем, регулятором энергетического равновесия является критический угол в очаге деформации, разделяющий две его зоны - отставания и опережения. Чем больше величина критического угла, тем длиннее зона опережения и тем выше скорость металла на выходе из клети (при условии постоянства скорости вращения валков). Откуда следует, что контроль за критическими углами может быть осуществлен косвенно. Для этого необходимо контролировать лишь скорости вращения прокатных валков (приводных электродвигателей). Действительно, скорости металла на входе в клеть и на ее выходе могут быть определены как
;
,
где - окружная скорость валка; - высота очага деформации.
Тогда узел вычисления задания на скорость должен быть реализован в соответствии со следующими системами уравнений:
- для системы регулирования скорости (рис. 7, а)
а
б
Рис. 7. Укрупненная функциональная схема электроприводов прокатной секции
;
- для системы регулирования межклетевого натяжения (рис. 7, б)
.
На основе теоретических исследований процесса формирования противонатяжения показана принципиальная невозможность косвенной оценки величины противонатяжений отдельно в каждом межбарабанном промежутке. В результате чего сделан вывод о необходимости применения датчиков усилий, устанавливаемых перед каждым волокодержателем. Была разработана система регулирования противонатяжения прямого действия, представляющая собой трехконтурную систему подчиненного регулирования с внутренними контурами тока, скорости и внешним контуром противонатяжения.
Синтез регуляторов натяжения, критического угла и противонатяжения предложено осуществить методом логарифмических амплитудно-частотных характеристик. Все контуры регулирования предложено настроить на модульный оптимум.
Разработана комбинированная система управления электропривода катушек двухкатушечного намоточного аппарата, обеспечивающая в соответствии с технологическими требованиями два режима работы. Первый, основной режим - смотка проволоки с регулированием натяжения. Второй, вспомогательный - переброс проволоки с заполненной катушки на пустую, а также торможение заполненной катушки с регулированием скорости двигателя соответствующей катушки.
Отмечено, что в режиме смотки проволоки электропривод катушек принципиально может быть выполнен как с косвенным, так и с прямым регулированием натяжения, и на этапе проектирования должны рассматриваться обе системы. Окончательный же ответ в пользу какой-либо системы регулирования может быть получен только на основе опыта длительной промышленной эксплуатации этих систем.
На рис. 8 приведен обобщенный вид структурных схем обеих систем. Система прямого регулирования является трехконтурной системой с подчиненным регулированием координат с внутренними контурами тока, скорости и внешним контуром натяжения.
Переключение режимов регулирования осуществляется автоматически за счет воздействия на уставку блока ограничения регулятора натяжения. При отсутствии проволоки и наличии сигнала задания на натяжение интегральная составляющая регулятора натяжения вводит его в ограничение. Уровень ограничения, задаваемый сигналом Uзс, устанавливает необходимую скорость вращения пустой шпули. Поскольку окружная скорость барабана катушки по технологическим условиям всегда задается выше линейной скорости проволоки, то в момент захвата последней натяжение начнет увеличиваться и регулятор натяжения однозначно выйдет из области насыщения, а, следовательно, вступит в работу контур регулирования натяжения.
При обрыве проволоки (потере натяжения) произойдет обратный процесс - сигнал на выходе регулятора натяжения начнет увеличиваться вплоть до его насыщения. Скорость вращения катушки с проволокой также начнет увеличиваться. Для остановки наполненной катушки необходимо уменьшить уровень ограничения регулятора натяжения до нуля.
Введенное на выход регулятора скорости множительно-делительное устройство обеспечивает инвариантность настройки контура скорости при работе с ослаблением магнитного потока, а также при изменении суммарного момента инерции привода, приведенного к валу электродвигателя.
Система косвенного регулирования натяжения, по сути, представляет собой систему стабилизации момента на валу двигателя. При формировании сигнала задания на ток в ней учитывается компенсация момента потерь и динамического момента. Переключение режимов работы (регулирования натяжения или скорости) осуществляется подобно рассмотренной выше системе прямого регулирования за исключением того, что управляемый блок ограничения установлен на регуляторе скорости. Для перехода из режима регулирования натяжения уровень ограничения регулятора скорости увеличивается до максимального значения и контур регулирования тока становится подчиненным контуру регулирования скорости.
В режиме переброса проволоки система автоматического регулирования скорости электропривода пустой катушки должна выполнять функции следящей системы. Сигнал задания на скорость должен формироваться в соответствии с зависимостью
,
где - сигнал обратной связи по скорости электропривода чистового барабана, пропорциональный линейной скорости проволоки; Кобг - коэффициент обгона, обеспечивающий заданное превышение скорости шейки шпули над линейной скоростью проволоки; Кm - масштабный коэффициент в системе управления, рассчитываемый по выражению
...Подобные документы
Технологический режим работы волочильного стана. Организация обслуживания и ремонта электрического оборудования. Оснащение электромастерской. Ремонтный набор и приспособления, применяемые электромонтерами. Способы канализации электроэнергии в цехе.
отчет по практике [20,0 K], добавлен 12.01.2011Технологическая и техническая характеристика основного и вспомогательного оборудования стана 350. Организация работы на участке стана. Метрологическое обеспечение измерений размеров проката. Составление калькуляции себестоимости прокатного профиля круга.
дипломная работа [170,7 K], добавлен 26.10.2012Технологическая схема производства. Исходная заготовка сортового стана. Нагрев заготовки и выбор станка. Агрегаты и механизмы стана. Агрегаты и механизмы линии стана. Агрегаты и механизмы поточных технологических линий цеха. Охлаждение проката и отделка.
курсовая работа [3,6 M], добавлен 10.01.2009Анализ системы "электропривод-рабочая машина" стана холодной прокатки. Нагрузочная диаграмма, выбор электродвигателя. Расчет и проверка правильности переходных процессов в электроприводе за цикл работы, построение схемы электрической принципиальной.
курсовая работа [761,7 K], добавлен 04.11.2010Характеристика продукции и дерево показателей ее качества. Оценка количества несоответствующей продукции. Оценивание взаимосвязи параметров с применением корреляционного анализа. Выбор типа, разработка и анализ контрольной карты технологического процесса.
курсовая работа [2,9 M], добавлен 03.03.2015Реконструкция участка моталок стана "250" сортопрокатного цеха ПАО "Северсталь" с целью повышения качества продукции и надежности оборудования. Усовершенствование механического привода тарельчатого диска моталок. Технология изготовления зубчатой рейки.
дипломная работа [291,4 K], добавлен 20.03.2017Характеристика сортамента цеха. Определение производительности стана 1700 ПХЛ ОАО "Северсталь". Основные транспортные потоки. Конструкция листоправильной машины. Уборочное устройство обрези. Реконструкция петлевого устройства и привода канатных барабанов.
дипломная работа [688,4 K], добавлен 16.05.2017Проект автоматизации регулирования скорости электропривода стана горячей прокатки. Расчёт мощности главного привода; определение параметров системы подчинённого регулирования. Настройка контура тока возбуждения; исследование динамических характеристик.
курсовая работа [2,0 M], добавлен 19.02.2013Специфика управления на предприятиях черной металлургии с полным циклом производства. Функции и структура автоматизированных систем управления стана 630 холодной прокатки. Устройство и принципы работы локальной системы автоматического управления САРТиН.
контрольная работа [616,3 K], добавлен 17.01.2010Расчет и проектирование привода выталкивателя стана 150. Разработка пневмопривода передвижения двухрукавной воронки разгрузочной тележки. Разработка технологического процесса изготовления детали "червяк". Расчет и проектирование режущего инструмента.
дипломная работа [864,3 K], добавлен 22.03.2018Разработка структурной схемы, конструкции и проверочный расчёт главной линии рабочей клети толстолистового стана 5000. Расчет прочности, упругой деформации валков, определение мощности привода и жесткости валковой системы; выбор передаточных механизмов.
курсовая работа [4,7 M], добавлен 03.01.2014Разработка и обоснование основных технических решений по реконструкции стана. Энергокинематический расчет привода. Расчет и конструирование промежуточного вала. Составление принципиальной схемы гидропривода. Анализ технологичности конструкции детали.
дипломная работа [1,9 M], добавлен 22.03.2018Характеристика профилей, применяющихся при сооружении металлических конструкций. Критерии и обоснование выбора стана для проката профиля, необходимое оборудование и технология проката и калибровки. Методика расчета энергосиловых параметров прокатки.
курсовая работа [1,2 M], добавлен 08.11.2009Технологическая схема производства проката. Расчет часовой производительности и загрузки формовочного стана, годового объема производства труб. Расчет массы рулона. Выбор вспомогательного оборудования. Устройство и принцип работы листоправильной машины.
курсовая работа [1,3 M], добавлен 12.03.2015Анализ путей автоматизации стана ХПТ-55. Декомпозиционный анализ задачи модернизации системы управления и разработка декомпозиционной схемы. Разработка схемы электрической соединений системы управления. Разработка блок-схемы алгоритма управления станом.
дипломная работа [1,6 M], добавлен 24.03.2013Разработка проекта реверсивного одноклетевого стана холодной прокатки производительностью 500 тыс. тонн в год в условиях ЧерМК ОАО "Северсталь" с целью производства холоднокатанной полосы из низкоуглеродистой и высокопрочной низколегированной сталей.
дипломная работа [2,5 M], добавлен 26.10.2014Разработка технологического процесса производства бесшовных труб на трехвалковом раскатном стане. Конструкция и условия работы оправок стана. Теплообмен при обработке металлов давлением. Методы решения нестационарного уравнения теплопроводности.
дипломная работа [2,0 M], добавлен 10.07.2014Обзор станов горячей прокатки листа. Анализ известных конструкций механизмов перемещения заготовок в нагревательной печи. Устройство для выталкивания заготовки из нагревательной печи стана 2850. Определение максимальной мощности привода выталкивателя.
курсовая работа [945,4 K], добавлен 26.10.2014Оборудование, режимы работы и техническая характеристика элементов главной линии чистовой рабочей клети рельсобалочного стана. Расчёт валков клети на статическую и циклическую прочность. Определение жёсткости прокатных валков по оси катающего калибра.
курсовая работа [218,8 K], добавлен 18.06.2014Анализ технологического процесса и оборудования прокатного стана, анализ технологических схем производства толстого листа, предлагаемая технологическая схема прокатки. Выбор оборудования прокатного стана, разработка технологии прокатки и расчет режимов.
курсовая работа [2,6 M], добавлен 04.05.2010