Акриловые гидрогели в качестве полимерных связующих
Изучение макрокинетики процесса радикальной сополимеризации акриловых гидрогелей. Обоснование и разработка принципов создания полимерных композитов на основе стеклянных и углеродных наполнителей. Воздействие наполнителей на их термическую стабильность.
Рубрика | Производство и технологии |
Вид | автореферат |
Язык | русский |
Дата добавления | 14.02.2018 |
Размер файла | 11,7 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
Специальность: 05.17.06 - Технология и переработка полимеров и композитов
АВТОРЕФЕРАТ
диссертации на соискание ученой степени доктора технических наук
Акриловые гидрогели в качестве полимерных связующих
Успенская Майя Валерьевна
Санкт - Петербург 2009
Работа выполнена в государственном образовательном учреждении высшего профессионального образования Санкт-Петербургском государственном университете информационных технологий, механики и оптики, и в государственном образовательном учреждении высшего профессионального образования Санкт-Петербургском технологическом институте (Техническом университете).
Официальные оппоненты:
доктор технических наук, профессор Чешко Илья Данилович
доктор химических наук, профессор Ловчиков Владимир Александрович
доктор технических наук, профессор Алексеев Александр Гаврилович
Ведущая организация: ФГУП НИИСК им. акад. С.В. Лебедева
Защита диссертации состоится «20» мая 2009 г. в 15 часов на заседании Совета по защите докторских и кандидатских диссертаций Д 212.230.05 при Государственном образовательном учреждении высшего профессионального образования «Санкт-Петербургский государственный технологический институт (технический университет)» по адресу: 190013, Санкт-Петербург, Московский проспект, д. 26.
С диссертацией можно ознакомиться в библиотеке Санкт-Петербургского государственного технологического института (технического университета).
Отзывы и замечания в одном экземпляре по данной работе, заверенные печатью, просим направлять по адресу: 190013, Санкт-Петербург, Московский проспект, д. 26, СПбГТИ (ТУ), Ученый Совет.
Тел. 494-93-75; факс: 712-77-91; E-mail: dissovet@lti.gti.ru
Автореферат разослан «____» __________ 200____ г.
Ученый секретарь Совета Д 212.230.05,
кандидат химических наук, доцентЕ. К. Ржехина
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
АКТУАЛЬНОСТЬ РАБОТЫ
В последние годы в современных технологиях востребованы полимерные материалы нового поколения, которые не только обладают теми или иными физико-химическими свойствами, но и способны целенаправленно изменять свои характеристики в зависимости от внешних условий в процессе эксплуатации. Такие полимерные системы называют «умными» или «чувствительными», т.е. способными реагировать на изменения параметров окружающей среды, таких как: рН, ионной силы раствора, температуры или электромагнитного воздействия и т.д.
Особое внимание исследователей уделено редкосшитым полиэлектролитам, так называемым супервлагоабсорбентам или гидрогелям. Благодаря комплексу варьируемых уникальных свойств супервлагоабсорбенты нашли на мировом рынке самое широкое применение в медицине, промышленности, сельском хозяйстве, при решении водных и экологических проблем. Однако, большинство полимерных абсорбентов, обладая высокими абсорбционными характеристиками, имеют неприемлемые при эксплуатации физико-механические свойства, что существенно ограничивает потенциальные возможности их применения, например, при создании материалов заданной формы.
К наиболее существенным недостаткам акриловых гидрогелей также относят: неустойчивость влагопоглощающих материалов при повышенных температурах (акриловые гидрогели устойчивы до 35 С); низкую скорость набухания; высокую чувствительность к изменению ионного состава и рН растворов (набухание в дистиллированной воде составляет в среднем до 2000 г/г, а в водных растворах солей одновалентных металлов уже - до 100 г/г в зависимости от условий синтеза и условий хранения образца).
Поэтому создание материалов многофункционального назначения, лишенных вышеуказанных недостатков, с прогнозируемыми свойствами, является актуальным. Одним из способов решения поставленной задачи является модификация уже известных акриловых абсорбентов: как полимерной матрицы, так и использование неорганических наполнителей. Так, введение в состав полимерной цепи сульфо-, фосфатных и других кислотных групп улучшает водоабсорбционные свойства гидрогелей в солевых растворах моно- и поливалентных металлов, а включение азотсодержащих гетероциклических фрагментов не только приводит к повышению абсорбционной способности материалов в водных растворах электролитов, но и к понижению горючести и увеличению прочности этих материалов.
Создание полимерных композиций также позволяет получать материалы с новым комплексом физических и механических свойств, определяемых микрогетерогенностью системы и фазовыми взаимодействиями на границе раздела фаз полимер - наполнитель, т.е. в том случае, когда конструкционные ресурсы полимерной матрицы уже исчерпаны. Например, использование в качестве модификаторов полимерной матрицы стеклянных наполнителей позволяет решить комплекс поставленных задач от повышения деформационно-прочностных характеристик до получения материалов заданной геометрической формы, а создание нанокомпозиционных материалов приводит к возникновению целого ассортимента новых «интеллектуальных» полимерных материалов. Недостаточная изученность сеточной структуры акриловых супервлагоабсорбентов и композиций на их основе и взаимосвязи между составом и физико-химическими и механическими свойствами абсорбирующих материалов препятствует расширению возможностей их применения, что делает этот вопрос крайне актуальным.
Данная работа являлась частью исследований, проводимых при поддержке Министерства образования РФ «Фундаментальные исследования в области технических наук» (грант № 05-08-333-49-А «Новые рациональные методы получения тетразолсодержащих мономеров и полимеров для нанокомпозитов и материалов медицинского назначения» и 2000/2002 года по фундаментальным исследованиям в области технических наук, шифр гранта ТОО-9.2.-2078, № гос. рег. 01.2.00103042 «Акриловые тетразолсодержащие иммобилизанты и супервлагоабсорбен-ты»); Министерства образования и научных исследований Германии в рамках проектов «Новые нанокомпозиционные материалы как химические сенсоры на основе низко- и высокомолекулярных индикаторов» («Neue photonische Nanokompositmaterien fьr chemische Sensoren auf der Basis einzel- und polymolekularen Indikatoren») (номер проекта RUS 03/010) и «Стекло-гелевые нанокомпозиты: новые материалы для создания умных чернил с целью защиты от подделок жидкостей и твердых тел» («Glas-Gel-Nanokomposite: Neue Materialien fьr intelligente Tinten zur fдlschungssicheren Markierung von Flьssigkeiten und Festkцrpern») (RUS 05/A18), международной программы образования в области точных наук (ISSEP) ДДФ Фаундейшн «Грант Санкт-Петербурга - 2004».
Цель настоящей работы - создание акриловых полимерных матриц и композиционных материалов на их основе многофункционального назначения, целенаправленно изменяющих свои характеристики при изменении состава, условий синтеза и параметров окружающей среды.
В связи с поставленной целью в работе решались следующие задачи:
изучение макрокинетики процесса радикальной сополимеризации акриловых гидрогелей, разработка эффективных, теоретически обоснованных методов регулирования состава, топологической структуры и свойств получаемых материалов;
установление влияния условий гелеобразования на закономерности формирования акриловых гидрогелей;
обоснование и разработка принципов создания полимерных композитов на основе стеклянных и углеродных наполнителей, установление закономерностей процесса синтеза и формирования полимерных матриц в присутствии наполнителей, а также исследования их физико-химических характеристик;
исследование качественных и количественных характеристик акриловых полимерных матриц на основе исследования их структуры и свойств для создания материалов с широким комплексом потребительских свойств; гидрогель сополимеризация композит полимерный
выявление характера воздействия наполнителей на термическую стабильность и горючесть полимерных композитов;
исследование полученных полимерных композиционных материалов на совместимость с живым организмом.
НАУЧНАЯ НОВИЗНА
Развиты представления о путях создания полимерных материалов, обладающих высокими абсорбционными и физико-механическими характеристиками, которые послужили основой для получения и выпуска новых типов полимеров и композитов многофункционального назначения.
В работе впервые:
1) развит новый подход к созданию высокоэффективных «умных» влагопоглощающих материалов нового поколения на основе фосфор- и азотсодержащих сомономеров, обеспечивающих требуемые физико-химические и эксплуатационные характеристики;
2) установлены кинетические закономерности протекания гелеобра-зования в системах акриловая кислота (АК) - 3-хлор-1,3-бутадиен-2-фосфиновая кислота (БФК) - N,N'-метилен-бис-акриламид (МБАА); акри-ловая кислота - 2-метил-5-винилтетразол - N,N'-метилен-бис-акриламид; акриловая кислота - 5-винилтетразол - N,N'-метилен-бис-акриламид и в гетерогенной системе мономер - полимерная матрица - наполнитель;
3) исследованы, разработаны и научно обоснованы физико-химические закономерности создания полимерных материалов с прогнозируемыми свойствами;
4) установлены сорбционные закономерности и разработаны математические модели набухания для систем тетразол- (ТАС) и фосфорсодержащих акриловых сополимеров в зависимости от ионной силы раствора, что позволило развить концепцию программирования характеристик новых полимерных материалов;
5) обнаружено отсутствие дискретного фазового перехода при набухании в водных растворах поливалентных металлов с концентрацией до 0,1 М для фосфор- и тетразолсодержащих сополимеров, что свойственно для акриловых абсорбентов, а также высокие абсорбционные характеристики тетразол- и фосфорсодержащих акриловых сополимеров; впервые показано, что суперабсорбенты, содержащие гетероциклические звенья, при концентрации ионов металлов менее 10-4 М работают в режиме сорбции молекул растворителя; при большей концентрации - в режиме сорбции ионов металлов; определены следующие ряды: абсорбционной способности акриловых сополимеров, содержащих звенья: 2-метил-5-винилтетразол 5-винилтетразол акриловая кислота и сорбционной активности металлов для ТАС: Cu(II)>Со(II)>Ni(II);
6) изучено влияние модификаторов: фуллерена и алюмо- и боросиликатных стеклосфер на структуру и свойства полимерных композитов;
7) выявлены закономерности старения полученных гелей во время хранения;
8) разработаны методы получения биоактивного раневого покрытия с высокой сорбционной активностью по отношению к жидкостям (лимфе, моче, экссудату и т.д.).
ПРАКТИЧЕСКАЯ ЗНАЧИМОСТЬ
В работе сформулированы основные направления создания новых акриловых абсорбентов и композитов на их основе многофункционального назначения, в которых модификация приводит к существенному улучшению функциональных и эксплуатационных характеристик.
Разработаны методики получения абсорбирующих материалов, обладающих достаточной механической прочностью и высокой сорбционной способностью для очистки промышленных стоков от ионов би- и поливалентных металлов.
Показана возможность создания трудногорючих композиционных полимерных материалов для получения огнезащитных конструкций и регуляторов влажности в крупногабаритных объемах. Разработан и апробирован в условиях опытного производства СКТБ «Технолог» процесс их получения. Класс горючести новых композиционных материалов Г-1. Получено положительное заключение ФГУ ВНИИПО МЧС России.
Разработанные биоактивные раневые покрытия могут быть использованы в качестве сорбирующих повязок при местном лечении поверхностных, инфицированных и гнойных ран, а также гранулирующих ран после ожогов. Проведенные, совместно с ВМА им. С.М. Кирова, исследования показали, что местное применение биологически активного фуллерен-содержащего раневого покрытия, предупреждает осложненное течение раневого процесса, на 20 25% сокращает длительность заживления ран и может быть рекомендовано также для лечения гнойно-некротических процессов, трофических язв и пролежней. Выпущена опытная партия раневых повязок на основе новых композиционных материалов.
Подтверждена высокая эффективность предложенных водопоглощающих материалов в качестве регуляторов роста растений и «искусственной» почвы в районах с засушливым климатом.
Практическая значимость некоторых частей работы и предлагаемых технических решений подтверждена патентом РФ и актами испытаний.
Материалы диссертации обобщены в учебно-методических пособиях А.В. Игруновой, Н.В. Сиротинкина, М.В. Успенской «Акриловые гидрогели» и В.А. Островского, Н.В. Сиротинкина, М.В. Успенской «5-аминотетразол и его производные» и используются в лекционных курсах на инженерно-физическом факультете СПбГУИТМО; разработанные экспериментальные методики используются в лабораторном практикуме по химии ВМС в СПбГТИ (ТУ).
АПРОБАЦИЯ РАБОТЫ
Основные положения диссертационной работы были представлены на международных, всероссийских и региональных конференциях, конгрессах, форумах и симпозиумах, в том числе на Всероссийской конференции «Сенсор-2000» (Санкт-Петербург, 2000); международной научно-технической конференции «NATO advanced research workshop on the disordered ferroelectrics» (Kiev, Ukraine, 2003); международной научно-технической конференции «Полимерные компо-зиты - 2003» (Гомель, 2003); научно-практической конференции «Теория и практика электро-химических технологий. Современное состояние и перспективы развития» (Екатеринбург, 2003); IX International Conference `The problems of salvation and complex formation in solutions' (Plyos, 2004); на VI Всероссийской научно-технической конференции «Теплофизика процессов горения и охрана окружающей среды» (Рыбинск, 2004); Международном оптическом конгрессе «Оптика XXI век» (Санкт - Петербург, 2004, 2006); Gesellschaft Deutscher Chemiker konf., Fortschritte bei der Synthese und Charakterisierung von Polymeren, (Dьsseldorf, 2004); международной конференции ICONO/LAT (Санкт - Петербург, 2005); IX международной конференции по химии и физикохимии олигомеров «Олигомеры IX» (Одесса, 2005); XVI международной конференции «Физика прочности и пластичности материалов» (Самара, 2006); VI международном молодежном научном форуме «Экобалтика-2006» (Санкт-Петербург, 2006); Всероссийском симпозиуме «Эффекты среды и процессы комплексообразования в растворах», (Красноярск, 2006); III Всероссийской конференции «Химия поверхности и нанотехнология» (Санкт-Петербург-Хилово, 2006); III Всероссийской научной конференции «Физико-химия процессов переработки полимеров» (Иваново, 2006); международной конференции «Фундаментальные проблемы оптики (Санкт-Петербург, 2006); VI Международной научной конференции «Химия твердого тела и современные микро- и нанотехнологии» (Кисловодск, 2006); Российской школе-конференции «Биосовместимые наноструктурные материалы и покрытия медицинского назначения» (Белгород, 2006); XVII «Петер-бургских чтениях по проблемам прочности»(Санкт-Петербург, 2007).
Результаты работы были представлены и обсуждены на заседаниях Санкт - Петербургского семинара «Проблемы синтеза, переработки и применения полимерных материалов» Российского химического общества им. Д.И. Менделеева (Санкт - Петербург, 2003, 2007), а также немецко-российских семинарах.
Достоверность научных положений и выводов, приведенных в диссертационной работе, базируется на применении современных методов исследования полимеров, таких как ИК, 13С, 31Р, 1Н ЯМР - спектроскопии, методов электронной микроскопии и атомно-силовой микроскопии, дифференциально-термическому анализу, дифференциально-сканирующей колориметрии, ренгеноструктурный, элементный и рентгено-флуоресцентный анализы, эллипсометрии, а также широким использованием математико-статистических методов обработки результатов. В работе были использованы современные физические концепции - фрактальный анализ и теория перколяции.
Публикации
Основные результаты исследований изложены в 82 публикациях и обобщены в монографии "Тетразолсодержащие акриловые полимеры", общим объемом 6,6 усл. п.л., материалах конференций, конгрессов, симпозиумов, форумов, научных трудах институтов, а также журналах: «Журнал прикладной химии», «Журнал общей химии», «Пластические массы», «Оптика и спектроскопия», «Химическая промышленность», «Жизнь и безопасность», «Материалы. Технологии. Инструменты», «Научно-технический вестник СПбГУИТМО».
Структура и объём диссертации
Диссертационная работа состоит из введения, 5 глав, заключения, списка использованных источников из 374 наименований, приложений. Диссертация изложена на 318 страницах и содержит 86 рисунков и 59 таблиц.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
В первой главе рассмотрены известные подходы к решению проблемы создания полимерных материалов с высокими абсорбционными и физико-механическими характеристиками, проанализированы достоинства и их недостатки, проведен критический анализ отечественной и зарубежной литературы, отражающей современное состояние исследований в этой области, что позволило определить цели и задачи работы, а также выбрать объекты исследования.
Во второй главе представлены объекты исследований, экспериментальные методы и методики расчета. В качестве объектов исследования выбраны:
5-винилтетразол 2-метил-5-винилтетразол; 3-хлор-1,3-бутадиен-2-
(ВТ) (МВТ) фосфиновая кислота(БФК)
Сшитые сополимеры на основе акриловой кислоты и 3-хлор-1,3-бутадиен-2-фосфиновой кислоты (АК - БФК);
Тетразолсодержащие акриловые сополимеры на основе акриловой кислоты и 5-винилтетразола (АК - ВТ) и акриловой кислоты и 2-метил-5-винилтетразола (АК - МВТ);
Композиции на основе акриловых абсорбентов и стеклосфер (алюмосиликатных и боросиликатных);
Композиции на основе тетразолсодержащих акриловых сополимеров (АК - МВТ) и фуллеренов;
Бинарные композиции на основе сшитой полиакриловой кислоты и алюмосиликатных стеклосфер и фуллеренов.
Глава III. Фосфорсодержащие акриловые абсорбенты
Одной из областей, где супервлагоабсорбенты нашли широкое применение, является сельское хозяйство, что определяется, прежде всего, хорошими водоудерживающими свойствами абсорбентов. Помещенные в почву частицы абсорбента при поступлении влаги набухают, пролонгируя ее пребывание в земле (использование абсорбентов в количестве 0,2 ? 2 мас.% позволяет сохранить влагу в почве в течение 10 ? 20 суток при температуре 25 °С), тем самым, ускоряя рост растений и повышая урожайность. Естественно, что набухание гидрогелей в таких условиях подвержено влиянию различных факторов - ионного состава и рН почвенного раствора, давления слоя почвы и структуры ее капилляров и т.д., поэтому большинство типичных акриловых абсорбентов сильно, а и иногда и необратимо изменяют свои физико-химические характеристики при переходе от лабораторных условий в почву или даже в ее модели.
Одной из важнейших задач, возникающих в земледелии засушливых зон, является создание супервлагоабсорбентов, обладающих пониженной чувствительностью к изменению ионного состава и рН раствора, устойчивостью при температуре окружающей среды выше 35 С, а также имеющих высокую скорость набухания, поскольку широко используемые акриловые суперабсорбенты не применимы в подобных климатических условиях. Использование в качестве сомономера 3-хлор-1,3-бутадиен-2-фосфиновой кислоты позволяет принципиально решить поставленную задачу.
Синтез фосфорсодержащего сополимера осуществляется радикальной сополимеризации в водной среде в присутствии окислительно-восстановительной системы персульфат аммония (ПСА) - N,N,N',N'-тетраметилэтилендиамин (ТМЭД) и сшивающего агента - N,N'-метилен-бис-акриламида. Подобраны оптимальные условия синтеза фосфорсодержащего акрилового сополимера при достижении максимальной конверсии мономеров и приемлемых физико-химических и эксплуатационных характеристик: концентрация инициатора персульфата аммония [ПСА] = 5 ммоль/л, концентрация мономеров в исходной мономерной смеси 30 мас.%, соотношение мономеров АК:БФК = 83:17, продолжительность реакции 8 ч и температура синтеза 70 С.
Влияние температуры реакции на выход фосфорсодержащего абсорбента носит экстремальный характер: увеличение температуры синтеза до 70 С приводит к увеличению выхода продукта реакции; дальнейший подъем температуры - к уменьшению, и при температуре 75 С выход водопоглощающего материала достигает значения 86%, что объясняется значительным различием в константах сополимеризации мономеров и повышением доли растворимой части полимера.
При температуре синтеза фосфорсодержащего акрилового сополимера выше 75 С происходит окисление Р-Н связи 3-хлор-1,3-бутадиен-2-фосфиновой кислоты, что доказывается изменением спектра ЯМР на ядрах 31Р (появлением синглета с химическим сдвигом d31Р=24,11 м.д., характерным для соединений пяти координированного фосфора и исчезновением дублета (константа спин-спинового взаимодействия JРН=293,5 Гц, химический сдвиг ядра фосфора d=8,08 м.д.)). Константа спин-спинового взаимодействия в данном случае равна JР-Н = 874,52. Для сополимера, содержащего две гидроксильные группы при атоме фосфора, в ИК-спектре появляются дополнительные полосы: 3423 см-1 (n колебания ОН-группы, связанной водородной связью), отсутствующая в спектре фосфорсодержащего сополимера, и слабая полоса около 900 см-1, отсутствующая в исходном спектре сополимера. С другой стороны, повышение температуры реакции выше 75 С приводит к образованию короткоцепного полимера с пониженной абсорбционной способностью, что отрицательно сказывается на качестве суперабсорбента.
К снижению выхода продукта приводит и увеличение доли фосфорсодержащего мономера в реакционной смеси, за счет наличия в молекуле 3-хлор-1,3-бутадиен-2-фосфиновой кислоты гидрофосфорильной группы, выступающей в роли «ловушки радикалов», и следовательно, уменьшению скорости инициирования (см. табл. 3.1).
Таблица 3.1 - Зависимость выхода фосфорсодержащего супервлагоабсорбента от условий синтеза
Доля БФК, моль% |
Доля МБАА, моль% |
Доля мономеров, масс% |
Выход продукта, % |
|
5 |
0,05 |
30 |
86 |
|
17 |
0,05 |
30 |
82 |
|
52 |
0,05 |
30 |
71 |
|
78 |
0,05 |
30 |
68 |
|
5 |
0,1 |
30 |
87 |
|
5 |
0,15 |
30 |
89 |
|
5 |
0,05 |
20 |
79 |
|
5 |
0,05 |
10 |
58 |
|
5 |
0,05 |
40 |
65 |
Увеличение доли БФК приводит и к уменьшению на порядок значения максимального водопоглощения в дистиллированной воде и увеличению водорастворимой доли сополимера (см. табл. 3.2). Первое можно интерпретировать увеличением вклада межмолекулярных взаимодействий, играющих роль дополнительных сшивок, при повышении содержания фосфорсодержащего фрагмента в полимерной цепи, второе - существенным различием в константах сополимеризации мономеров.
Таблица 3.2 - Влияние условий синтеза фосфорсодержащего акрилового сополимера на максимальное водопоглощение в дистиллированной воде при 20 С и количество золь-фракции
Мольная доля, % АК БФК |
МБАА, моль% |
Равновесная степень набухания, г/г |
Золь-фракция, % |
||
26 |
74 |
0,1 |
180 |
20,3 |
|
48 |
52 |
0,1 |
270 |
14,2 |
|
83 |
17 |
0,1 |
1620 |
7,6 |
|
95 |
5 |
0,1 |
1810 |
5,4 |
|
95 |
5 |
0,05 |
1940 |
5,8 |
|
95 |
5 |
0,15 |
1140 |
2,1 |
|
83 |
17 |
0,05 |
1730 |
7,8 |
|
83 |
17 |
0,15 |
960 |
4,2 |
С другой стороны, увеличение фосфорсодержащей компоненты в полимерной цепи приводит к повышению констант скорости набухания на 2 порядка и значительному уменьшению времени достижения максимального влагопоглощения (см. табл.3.3): для фосфорсодержащего акрилового сополимера (доля БФК 52 моль%) достижение равновесной степени набухания осуществляется за 20 мин, в отличие от чисто акриловых СВА, где это время составляет более 2 суток. Такое значительное увеличение значений констант скорости набухания фосфорсодержащего сополимера в дистиллированной воде существенно при использовании нового супервлагоабсорбента для эффективного обеспечения влагоснабжения растений в условиях дефицита влаги.
Таблица 3.3 - Значения констант скорости набухания фосфорсодержащего акрилового сополимера в дистиллированной воде при 20 С
Соотношение мономеров АК:БФК, моль% |
Константа набухания, мин -1 |
|
48:52 |
0,033 |
|
83:17 |
0,012 |
|
95:5 |
0,00064 |
Использование акриловых гидрогелей в сельском хозяйстве также ограничено и температурными характеристиками, поскольку данные материалы имеют пороговый температурный режим работы окружающей среды 30 - 40 °С. Использование в качестве сомономера БФК расширяет температурный диапазон работы влагопоглощающего материала до 50 С. Следует отметить, что с ростом температуры окружающей среды до 50 °С равновесная степень набухания повышается, увеличение доли гидро-фосфорильных групп в составе сополимера приводит к понижению термочувствительности материала.
При использовании супервлагоабсорбентов в качестве водоудерживающих и структурирующих почву агентов следует учитывать и ионный состав окружающей среды, поскольку добавление в дистиллированную воду ионов различных металлов существенно изменяет абсорбционные характеристики полиэлектролитных материалов, уменьшая значения максимального водопоглощения на 1 - 2 порядка вследствие эффекта полиэлектролитного подавления. Это объясняется возникающим неравенством концентраций подвижных ионов внутри и вне геля, смещающим равновесие системы, и заставляющим ионы диффундировать в сетку до полного выравнивания химических потенциалов в обеих фазах. что приводит к существенному.
В наиболее важном в практическом отношении диапазоне внешних условий степень набухания фосфорсодержащих суперабсорбентов монотонно уменьшается с ростом концентрации ионов металла и стремится к некоторому пределу (см. рис.3.1). Это происходит тем быстрее, чем выше заряд ионов и их способность образовывать ассоциаты с ионизированными группами сетки. В связи с этим, абсорбционные характеристики фосфорсодержащих супервлагоабсорбентов можно прогнозировать в практически любой ионной ситуации.
а) б)
Концентрация БФК в реакционной смеси (моль%): 1- 5; 2 -17; 3 - 48.
Рис. 3.1 - Зависимость равновесной степени набухания (lgQ) от рН (а) и концентрации хлорида алюминия в растворе [AlCl3](М) (б) для фосфорсодержащих акриловых сополимеров.
Независимо от природы изучаемого моно- и поливалентного катиона во внешнем растворе наблюдается аналогичная зависимость: увеличение доли БФК приводит к увеличению максимального водопоглощения в наиболее значимой области концентрации соли (более 10-3 М для моновалентных ионов металлов и более 10-4 М для би- и поливалентных ионов металлов), и уменьшению - менее 10-3 М (10-4 М для би- и поливалентных ионов металлов) по сравнению с акриловыми супервлагоабсорбентами. Уменьшение значений максимального водопоглощения фосфорсодержащего акрилового сополимера с разбавлением раствора говорит о преобладании межмолекулярных взаимодействий полимер - полимер над взаимодействиями полимер - растворитель.
В физиологическом растворе фосфорсодержащий абсорбент обладает на 30 50% большим значением набухания, чем супервлагоабсорбент на основе натриевой соли АК при прочих равных условиях и достигает значения 60 г/г.
Одной из важнейших причин, ограничивающих применимость акриловых гидрогелей для широкого использования при опустынивании почв, выращивании декоративных и плодовоовощных и ягодных культур, является комплексообразование, имеющее место в водных растворах поливалентных металлов и выполняющее роль дополнительных сшивок, что приводит к существенному снижению водопоглощения вплоть до коллапса супервлагоабсорбентов. Присутствие звеньев фосфорсодержащей кислоты повышает абсорбционную способность материалов в 1,5 - 2 раза по сравнению с акриловыми СВА и достигает 40 - 45 г/г в водных растворах поливалентных металлов. Для фосфорсодержащих акриловых сополимеров с содержанием звеньев БФК с концентрацией 5 и 17 моль%, также наблюдается дискретный фазовый переход, подобно акриловым СВА. Увеличение содержания гидрофосфорильных групп до 52 моль% приводит к исчезновению фазового перехода I рода при набухании сополимера в водных растворах поливалентных металлов в области концентраций соли до 0,1 М.
В ходе работы была разработана концепция прогнозирования свойств «умных» полимерных матриц нового поколения, способных целенаправленно изменять свои характеристики при изменении параметров окружающей среды. Для этого был рассмотрен вопрос о степени отклонения структуры полученных в процессе синтеза сеток от идеальной, т.е. о наличии зацеплений, свободных концов цепей и петель и рассчитаны некоторые параметры сетки. Вопрос об эффективности использования сшивающего агента N,N'-метилен-бис-акриламида в радикальной сополимеризации натриевых солей акриловой кислоты и 3-хлор-1,3-бутадиен-2-фосфиновой кислоты был решен на основании экспериментальных данных по набуханию фосфорсодержащих сополимеров в дистиллированной воде.
Величина отношения Мс/Мс*, определенная из экспериментальных данных по набуханию сшитых сополимеров, позволяет ответить на выше перечисленные вопросы, где Мс молекулярная масса цепей между узлами сшивки, а Мс*=Мr/2Х, где Мr молекулярная масса мономерного звена, вычисленная как среднее значение повторяющихся единиц акриловой и 3-хлор-1,3-бутадиен-2-фосфиновой кислот; Х молярная концентрация сшивающего агента на 1 моль мономеров, моль/моль; идеальная величина, соответствующая Мс сетки, не имеющей дефектов, в которой к каждому концу N,N'-метилен-бис-акриламида присоединены две полиакриловые цепи.
Расчет величин Мс проводили по уравнению Флори-Ренера:
Vо*r*(2Vr/f - gVr 1/3 )Vo 2/3
Мс = ѕѕѕѕѕѕѕѕѕѕѕ ѕѕѕѕ (3.1)
ln (1 Vr)+ Vr + mVr2
где m - константа взаимодействия набухающего полимера со средой; Vо - мольный объем растворителя; r - плотность полимера; f - функциональность узла сшивки; g - фронт-фактор.
Для реальной сетки (1 - 2/f)Ј g Ј 1 и для гидрогелей с тетрафункциональными узлами, например, сшитых N,N'-метилен-бис-акриламидом, у которых f = 4, g изменяется от 0,5Ј1.
Представленные в табл. 3.4 данные свидетельствуют о том, что плотность сшивки реальных сеток больше, чем идеальных, поскольку величина Мс/Мс* во всех случаях меньше 1. К такому эффекту может приводить наличие в сетках физических ловушечных переплетений, работающих как дополнительные узлы сшивки, а также наличие в сетках свободных концов. Основываясь на незначительных изменениях величины Мс/Мс* для фосфорсодержащих акриловых сополимеров, полученных при различных условиях синтеза, можно констатировать факт о прогнозируемости свойств абсорбирующих материалов а также то, что дефектность структуры полимерных сеток в меньшей степени определяется долей 3-хлор-1,3-бутадиен-2-фосфиновой кислоты.
Таблица 3.4 - Зависимость равновесного набухания в воде и структурных характеристик гидрогелей на основе АК и БФК от условий проведения синтеза
Соотношение мономеров АК: БФК, моль% |
Концентрация [МБАА], моль% |
Набухание в дистиллированной воде, г/г |
Мс·10-5, г/моль |
Мс/ Мс* |
|
95: 5 |
0,1 |
53,2 |
0,28 |
0,77 |
|
68: 32 |
0,1 |
35,0 |
0,24 |
0,75 |
|
48: 52 |
0,1 |
21,7 |
0,21 |
0,80 |
Свойства сшитых полиэлектролитных гидрогелей, в частности, способность к набуханию и содержание растворимой фракции зависят не только от среды набухания и условий синтеза полимерной матрицы, но и от предыстории образца - сушки, измельчения и т.д. Повышение температуры сушки выше комнатной во всех изученных случаях приводит к снижению значения равновесной степени набухания фосфорсодержащего супервлагоабсорбента. Количество золь-фракции незначительно увеличивается при проведении сушки в температурном интервале от 20 С до 40 С, и повышается в среднем в 2 - 4 раза при увеличении температуры сушки до 100 С. В этом случае водопоглощение материала уменьшается в среднем на 20 30 %.
Результаты исследования значений водоудержания и золь-фракции во время хранения образцов абсорбента на основе акриловой и 3-хлор-1,3-бутадиен-2-фосфиновой кислот в течение месяца при различной температуре показали, что при комнатной температуре характеристики материала изменяются незначительно. Повышение температуры до 60 С резко ухудшает свойства супервлагоабсорбентов: количество золь-фракции за 8 суток увеличивается на 60% по сравнению с первоначальным количеством и динамическая вязкость уменьшается практически в двое, что объясняется началом деструкции полимерной сетки. Таким образом, модификация акриловых суперабсорбентов звеньями БФК позволяет увеличить продолжительность хранения материалов без старения в 1,5 - 2 раза по сравнению с немодифицированными полимерами.
Влияние внешних факторов, таких как УФ-облучение, циклов набухание - сушка, замораживание - размораживание и т.д. было изучено в ходе работы во время хранения образцов. Было показано, что все образцы фосфорсодержащего акрилового сополимера, выдерживают не менее 10 циклов замораживание - размораживание и набухание - сушка при комнатной температуре без заметного изменения свойств абсорбентов. Увеличение доли фосфорсодержащего мономера приводит к повышению числа циклов до 14 без потери свойств, синерезиса и нарушения структуры.
Для практических целей следует учитывать, что каждый последующий цикл набухание - сушка приводит к постепенному понижению абсорбционной способности супервлагоабсорбентов за счет термоокислительной деструкции, которая будет тем быстрее, чем меньше степень набухания и выше температура сушки. Поскольку акриловые гидрогели являются биодеградируемыми материалами, то нельзя исключать фактор микробного разложения, а также окислительную деструкцию набухшего геля под действием кислорода воздуха. Это особенно важно, имея в виду возможности использования фосфорсодержащих акриловых гидрогелей для модификации почв.
Для возможности практического использования абсорбентов на основе фосфорсодержащего сополимера для модификации почв и выращивания рассады была изучена способность фосфорсодержащих акриловых абсорбентов к набуханию в растворах питательных веществ микроэлементов и регуляторах роста растений. В табл. 3.5 представлены некоторые результаты набухания абсорбента в смеси солей, применяемых в сельском хозяйстве для подкормки и регулирования роста растений. Средние значения набухания в течении 24 ч по 5 экспериментам находятся в пределах 110 - 200 г/г, что существенно выше, чем это значение для известных супервлагоабсорбентов; например, набухание аналогичного зарубежного промышленного продукта «Штоксорб», полученного на основе акриловых производных, не превышает 40 г/г.
Увеличение доли фосфорсодержащих звеньев в составе сополимера приводит к увеличению значений равновесной степени набухания в водных растворах электролитов - в некоторых случаях до 80%, что связано с природой БФК, которая, позволяет материалу поглощать большее количество воды, чем материалы, состоящие только из звеньев акриловой кислоты.
Проведение экспериментов по использованию фосфорсодержащего абсорбента в качестве «искусственной» почвы и для модификации почв показало, что использование суперабсорбентов в модельных почвах значительно повышает их водоудержание: чистая земля без влагоабсорбента полностью высыхает на 8-е сутки, добавление фосфорсодержащего акрилового абсорбента в количестве до 1 мас% в 1,5 - 3 раза увеличивает время высыхания почв.
Таблица 3.5 - Набухание фосфорсодержащего акрилового сополимера в растворах, содержащих микроэлементы для роста и развития растений
Условия синтеза сополимера: мольная доля, %: [МБАА] - 0.05, [БФК] - 5.
Смеси солей |
Концентрация по микроэлементу, г/л |
Набухание, г/г |
|
Меди сульфат |
0,032 |
Среднее 138,5 из 5-и опытов |
|
Цинка сульфат |
0,029 |
||
Железа сульфат |
0,09 |
||
Аммония молибдат |
2,12 |
||
Борная кислота |
0,32 |
||
Янтарная кислота |
0,06 |
||
Аммония молибдат |
1,23 |
Среднее 167,4 из 5-и опытов |
|
Борная кислота |
0,15 |
||
Цинка сульфат |
0,0015 |
||
Железа сульфат |
0,01 |
||
Меди сульфат |
0,02 |
||
Янтарная кислота |
0,002 |
Условия эксперимента: массовая доля, %: [СВА]: 1 - 0, 2 - 0.5, 3 - 1.
Условия синтеза СВА: мольная доля, %: [МБАА] - 0.05; [БФК] - 9.
Рисунок 3.2 - Динамика высыхания модельной земли при различных количествах внесенного в смесь абсорбента
Представленные выше экспериментальные и теоретические данные убедительно свидетельствуют об эффективности использования фосфорсодержащего супервлагоабсорбента в естественных условиях для модификации почв, поскольку он не только оптимизирует условия аэрации и впитывания влаги в почву, удерживает питательные вещества, препятствуя их вымыванию, но и предотвращает коркообразование и появление микротрещин, повреждающих корневые волоски растений.
Глава IV. Тетразолсодержащие акриловые сополимеры
Винильные производные тетразола, впервые полученные в начале 60 - х годов, обладая двумя активными центрами: винильной группой и тетразольным кольцом, открывают широкие возможности для создания полимерных материалов с уникальными свойствами.
Процесс образования трехмерной сетки тетразолсодержащих акриловых сополимеров представляет собой экзотермическую реакцию, кинетические параметры которой, а также физико-химические свойства получаемых абсорбентов являются функцией многих переменных, таких как температура синтеза, рН раствора, время реакции, концентрация инициатора и реагентов и их соотношение. Макрокинетика процесса трехмерной сополимеризации акриловой кислоты, МБАА и производных винилтетразола имеет ряд отличительных особенностей.
Введение в реакционную смесь 5-винилтетразола приводит к монотонному уменьшению времени начала гелеобразования (ВНГ), что обусловлено бульшей реакционной способностью мономера. Описанные зависимости не изменяются при варьировании температуры эксперимента (см. рис. 4.1) и описываются для системы АКВТМБАА следующими уравнениями: г(1)= 725ехр(-0,006[ВТ]); г(2)= 255ехр(-0,02[ВТ]), где г - время начала гелеобразования, с; [ВТ] - концентрация мономера ВТ, моль%.
Введение метильного радикала в гетероциклический фрагмент изменяет монотонную зависимость времени начала гелеобразования от доли мономера - 2-метил-5-винилтетразола, которая носит экстремальный характер.
Высокие скорости гелеобразования при получении сополимеров на основе акриловой кислоты и 5-винилтетразола наблюдаются уже при температуре 20 - 25 °С. Аналогичное время начала гелеобразования для системы АК - МБАА при прочих равных условиях синтеза достигается лишь при температуре 60 °С. Такое отличие в скоростях реакций объясняется наличием дополнительных радикалов, возникающих в водной среде при донорно-акцепторном взаимодействии молекул 5-винилтетразола и персульфата аммония. Замена протона гетероцикла на метильный радикал увеличивает время начала гелеобразования в системе МВТ-АК-МБАА в 2-3 раза по сравнению с временем начала гелеобразования для системы АК-МБАА. Высокая скорость сополимеризации в системе АК-ВТ-МБАА по сравнению с системой, содержащей метильное производное тетразола в качестве сомономера, можно объяснить также и наличием сильных межмолекулярных взаимодействий в первой из указанных систем. Поскольку межмолекулярные взаимодействия существенно влияют на стадию диффузионно-контролируемого обрыва цепи в радикальной полимеризации, то чем выше интенсивность межмолекулярных взаимодействий в реакционной среде, тем больше степень торможения процесса квадратичного обрыва и, соответственно, тем сильнее автоускорение полимеризации.
Условия синтеза сополимера: температура синтеза, С: 1 - 30; 2 - 50.
Рисунок 4.1 - Зависимость времени начала гелеобразования от концентрации 5-винилтетразола.
Рассчитанные эффективные энергии активации сополимеризации акриловой кислоты с 5-винилтетразолом и 2-метил-5-винилтетразолом равны, соответственно:Еэф = 57,1 кДж/моль и Eэф = 120 кДж/моль.
Равновесная степень набухания является основным свойством гидрогелей и зависит не только от внешних условий: рН, температуры и ионной силы окружающей среды, о чем говорилось ранее, но и от характеристик реагентов: рК ионогенной группы, степени ионизации, концентрации и соотношения мономерных звеньев в сетке и т.д.
Влияние концентрации гетероциклического фрагмента на равновесную степень набухания тетразолсодержащего абсорбента в дистиллированной воде при температуре эксперимента 20 С представлено на рис.4.2, из которого видно, что максимальное водопоглощение уменьшается с увеличением доли 5-винилтетразола. Указанный факт обусловлен увеличением частоты сетки, которая в данном случае имеет не только химическую, но и физическую природу, благодаря наличию звеньев 5-винилтетразола, ассоциированных водородными связями между собой и карбоксильными группами акриловой кислоты. Суммарное содержание таких ассоциатов может составлять до 70 % от общего содержания неионизированного 5-винилтетразола в сополимере. Ассоциаты существенно упрочняют структуру образующегося гидрогеля, таким образом, что уже при концентрации гетероциклического мономера равной 7,7 моль% и более образуется прочный гель, сохраняющий упругость и форму в равновесно набухшем состоянии, что дает возможность получать и создавать влагопоглощающие материалы с приемлемыми физико-механическими характеристиками и заданными геометрическими параметрами.
Условия синтеза сополимера: степень нейтрализации, - 0.9; мольная доля, %: [МБАА]: 1 - 0.05; 2 - 0.14, 3 - 0.34.
Рисунок 4.2 - Зависимость равновесной степени набухания сополимера в дистиллированной воде при 20 С от доли 5-ванилтетразола
Введение в состав гетероциклического фрагмента метильного радикала приводит к обратной зависимости: максимальное набухание и скорость водопоглощения увеличивается на начальном этапе с повышением доли тетразольного производного, как видно из рис.4.3. Дальнейшее увеличение концентрации тетразольных фрагментов более 60 моль% - приводит к уменьшению максимального водопоглощения. В общем случае можно сказать, что сополимеры на основе МВТ-АК-МБАА обладают в 1,5-2 раза большей абсорбционной способностью в дистиллированной воде, чем сополимеры ВТ-АК-МБАА, синтезированных в аналогичных условиях.
Рассчитанный параметр Флори-Хаггинса, , отвечающий за специфические взаимодействия между молекулами растворителя и полимера, для системы АК-ВТ-МБАА при нейтрализации кислот б = 0,9, возрастает с уменьшением концентрации акриловой кислоты и достигает значения 0,5, что соответствует -растворителю.
Акриловые гидрогели, обладающие низкими физико-механическими (модуль упругости не превышает 40 кПа), но высокими абсорбционными характеристиками (до 2000 г/г в дистиллированной воде), имеют ограничение в применении, поэтому поиск компромисса между двумя «антибатными» факторами является крайне важным.
Условия синтеза сополимера: мольная доля, %: [ПСА] - 0.3; [МБАА]: 1 - 0.05, 2 - 0.1, 3 - 0.25, 4 - 0.4.
Рисунок 4.3 - Зависимость равновесной степени набухания тетразолсодержащих абсорбентов в дистиллированной воде при 20 С от концентрации 2-метил-5-винилтетразола.
Одной из важнейших характеристик, описывающих механические свойства сшитых сополимеров в набухшем состоянии, является доля сшитого полимера в геле, которая характеризует концентрацию несущих нагрузку полимерных цепей в единице объема гидрогеля. Модуль эластичности гидрогеля описывается уравнением: G = АRTе 1/3, где R - универсальная газовая постоянная; Т - абсолютная температура; объемная доля полимера в гидрогеле; е эффективная плотность сшивки; А = 1 - 2\f - для фантомной сетки, где f - функциональность сшивателя.
Теоретическое значение плотности сшивки для гидрогелей определя-ется как t= cf/2, где с- и f- концентрация и функциональность сшивающего агента, соответственно. На практике значения е и t часто не совпадают даже для гомополимеров.
Увеличение доли тетразольного мономера приводит к увеличению эффективной плотностью сшивки и больше теоретически рассчитанной величины на порядок, что объясняется существенной неоднородностью сетки (см. табл. 4.1).
Таблица 4.1 Влияние условий синтеза на свойства сополимеров
Условия синтеза сополимера: мольная доля, %: [МБАА] - 0.05; [ПСА] - 0.3; степень нейтрализации, - 0.9.
Доля ВТ, моль% |
Равновесная степень набухания, г/г |
Модуль Юнга, кПа |
Золь-фрак-ция, мас% |
Молеку- лярная масса звена, эксп, Mc•10- 4 |
Молеку- лярная масса звена, теор. M*c•10- 4 |
Соот- ноше-ние Mc/M*c |
Эффективная плотность сшивки, е,экс•105, моль\см3 |
|
7,7 |
930 |
11,2 |
8,6 |
8,86 |
7,22 |
1,23 |
1,48 |
|
24,3 |
750 |
15,8 |
11,3 |
6,75 |
7,28 |
0,93 |
1,94 |
|
42,9 |
670 |
23,6 |
12,1 |
4,69 |
7,35 |
0,64 |
2,79 |
|
63,6 |
760 |
25,7 |
15,2 |
4,12 |
7,53 |
0,55 |
3,17 |
|
100 |
200 |
39,8 |
49,7 |
3,63 |
7,50 |
0,48 |
3,60 |
Существующие физико-химические модели механического поведения гидрогелей, удовлетворительно описывают процессы только в области малых деформаций, где эластичность изменяется линейно в зависимости приложенного усилия. Эти модели не способны предсказать физические свойства влагопоглощающих акриловых абсорбентов из условий их синтеза, что связано с образованием неидеальной структуры при формировании сетчатого сополимера. Образующиеся области гетерогенности непосредственно влияют не только на набухание, но и на многие физико-механические свойства, такие как, эластичность, прочность, оптические свойства полимерных материалов и т.д. Увеличение доли 5-винилтетразола уменьшает различие между молекулярной массой между узлами сетки рассчитанной теоретически (M*c) и из эксперимента (Mc), определяемой с использованием теории высоко-эластичности, что говорит о программировании свойств тетразолсодержащих акриловых сополимеров. Повышение концентрации гетероциклического мономера в приводит и к увеличению модуля эластичности, как за счет самоассоциации, так и способности образовывать водородные связи с карбоксильными группами акриловой кислоты.
Введение в макромолекулу акрилового полимера звеньев 5-винилтетразола повышает на порядок прочность пленок на разрыв по сравнению с акриловыми пленками и достигает =0,78 МПа для сополимера с содержанием ВТ 24 моль%. Образцы тетразолсодержащих абсорбентов при механических испытаниях в процессе сжатия не демонстрируют четко регистрируемого разрушения образца. Модуль упругости и предел пластичности образцов тетразолсодержащих акриловых сополимеров (ТАС) в 23 раза выше, чем у акриловых гидрогелей. Влияние доли сшивающего агента - МБАА, на механическую прочность сополимера, закономерно: увеличение доли сшивателя от 0,1 до 0,3 мас% предел пластичности и модуль упругости сшитого сополимера увеличивается в среднем в два раза (см. табл.4.2). Важно отметить, что после снятия нагрузки образцы тетразолсодержащие абсорбенты частично релаксировали.
Таблица 4.2 Деформационно-прочностные свойства пленок на основе тетразолсодержащих абсорбентов
Условия эксперимента: влагосодержание, массовая доля, %: - 20.
Концентрация реагентов |
Предел пластичности, МПа |
Модуль Упругости Е, МПа |
|||
МБАА, мас% |
Вт, моль% |
ПСА, моль% |
|||
0,1* |
0 |
0,20 |
0,013 |
0,61 |
|
0,1 |
24,3 |
0,27 |
0,22 |
1,59 |
|
0,3 |
24,3 |
0,27 |
0,48 |
2,70 |
* по данным работы: Katime I., Diaz de Apodaca E. Acrylic Acid/Methylmethacrylate Hydrogels. Effect of composition on mecanical and thermodynamic properties// Pure Appl. Chem. 2000. V.37A, №4. P. 307 321.
Взаимодействия между гидрофобными группами тем сильнее, чем больше их концентрация и длина, что позволяет контролировать гидрофобные свойства гелей, а меняя степень ионизации звеньев АК регулировать противодействующий фактор, т.е. электростатическое отталкивание одноименно заряженных групп, добиваясь тем самым, желаемых прочностных и абсорбционных характеристик. Так, прочность на разрыв пленок на основе 2-метил-5-винилтетразола и акриловой кислоты может достигать до 5,5 МПа, а равновесная степень набухания - до 240 г/г. По величине относительного удлинения сополимеры АК-МВТ- МБАА заметно превосходят сополимеры АК - МБАА, не существенно уступая им в прочности.
Интерес к исследованию свойств гидрогелей связан с их способностью реагировать, т.е. осуществлять фазовый переход первого рода, сопровождающийся резким набуханием или сжатием геля - коллапсом в ответ на небольшие изменения внешней среды, и поэтому находят применение в фармакологии, медицине, биотехнологии и т.д. Введение в состав полимера гетероциклического звена расширяет рабочий диапазон применения супервлагоабсорбентов в водных растворах кислот, оснований, солей.
Следует выделить следующие отличительные особенности поведения тетразолсодержащих абсорбентов:
1) ТАС при концентрации соли моно- и поливалентных металлов менее 10-4 М работает в режиме сорбции воды и связывание ионов полимерной матрицей пренебрежительно мало, о чем свидетельствуют спектрофотометрические измерения и рентгено-флуресцентный анализ.
2) При концентрациях водных растворов солей электролитов более 10-4 моль/л, тетразолсодержащий абсорбент переходит в режим сорбции ионов металлов, что приводит к уменьшению водопоглощения, за счет либо экранирования моновалентными катионами, находящимися в поглощаемом растворе, полимерных зарядов, либо за счет комплексообразования, приводящего к увеличению плотности сшивки. Увеличение доли тетразолсодержащего фрагмента приводит к повышению степени набухания сополимера, в различных средах, по сравнению с полимерами на основе полиакриловой кислоты, при этом, метилзамещенное производное 5-винилтетразола увеличивает максимальное водопоглощение в большей степени, чем незамещенный 5-винилтетразол (см. рис. 4.4 - 4.5), что объясняется гидрофобными взаимодействиями метильных групп тетразольного кольца.
3) Повышение доли гетероциклического фрагмента также приводит и к увеличению доли сорбированных ионов, а, следовательно, к росту эффективности сорбента. Тетразолсодержащий абсорбент с долей ВТ 63,5 моль%, в водном растворе СuCl2 с концентрацией электролита 10-2 М понижает концентрацию внешнего раствора в два раза, в то время как гель, содержащий 7,7 моль% 5-винилтетразола только на 15%. Помещение образца ТАС с содержанием 63,5 моль% ВТ в водный раствор хлорида меди концентрацией 10-3 М понижает исходную концентрацию ионов меди в 4 раза, а гель, содержащий 7,7 моль% ВТ в 2 раза. Зависимость равновесной степени набухания тетразолсодержащего абсорбента от доли 2-метил-5-винилтетразола носит экстремальный характер независимо от природы водного раствора электролита (рис.4.5).
Представленные данные нельзя объяснить только высокой комплексообразующей способностью сополимера, связанной с сочетанием N-H-кислотности тетразольных циклов и p-донорных свойств атома азота пиридинового типа, поскольку степень нейтрализации мономерных кислот также оказывает существенное влияние на способность полимера к комплексообразованию. Известно, что при низких степенях нейтрализации поли-5-винилтетразола значения среднего координационного числа проходит через максимум при степенях нейтрализации = 0,2 - 0,3, что существенным образом отличается от зависимости среднего координационного числа от степени нейтрализации полиакриловой кислоты: при повышении степени нейтрализации поликислоты координационное число увеличивается. Также известно, что при высоких степенях нейтрализации поли-5-винилтетразола образование двухкоординационного комплекса с фрагментами 5-винилтетразола оказывается невыгодным из-за стерических препятствий при комплексообразовании с участием двух соседних тетразольных циклов, а также из-за большей жесткости сетки, что приводит к наличию у ионов металлов по одному лиганду, не образуя дополнительной сшивки, поэтому часть поверхности полимера при набухании в растворе соли остается несшитой ионами металлов и может участвовать в водопоглощении.
а) б)
Условия синтеза сополимера: мольная доля, %: [МБАА] - 0.05;
1 - водный раствор NaCl; 2 водный раствор CuCl2;
...Подобные документы
Физико-химические особенности наполнителей. Влияние распределения наполнителя в матрице на физико-механические параметры. Адсорбционные свойства и прочности связи наполнителей. Технология получения электроизоляционных резинотехнических материалов.
научная работа [134,6 K], добавлен 14.03.2011Способы получения полимерных композитов, тип наполнителя и агрегатное состояние полимера. Физико-химические аспекты упрочнения и регулирования свойства полимеров, корреляция между адгезией и усилением. Исследование взаимодействия наполнитель-связующее.
реферат [21,9 K], добавлен 30.05.2010Изучение истории создания и теплофизических свойств полимеров и полимерных пленок. Экспериментальные методы исследования тепловодности, температуропроводности и теплоемкости. Особенности применения полимерных пленок в различных областях производства.
курсовая работа [1,3 M], добавлен 08.12.2013Разработка принципов и технологий лазерной обработки полимерных композиционных материалов. Исследование образца лазерной установки на основе волоконного лазера для отработки технологий лазерной резки материалов. Состав оборудования, подбор излучателя.
курсовая работа [1,3 M], добавлен 12.10.2013Нанокомпозиты на основе природных слоистых силикатов и на основе монтмориллонита. Анализ методов синтеза полимерных нанокомпозитов. Перспективы производства полимерных нанокомпозитов. Свойства нанокомпозитов кремния. Структура слоистого силиката.
курсовая работа [847,7 K], добавлен 12.12.2013Технология переработки полимерных материалов термоформованием и экструзией, математическая модель процесса в прямоугольных и цилиндрических координатах. Численный метод решения уравнения модели, разработка моделирующего алгоритма и составление программы.
курсовая работа [974,9 K], добавлен 07.08.2011Технологические операции, используемые в процессе производства полимерных труб. Базовые марки полиэтилена и полипропилена, рецептуры добавок, печатных красок, лаков для производства полимерных труб. Типы труб и их размеры. Основные формы горлышка трубы.
контрольная работа [71,3 K], добавлен 09.10.2010Горение полимеров и полимерных материалов, методы снижения горючести в них. Применение, механизм действия и рынок антипиренов. Наполнители, их применение, распределение по группам. Классификация веществ, замедляющих горение полимерных материалов.
реферат [951,6 K], добавлен 17.05.2011Разработка варианта конструкции фюзеляжа самолета легкого типа из полимерных композиционных материалов и обоснование принятых решений расчетами. Технологический процесс изготовления конструкции. Анализ дефектов тонкостенных деталей трубопроводов.
дипломная работа [1,3 M], добавлен 11.02.2015Общая характеристика и классификация полимеров и полимерных материалов. Технологические особенности переработки полимеров, необходимые процессы для создания нужной структуры материала. Технологии переработки полимеров, находящихся в твердом состоянии.
контрольная работа [1,3 M], добавлен 01.10.2010Многослойные и комбинированные пленочные материалы. Адгезионная прочность композиционного материала. Характеристика и общее описание полимеров, их свойства и отличительные признаки от большинства материалов. Методы и этапы испытаний полимерных пленок.
дипломная работа [1,7 M], добавлен 21.11.2010Технологические методы изготовления полимерных ящиков и контейнеров путем переработки полимерных материалов в тароупаковочные средства, производственную, транспортную и потребительскую тару, реализуемых на соответствующих видах специального оборудования.
реферат [2,4 M], добавлен 17.11.2010Влияние графитовых наполнителей на радиофизические характеристики композиционных материалов на основе полиэтилена. Разработка на базе системы полиэтилен-графит композиционного материала с наилучшими радиопоглощающими и механическими показателями.
диссертация [795,6 K], добавлен 28.05.2019Характеристика и виды оборудования, применяемого для смешения для полимерных материалов, особенности их использования и назначение. Экспериментальная оценка гомогенности смеси. Основные закономерности ламинарного смешения. Механизм смешения в камере ЗРС.
контрольная работа [2,1 M], добавлен 28.01.2010Анализ материального баланса, норм расхода материалов и энергоресурсов, технологические потери, контроль производства и управления технологическим процессом производства полимерных труб. Особенности хранения и упаковки возвратных технологических отходов.
контрольная работа [24,0 K], добавлен 09.10.2010Понятие полимерных композиционных материалов. Требования, предъявляемые к ним. Применение композитов в самолето- и ракетостроении, использование полиэфирных стеклопластиков в автомобильной индустрии. Методы получения изделий из жестких пенопластов.
реферат [19,8 K], добавлен 25.03.2010Применение техногенных отходов различных химических и нефтехимических производств в технологии получения полимерных композиционных материалов. Получение низкомолекулярных сополимеров (олигомеров) из побочных продуктов производства бутадиенового каучука.
автореферат [549,3 K], добавлен 28.06.2011Подготовительные технологические процессы, расчет количества ткани и связующего для пропитки. Изготовление препрегов на основе тканевых наполнителей. Методы формообразования изделия из армированных композиционных материалов, расчёт штучного времени.
курсовая работа [305,7 K], добавлен 26.03.2016Обоснование технологической схемы производства мороженого. Характеристика, факторы формирования и требования к качеству сырья и готовой продукции; ассортимент, органолептические и физико-химические показатели. Применение фруктовых и злаковых наполнителей.
курсовая работа [428,5 K], добавлен 17.06.2014Антиадгезионные покрытия, применяемые в пищевой промышленности. Светопропускание оксидов металла. Метод распыления пульверизатором из спиртовых растворов. Методика измерения оптической плотности и мутности пластин и пленок из полимерных материалов.
курсовая работа [548,2 K], добавлен 11.06.2017