Автоматизированный электропривод совмещенного прокатно-волочильного проволочного стана
Разработка прокатно-волочильного проволочного стана, обеспечивающего энергоэффективное производство проволоки при одновременном увеличении производительности, снижении затрат и повышении качества продукции. Определение границ устойчивости проката.
Рубрика | Производство и технологии |
Вид | автореферат |
Язык | русский |
Дата добавления | 14.02.2018 |
Размер файла | 6,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
.
В обеих системах необходимый закон изменения натяжения формируется с помощью блока корректировки задания на натяжение (БКЗН). Рассматриваемый блок представляет собой пропорциональный регулятор с коэффициентом усиления
,
где Косл - коэффициент, ослабляющий влияние радиуса намота на величину натяжения (в случае реализации теоретически наиболее рационального закона изменения натяжения, при котором в процессе намотки оно снижается в функции радиуса проволочной паковки Косл=1).
Посредством этого блока организована система с компенсацией возмущения, каковым и является изменение скорости вращения шпули для системы стабилизации момента на её валу.
Показано, что традиционная настройка контура регулирования тока на модульный оптимум в системе косвенного регулирования натяжения не всегда обеспечивает выполнение технологических требований по точности регулирования. Поэтому синтез регулятора тока в такой системе предложено осуществлять также методом логарифмических амплитудно-частотных характеристик.
В шестой главе проведены исследования статических и динамических свойств разработанных систем управления электроприводами на математической модели. Осуществлен расчет переходных процессов основных регулируемых координат электромеханических систем стана. Сделаны выводы, подтверждающие как работоспособность предложенных систем управления электроприводов клетей, блоков и намоточного аппарата, так и правильность выбранных структур разработанных регуляторов.
При моделировании были опробованы оба варианта построения систем управления, предложенные в 5-ой главе, как для электроприводов прокатной секции, так и для электроприводов катушек двухкатушечного намоточного аппарата.
На рис. 9, в качестве примера, приведены результаты моделирования процесса снижения скорости для пропуска сварного шва, причем показаны координаты только основных регулируемых величин: скорости вращения двигателя последнего волочильного блока, величины противонатяжения, натяжения и подпора, критических углов в очагах деформации 1-ой и 3-ей клетей. Скорость снижается с рабочего значения до 2,5 м/с за время (t2 - t1)=1,5 с. В период времени t3… t4 сварной шов проходит от 1-ой клети до последней волоки. При этом при расчете в момент прохождения сварного шва через конкретный очаг деформации коэффициент трения в нем был увеличен вдвое. Далее за время (t6 - t5) = 2,0 с стан снова разгоняется до рабочей скорости. Максимальное отклонение противонатяжения наблюдается в 1-ом межбарабанном промежутке и не превышает 15 %.
На рис. 10 показаны результаты расчета на модели режима переброса проволоки с заполненной катушки на пустую, полученные для случая 5 % превышения скорости керна пустой катушки над скоростью смотки проволоки. Обобщение результатов теоретических исследований позволило сделать вывод, что броски натяжения проволоки в динамических режимах работы намоточного аппарата при лежат в пределах допустимого уровня. Причем нижняя граница определена условием функционирования системы управления электроприводом, верхняя - стабильностью процесса смотки. При отклонения натяжения превышают максимально допустимые уровни, а потому должны быть исключены.
Рис. 10. Результаты расчета на модели процесса переброса проволоки с заполненной катушки на пустую
В седьмой главе приводятся результаты экспериментальных исследований разработанных автоматизированных электроприводов и систем управления в промышленных условиях. Разработана методика проведения экспериментальных исследований. Рассмотрены вопросы промышленной апробации и внедрения полученных научных результатов диссертационной работы.
Создание промышленного образца принципиально нового технологического объекта, каковым является совмещенный прокатно-волочильный стан, не может основываться исключительно на теоретических разработках и результатах математического моделирования. Реализации экспериментального опытно-промышленного образца стана должны предшествовать комплексные экспериментальные исследования на физической модели, либо, что является более предпочтительным, в реальных производственных условиях на агрегатах, подобных разрабатываемому. Для проведения экспериментов было принято решение об использовании плющильного прецизионного стана 3х2/160 и прямоточного волочильного стана ВПТ 5/750 в условиях ОАО “Белорецкий металлургический комбинат” и волочильного стана UDZWGT 40/21 в условиях ОАО “Магнитогорский калибровочный завод” (в настоящее время ОАО “ММК-МЕТИЗ”).
Плющильный прецизионный стан был реконструирован в условиях цеха ремонта механического оборудования ОАО “Белорецкий металлургический комбинат” из клетей которого была реализована трехклетевая прокатная секция с промежуточной неприводной клетью, расположение оборудования которой приведено на рис. 11.
На рис. 12, а приведены характерные осциллограммы работы электроприводов секции. На осциллограммах показаны следующие сигналы: , , - сигналы обратных связей по скорости вращения двигателей и прокатных валков; , - сигналы обратных связей по токам двигателей соответствующих блоков.
Экспериментальные исследования автоматизированных электроприводов волочильной секции были проведены на действующем прямоточном волочильном стане, расположение оборудования которого приведено на рис. 13. Для этого была проведена комплексная реконструкция системы электропривода стана.
На рис. 12, б приведены осциллограммы токов двигателей и противонатяжений в 3-ем, 4-ом и 5-ом межбарабанных промежутках, полученные при регулировании противонатяжения (его снижения на 33 %) в 4-ом межбарабанном промежутке.
Сравнение характеристик переходных процессов тока и скорости с результатами моделирования показало их принципиальное сходство. Расхождения в величинах исследованных параметров при исключении помех не превысило 9…10 %.
Проведенные исследования динамических и статических режимов работы электроприводов прокатной секции и прямоточного волочильного стана подтвердили адекватность разработанной математической модели физическому объекту, а также правомерность теоретических предпосылок, использованных при разработке автоматизированных электроприводов совмещенного прокатно-волочильного стана.
На волочильном стане UDZWGT 40/21 была реконструирована хвостовая часть и вместо обычного намоточного аппарата установлен двухкатушечный намоточный аппарат непрерывного действия. В ходе экспериментальных исследований была опробована система косвенного регулирования натяжения.
Рис. 13. Расположение оборудования прямоточного волочильного стана ВПТ 5/750: 1-5 волочильные блоки с редукторами; 6-10 - волокодержатели с волоками; 11-14 - датчики противонатяжения; 15-19 - приводные электродвигатели; 20 - разматывающее устройство; 21 - намоточный аппарат
Результаты экспериментальных исследований динамических и статических режимов работы двукатушечного намоточного аппарата также подтвердили адекватность разработанной математической модели физическому объекту и показали, что разработанная система автоматизированного электропривода выполняет все технологические требования и реализует бесперебойный цикл непрерывного съема проволоки. Кроме того, экспериментальные исследования выявили, что с ростом скорости поворота стола увеличиваются колебания натяжения и при скорости в 0,9...1,1 с-1, как правило, происходит ее обрыв.
Экспериментальные исследования автоматизированных электроприводов подтвердили работоспособность предложенных систем управления, достоверность основных теоретических выводов, правильность выбора принципов построения систем управления и настройки регуляторов, а также показали, что разработанные системы автоматизированного электропривода обеспечивают выполнение все технологических требований и за счет этого реализацию непрерывного процесса изготовления проволоки.
Заключение и основные выводы по диссертации
1. Обоснованы технологические требования к автоматизированным электроприводам принципиально нового совмещенного прокатно-волочильного проволочного стана. Принципиально новыми требованиями, отличающими разработанный электропривод от известных систем, являются:
- для электропривода прокатной секции - необходимость контроля величины критических (нейтральных) углов в очагах деформации приводных клетей;
- для электропривода волочильной секции - обеспечение регулирования величины противонатяжения и поддержания его на технически обоснованном уровне.
Выполнение указанных требований обеспечивает существенное повышение энергоэффективности процесса производства металлической проволоки при одновременном увеличении его производительности.
2. Определены критерии оптимального управления прямоточной волочильной секцией с позиции ее энергетической эффективности. Разработана методика определения границ устойчивости раската в межклетевых промежутках при его прокатке в секции с неприводной клетью. Показано, что для всего диапазона сортамента металла, обрабатываемого на совмещенном прокатно-волочильном стане, мощностей сил натяжения и подпора достаточно для осуществления процесса прокатки в неприводной клети.
3. Предложен и обоснован энергетический подход к анализу взаимодействия проволоки и шпули намоточного аппарата, на основании чего определен рациональный закон изменения натяжения, при котором натяжение в процессе намотки снижается в функции радиуса проволочной паковки. Разработана инженерная методика определения величины начального натяжения проволоки (при ее намотке на пустой барабан шпули).
4. Разработана методика расчета нагрузочных режимов электроприводов катушек и поворотного стола двухкатушечного намоточного аппарата, имеющего конструктивные отличия от всех известных и подобных ему агрегатов.
5. Разработаны и реализованы в виде программных модулей для пакета визуального программирования SIMULINK математического пакета MATLAB 6.0 математические модели электромеханических систем совмещенного прокатно-волочильного стана как объекта управления, учитывающие взаимосвязи отдельных технологических узлов через обрабатываемый металл.
6. Предложена концепция, разработан и научно обоснован новый способ построения автоматизированных электроприводов принципиально нового технологического агрегата совмещенного прокатно-волочильного стана. Реализацию противоречивых требований предложено выполнить распределением задач между электроприводами - разделение их на один ведущий и остальные ведомые. Доказано, что в качестве ведущего электропривода, обеспечивающего требование по точности регулирования скорости, наиболее целесообразно использовать электропривод последнего волочильного блока. Электроприводы остальных ведомых клетей, блоков и шпуль намоточного аппарата должны при этом осуществлять регулирование натяжения и противонатяжения во всех межклетевых, межбарабанных промежутках и на участке смотки. Обоснован выбор типа электропривода.
7. Разработаны и научно обоснованы принципы построения, системы и алгоритмы управления электроприводами прокатных клетей, волочильных блоков и двухкатушечного намоточного аппарата совмещенного прокатно-волочильного стана. Доказана принципиальная невозможность косвенной оценки величины противонатяжений отдельно в каждом межбарабанном промежутке волочильной секции, в связи с чем предложены системы регулирования противонатяжения прямого действия. Средствами электропривода 1-ой клети предложено обеспечить контроль критических углов в очагах деформации приводных клетей прокатной секции.
8. Разработаны и научно обоснованы принципы построения, системы и алгоритмы управления электроприводами катушек двухкатушечного намоточного аппарата. К реализации предложена комбинированная система управления, включающая системы регулирования скорости и натяжения, автоматически переключающиеся в зависимости от режима работы намоточного аппарата.
9. Созданы и введены в опытно-промышленную эксплуатацию образцы прокатной секции и двухкатушечного намоточного аппарата, а также проведена реконструкция электропривода действующего прямоточного волочильного стана. Выполненные на этих агрегатах исследования дали экспериментальное подтверждение достоверности полученных теоретических результатов, работоспособности предложенных систем управления и адекватности разработанных математических моделей.
10. Экспериментально подтверждена энергетическая эффективность предложенного способа производства проволоки на совмещенном прокатно-волочильном стане. При волочении достигнуто снижение затрат электроэнергии на 9 % и повышена производительность стана за счет снижения обрывности проволоки на 12%. При прокатке доказана возможность снижения затрат электроэнергии до 24 %. Внедрение двухкатушечного намоточного аппарата позволило повысить производительность процесса изготовления проволоки на 14%.
11. Результаты работы получили промышленное внедрение на агрегатах ОАО “Белорецкий металлургический комбинат” и ОАО “Магнитогорский калибровочный завод”, используются ОАО “Магнитогорский ГИПРОМЕЗ” при проектировании новых технологических линий для производства стальной проволоки, а также в учебном процессе в ГОУ ВПО “Магнитогорский государственный технический университет им. Г.И. Носова”.
Основные работы
1. Радионов А.А. Автоматизированный электропривод станов для производства стальной проволоки: Монография. - Магнитогорск: ГОУ ВПО “МГТУ”, 2007. - 311 с.
2. Ресурсосбережение в метизном производстве: Коллективная монография / В.И. Зюзин, В.А. Харитонов, А.А. Радионов и др. - Магнитогорск: МГ ТУ, 2001. - 160 с.
3. Радионов А.А., Карандаев А.С. Электропривод моталок и разматывателей агрегатов прокатного производства: Учеб. пособие. - Магнитогорск: МГТУ, 2003. - 134 с.
4. Радионов А.А. Анализ способов построения электроприводов прямоточных волочильных станов // Изв. вузов. Электромеханика. № 4, 2006. С. 55-59.
5. Радионов А.А., Малахов О.С. Способ управления взаимосвязанными электроприводами прокатного блока с промежуточной неприводной клетью // Изв. вузов. Электромеханика. № 5, 2006. С. 72-73.
6. Радионов А.А. Особенности автоматизированного электропривода совмещенного прокатно-волочильного стана // Изв. вузов. Электромеханика. № 2, 2008. С. 48-51.
7. Радионов А.А. О повышении энергоэффективности процесса волочения проволоки средствами автоматизированного электропривода // Изв. вузов. Электромеханика. № 1, 2009. С. 28-31.
8. Радионов А.А., Карандаев А.С. Об оптимальном законе изменения натяжения в процессе смотки металлической проволоки // Изв. вузов. Машиностроение. № 10, 2008. С. 43-58.
9. Радионов А.А. Задачи и основные технические решения по разработке электромеханических систем совмещенного прокатно-волочильного стана // Тяжелое машиностроение. № 2, 2009. С. 29-35.
10. Радионов А.А. Система управления электроприводом двухкатушечного намоточного аппарата // Изв. вузов. Электромеханика. № 1, 2009. С. 32-37.
11. Радионов А.А., Радионова Л.В. Энергетический подход к исследованию влияния противонатяжения на процесс волочения // Изв. вузов. Черная металлургия. № 5, 2008. С. 19-22.
12. Басков С.Н., Радионов А.А., Усатый Д.Ю. Пуск асинхронного двигателя в электроприводах с повышенным пусковым моментом // Изв. вузов. Электромеханика. № 2, 2004. С. 47-49.
13. Селиванов И.А., Радионов А.А. Автоматизированный электропривод высокопроизводительного прямоточного волочильного стана // Тр. IV Междунар. (XV Всероссийской) конференции по автоматизированному электроприводу. - Магнитогорск, 2004. С. 157-160.
14. Радионов А.А. Автоматизированный электропривод совмещенного прокатно-волочильного стана: разработка и опыт промышленной апробации // Тр. V Междунар. (XVI Всероссийской) конференции по автоматизированному электроприводу. - Санкт-Петербург, 2007. С. 329-331.
15. Определение энергосиловых параметров процессов обработки металлов давлением косвенным методом / А.А. Радионов, Д.Ю. Усатый, А.С, Карандаев, А.С. Сарваров // М.: 2000. Деп. в ВИНИТИ 20.04.00, № 1085-В00. - 10 с.
16. Устройство для плавного пуска асинхронных электродвигателей волочильных станов / А.А. Радионов, Д.Ю. Усатый, А.А. Николаев, О.Е Цыплаков, С.Н. Басков // Электротехнические системы и комплексы: Межвуз. сб. науч. тр. - Магнитогорск: МГТУ, 2004. Вып. 8. C. 127-132.
17. Линьков С.А., Радионов А.А., Усатый Д.Ю. Система управления электроприводом многократного прямоточного волочильного стана // Студенческая молодежь - науке будущего: Сб. тез. докл. Студенческой научной конференции - Магнитогорск: МГТУ, 2004. C. 18.
18. Радионов А.А., Усатый Д.Ю. Линьков С.А. Основные направления реконструкции волочильных станов ОАО “Белорецкий металлургический комбинат” // Электротехнические системы и комплексы: Межвуз. сб. науч. тр. - Магнитогорск: МГТУ, 2004. Вып. 9. C. 69-73.
19. О возможности снижения мощности, расходуемой на процесс прокатки проволоки на совмещенном прокатно-волочильном стане / А.А. Радионов, Л.В. Радионова, В.А. Харитонов, О.С. Малахов // Электротехнические системы и комплексы: Межвуз. сб. науч. тр. - Магнитогорск: МГТУ, 2005. Вып. 10. C. 63-70.
20. Линьков С.А., Радионов А.А. Математическая модель многократного прямоточного волочильного стана как объекта регулирования // Электротехнические системы и комплексы: Межвуз. сб. науч. тр. - Магнитогорск: МГТУ, 2005. Вып. 11. C. 50-56.
21. Туганбаев А.И., Радионов А.А. Автоматизация технологических процессов изготовления проволоки на прямоточных волочильных станах // Электротехнические системы и комплексы: Межвуз. сб. науч. тр. - Магнитогорск: МГТУ, 2005. Вып. 10. C. 101-105.
22. Радионова Л.В., Сафонов Е.В., Радионов А.А. Автоматизированный расчет ресурсосберегающих маршрутов волочения углеродистой проволоки // Тр. междунар. конференции “Металлургия XXI века”. - М.: ВНИИМЕТМАШ, 2005. - С. 243.
23. Линьков С.А., Радионов А.А. Исследование систем управления электроприводов петлевых волочильных станов // Материалы 64-й науч.-техн. конф. По итогам работ за 2004-2005 годы. Сб. докл. - Магнитогорск: МГТУ., 2006. - Т. 2. - C. 104-108.
24. Радионов А.А. Расчет моментов на валу двигателей разматывателя и моталки совмещенного прокатно-волочильного стана // Оптимизация режимов работы электротехнических систем: Межвуз. сб. науч. тр. - Красноярск: ИПЦ КГТУ, 2006. C. 97-101.
25. Линьков С.А., Радионов А.А. Совершенствование системы управления электроприводом прямоточного волочильного стана // Оптимизация режимов работы электротехнических систем: Межвуз. сб. науч. тр. - Красноярск: ИПЦ КГТУ, 2006. C. 101-106.
26. Радионов А.А., Линьков С.А. Математическая модель энергосиловых параметров при волочении проволоки в монолитной волоке // Электротехнические системы и комплексы: Межвуз. сб. науч. тр. - Магнитогорск: МГТУ, 2006. Вып. 12. С. 149-157.
27. Радионов А.А., Линьков С.А. Критерии оптимального управления прямоточными волочильными станами // Электротехнические системы и комплексы: Межвуз. сб. науч. тр. - Магнитогорск: МГТУ, 2006. Вып. 13. С. 75-81.
28. Радионов А.А., Малахов О.С. Математическая модель очага деформации сортопрокатного стана как объекта управления // Электротехнические системы и комплексы: Межвуз. сб. науч. тр. - Магнитогорск: МГТУ, 2006. Вып. 13. С. 107-114.
29. Радионов А.А., Малахов О.С. Расчет моментов на валу двигателей прокатного блока совмещенного прокатно-волочильного стана // Электротехнические системы и комплексы: Межвуз. сб. науч. тр. - Магнитогорск: МГТУ, 2006. Вып. 12. С. 67-71.
30. Туганбаев А.И., Радионов А.А. Разработка системы электропривода двухкатушечного намоточного аппарата волочильного стана // Электротехнические системы и комплексы: Межвуз. сб. науч. тр. - Магнитогорск: МГТУ, 2006. Вып. 13. С. 179-183.
31. Радионов А.А., Радионова Л.В. Влияние противонатяжения на очаг деформации при волочении проволоки // Тр. 2-й междунар. конференции “Металлургия XXI века”.- М.: ВНИИМЕТМАШ, 2006. - С. 382-385.
32. Туганбаев А.И., Радионов А.А. Инженерная методика определения межосевого расстояния между приводными валами двухкатушечного намоточного аппарата // Сб. трудов межрегион. науч. конф. “Наука и производство Урала”. - Новотроицк: НФ МИСиС, 2006. - С. 138-142.
33. Радионов А.А., Малахов О.С. Экспериментальные исследования автоматизированного электропривода прокатного проволочного блока // Сб. трудов межрегион. науч. конф. “Наука и производство Урала”. - Новотроицк: НФ МИСиС, 2006. - С. 143-147.
34. Радионов А.А. Математическое описание технологической нагрузки электроприводов двухкатушечного намоточного аппарата - Деп. в ВИНИТИ 08.11.2006 г. № 1317-В2006. - 9 с.
35. Радионов А.А. Автоматизированный электропривод совмещенного прокатно-волочильного стана: основные задачи и направления разработки // Вестник МГТУ. Вып.3, 2006. С. 55-58.
36. Радионов А.А. Разработка требований к автоматизированным электроприводам совмещенного прокатно-волочильного стана // Электротехнические системы и комплексы: Межвуз. сб. науч. тр. - Магнитогорск: МГТУ, 2007. Вып. 14. - С. 42-146.
37. Радионов А.А. Электромеханические системы совмещенного прокатно-волочильного стана // Электротехнические системы и комплексы: Межвуз. сб. науч. тр. - Магнитогорск: МГТУ, 2008. Вып. 15. - С. 4-15.
38. Пат. 2319559 Российская Федерация, МПК7 В 21 С 1/00. Способ изготовления проволоки / Никифоров Б.А., Дубровский Б.А., Радионова Л.В., Радионов А.А., Харитонов В.А.; заявка № 2006123837/02; заявитель и патентообладатель ГОУ ВПО “Магнитогорский государственный технический университет им. Г.И. Носова”; заявл. 03.07.06; опубл. 20.03.08, Бюл. № 8. - С. 523.
39. Пат. 58396 Российская Федерация, МПК7 В 21 В 37/00. Устройство для автоматического управления скоростью вращения валков клетей непрерывного прокатного стана / Радионов А.А., Малахов О.С., Радионова Л.В.; заявитель и патентообладатель ГОУ ВПО “Магнитогорский государственный технический университет им. Г.И. Носова”. - № 2006125346/22; заявл. 13.07.06; опубл. 27.11.06, Бюл. № 33.
40. Пат. 62045 Российская Федерация, МПК7 В 21 С 1/12. Многодвигательный электропривод прямоточного волочильного стана / Радионов А.А., Линьков С.А.; заявитель и патентообладатель ГОУ ВПО “Магнитогорский государственный технический университет им. Г.И. Носова”. - № 2006140123/22; заявл. 13.01.06; опубл. 27.03.07, Бюл. № 9.
41. Пат. 67483 Российская Федерация, МПК7 В 21 В 37/00. Устройство для автоматического управления скоростью вращения валков клетей непрерывного прокатного стана / Радионов А.А.; Малахов О.С., Радионова Л.В.; заявитель и патентообладатель ГОУ ВПО “Магнитогорский государственный технический университет им. Г.И. Носова”. - № 2007122110/22; заявл. 13.06.07; опубл. 27.10.07, Бюл. № 30.
42. Св-во об официальной регистрации программы для ЭВМ № 2006614112. Программа для моделирования статических и динамических режимов работы трехкратного прямоточного волочильного стана / Радионов А.А., Линьков С.А.; заявитель и патентообладатель ГОУ ВПО “Магнитогорский государственный технический университет им. Г.И. Носова”. - № 2006613330; заявл. 03.10.06; зарегистр. 01.12.06.
43. Св-во об официальной регистрации программы для ЭВМ № 2006614113. Программа для моделирования статических и динамических режимов работы трехклетевого прокатного стана с неприводной клетью / Радионов А.А., Малахов. О.С.; заявитель и патентообладатель ГОУ ВПО “Магнитогорский государственный технический университет им. Г.И. Носова”. - № 2006613329; заявл. 03.10.06; зарегистр. 01.12.06.
44. Св-во об официальной регистрации программы для ЭВМ № 2007613593. Моделирования статических и динамических режимов работы совмещенного прокатно-волочильного стана с неприводной клетью / Радионов А.А.; заявитель и патентообладатель ГОУ ВПО “Магнитогорский государственный технический университет им. Г.И. Носова”. - № 2007612604; заявл. 25.07.07; зарегистр. 23.08.07.
Размещено на Allbest.ru
...Подобные документы
Технологический режим работы волочильного стана. Организация обслуживания и ремонта электрического оборудования. Оснащение электромастерской. Ремонтный набор и приспособления, применяемые электромонтерами. Способы канализации электроэнергии в цехе.
отчет по практике [20,0 K], добавлен 12.01.2011Технологическая и техническая характеристика основного и вспомогательного оборудования стана 350. Организация работы на участке стана. Метрологическое обеспечение измерений размеров проката. Составление калькуляции себестоимости прокатного профиля круга.
дипломная работа [170,7 K], добавлен 26.10.2012Технологическая схема производства. Исходная заготовка сортового стана. Нагрев заготовки и выбор станка. Агрегаты и механизмы стана. Агрегаты и механизмы линии стана. Агрегаты и механизмы поточных технологических линий цеха. Охлаждение проката и отделка.
курсовая работа [3,6 M], добавлен 10.01.2009Анализ системы "электропривод-рабочая машина" стана холодной прокатки. Нагрузочная диаграмма, выбор электродвигателя. Расчет и проверка правильности переходных процессов в электроприводе за цикл работы, построение схемы электрической принципиальной.
курсовая работа [761,7 K], добавлен 04.11.2010Характеристика продукции и дерево показателей ее качества. Оценка количества несоответствующей продукции. Оценивание взаимосвязи параметров с применением корреляционного анализа. Выбор типа, разработка и анализ контрольной карты технологического процесса.
курсовая работа [2,9 M], добавлен 03.03.2015Реконструкция участка моталок стана "250" сортопрокатного цеха ПАО "Северсталь" с целью повышения качества продукции и надежности оборудования. Усовершенствование механического привода тарельчатого диска моталок. Технология изготовления зубчатой рейки.
дипломная работа [291,4 K], добавлен 20.03.2017Характеристика сортамента цеха. Определение производительности стана 1700 ПХЛ ОАО "Северсталь". Основные транспортные потоки. Конструкция листоправильной машины. Уборочное устройство обрези. Реконструкция петлевого устройства и привода канатных барабанов.
дипломная работа [688,4 K], добавлен 16.05.2017Проект автоматизации регулирования скорости электропривода стана горячей прокатки. Расчёт мощности главного привода; определение параметров системы подчинённого регулирования. Настройка контура тока возбуждения; исследование динамических характеристик.
курсовая работа [2,0 M], добавлен 19.02.2013Специфика управления на предприятиях черной металлургии с полным циклом производства. Функции и структура автоматизированных систем управления стана 630 холодной прокатки. Устройство и принципы работы локальной системы автоматического управления САРТиН.
контрольная работа [616,3 K], добавлен 17.01.2010Расчет и проектирование привода выталкивателя стана 150. Разработка пневмопривода передвижения двухрукавной воронки разгрузочной тележки. Разработка технологического процесса изготовления детали "червяк". Расчет и проектирование режущего инструмента.
дипломная работа [864,3 K], добавлен 22.03.2018Разработка структурной схемы, конструкции и проверочный расчёт главной линии рабочей клети толстолистового стана 5000. Расчет прочности, упругой деформации валков, определение мощности привода и жесткости валковой системы; выбор передаточных механизмов.
курсовая работа [4,7 M], добавлен 03.01.2014Разработка и обоснование основных технических решений по реконструкции стана. Энергокинематический расчет привода. Расчет и конструирование промежуточного вала. Составление принципиальной схемы гидропривода. Анализ технологичности конструкции детали.
дипломная работа [1,9 M], добавлен 22.03.2018Характеристика профилей, применяющихся при сооружении металлических конструкций. Критерии и обоснование выбора стана для проката профиля, необходимое оборудование и технология проката и калибровки. Методика расчета энергосиловых параметров прокатки.
курсовая работа [1,2 M], добавлен 08.11.2009Технологическая схема производства проката. Расчет часовой производительности и загрузки формовочного стана, годового объема производства труб. Расчет массы рулона. Выбор вспомогательного оборудования. Устройство и принцип работы листоправильной машины.
курсовая работа [1,3 M], добавлен 12.03.2015Анализ путей автоматизации стана ХПТ-55. Декомпозиционный анализ задачи модернизации системы управления и разработка декомпозиционной схемы. Разработка схемы электрической соединений системы управления. Разработка блок-схемы алгоритма управления станом.
дипломная работа [1,6 M], добавлен 24.03.2013Разработка проекта реверсивного одноклетевого стана холодной прокатки производительностью 500 тыс. тонн в год в условиях ЧерМК ОАО "Северсталь" с целью производства холоднокатанной полосы из низкоуглеродистой и высокопрочной низколегированной сталей.
дипломная работа [2,5 M], добавлен 26.10.2014Разработка технологического процесса производства бесшовных труб на трехвалковом раскатном стане. Конструкция и условия работы оправок стана. Теплообмен при обработке металлов давлением. Методы решения нестационарного уравнения теплопроводности.
дипломная работа [2,0 M], добавлен 10.07.2014Обзор станов горячей прокатки листа. Анализ известных конструкций механизмов перемещения заготовок в нагревательной печи. Устройство для выталкивания заготовки из нагревательной печи стана 2850. Определение максимальной мощности привода выталкивателя.
курсовая работа [945,4 K], добавлен 26.10.2014Оборудование, режимы работы и техническая характеристика элементов главной линии чистовой рабочей клети рельсобалочного стана. Расчёт валков клети на статическую и циклическую прочность. Определение жёсткости прокатных валков по оси катающего калибра.
курсовая работа [218,8 K], добавлен 18.06.2014Анализ технологического процесса и оборудования прокатного стана, анализ технологических схем производства толстого листа, предлагаемая технологическая схема прокатки. Выбор оборудования прокатного стана, разработка технологии прокатки и расчет режимов.
курсовая работа [2,6 M], добавлен 04.05.2010