Циклы металлургического производства

Агломерационное производство как первый этап металлургического цикла. Его роль в процессах чёрной металлургии. Сущность доменного производства. Описание технологии сталеплавильного процесса, основного оборудования. Доводка стали. Прокатное производство.

Рубрика Производство и технологии
Вид отчет по практике
Язык русский
Дата добавления 08.07.2022
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство науки и высшего образования Российской Федерации

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Магнитогорский государственный технический университет им. Г.И.Носова»

(ФГБОУ ВО «МГТУ им. Г.И Носова»)

Кафедра автоматизированных систем управления

Отчет

по учебно-ознакомительной практике

Циклы металлургического производства

Исполнитель: Байракаев И.А. студент 1 курса, группы АТСбд-21-1

Руководитель практики: Бондарева А.Р., ст. преподаватель каф. АСУ

Мухина Е.Ю., ст. преподаватель каф. АСУ

Магнитогорск

2022

ВВЕДЕНИЕ

Сегодня металлургическое производство дозволено назвать целым комплексом значимых мероприятий. Мероприятия эти начинаются с поиска месторождений и добычи руды и пригодных ископаемых, а заканчиваются масштабным производством продукции. Разнообразят всеобщую конструкцию разные небольшие ветви, изготавливающие такие элементы, как металлическая черепица, профилированный лист, трубы разного сечения для строительных нужд.

В масштабах металлургической ветви различают два основных типа металлургии, это металлургия чёрная и металлургия цветная. К цветной металлургии относят работу с такими металлами, как олово, свинец, медные руды, лёгкие сплавы, как бы сплава алюминия, либо сплава титана. Чёрные металлы кажутся на фоне цветных малочисленными, что не мешает чёрной ветви, быть востребованной и по сей день. К чёрным металлам, скажем, относят железную руду, хром, марганец и ванадий.

Сегодня производство металлов требует соответствующего технического оснащения как бы станков, такой техники, как анализатор кислорода, прессов и т.д. Как промышленность, металлургия отличается большими масштабами производства, высокой капиталоёмкостью. Огромные средства выдаются на получение нужной технической оснастки, подготовку рабочего персонала, дополнительным курсам для работы на новом оборудовании. Таким образом, быткомбинаты и заводы повышают собственную конкурентоспособность и качество выпускаемой продукции.

Впрочем, металлургическое производство требует немалых расходов и на обеспечение производственных комплексов нужными средствами по воздухоочистке. Существенные атмосферные выбросы, изготавливаемые заводами, обязаны предотвращаться, что также требует больших капиталовложений в производство.

1. АГЛОМЕРАЦИОННОЕ ПРОИЗВОДСТВО

Одна из главных задач развития металлургического производства состоит в повышении темпов и эффективности технического перевооружения и реконструкции существующего оборудования, интенсивного использования имеющегося производственного потенциала, совершенствования систем управления.

Современный период развития металлургической технологии характеризуется ускоренным перевооружением всех видов производств, в том числе и прокатного, с целью повышения его технического уровня и повышения качества продукции. Это связано прежде всего с повышением конкурентоспособности выпускаемой продукции, поскольку повышение качества способствует расширению рынков сбыта и в конечном итоге, увеличению прибыли предприятия.

Агломерационное производство является первым этапом металлургического цикла. Успешному решению задачи увеличения производства высококачественного железорудного сырья - агломерата и окатышей - главных компонентов шихты для доменных печей - способствует внедрение в производство последних достижений науки, новейшей техники и передовой технологии, применение высокопроизводительных агрегатов и машин, комплексная механизация и автоматизация производства.

Современные агломерационные машины работают в непрерывном режиме, что позволяет широко применять комплексную механизацию и автоматизацию производственных процессов.

1.1 История

Агломерация как способ окускования был открыт случайно в 1887 году английскими исследователями Ф. Геберлейном и Т. Хатингтоном в ходе опытов по десульфурирующему обжигу руд цветных металлов на колосниковой решетке. Обжиг проводили следующим образом. На колосниковую решетку насыпали слой горящих кусков кокса или угля, на который затем укладывали слой сульфидной руды. Снизу через решетку подавали воздух от воздуходувки. Проходя через слой топлива, воздух обеспечивал его интенсивное горение. Горячие продукты горения, двигаясь дальше, нагревали расположенный выше слой руды. При температурах 400--500 °С происходило воспламенение сульфидов. В результате их горения выделялось дополнительное тепло, которое потоком газа переносилось в слой руды, расположенный еще выше. Таким образом, зона горения сульфидов перемещалась в направлении движения газа, проходя последовательно весь слой руды, расположенный на решетке. Обжиг руды осуществлялся без подвода тепла извне--только за счет тепла, выделявшегося при горении сульфидов. «Запальное» топливо (куски раскаленного кокса или угля), расположенное вначале на колосниковой решетке, служило только для воспламенения сульфидов руды самого нижнего слоя.

В ходе исследований выяснилось, что при обжиге руд с высоким содержанием серы выделялось так много тепла и температура поднималась до такого уровня, что происходило приплавление обожженных кусков руды друг к другу. После окончания процесса слой руды превращался в закристаллизовавшуюся пористую массу -- спёк. Куски раздробленного спёка, которые назвали «агломерат», оказались вполне пригодными по своим физико-химическим свойствам для шахтной плавки.

Сравнительная простота технологии и высокая тепловая эффективность слоевого окислительного обжига сульфидных руд привлекли внимание специалистов черной металлургии. Появилась идея разработать термический способ окускования железорудных материалов на базе подобной технологии. Отсутствие в железных рудах серы как источника тепла предполагалось компенсировать добавкой к руде мелких частиц углеродистого топлива: угля или кокса. Железорудный агломерат по такой технологии в лаборатории впервые был получен в Германии в 1902--1905 гг.

Первой промышленной установкой для производства агломерата был котел Геберлейна -- коническая стальная чаша, на некотором расстоянии от днища которой была закреплена колосниковая решётка, а в днище имелся патрубок для подвода дутья от воздуходувки. Процесс отличался тем, что источником тепла для размягчения и частичного плавления рудных зёрен были горящие частички угля или кокса. На находящийся на колосниковой решётке слой из кусков раскаленного твердого топлива засыпали тонким слоем агломерационную шихту -- смесь мелкой влажной руды с частичками кокса. После этого включали дутьё, и подогретый в слое горящего на колосниковой решетке топлива газ поднимался вверх, воспламеняя и сжигая содержащееся в шихте топливо в нижнем слое спекаемого материала. Когда зона горения доходила до поверхности, загружался следующий слой агломерационной шихты. Таким образом процесс продолжался до тех пор, пока вся чаша не заполнялась готовым агломератом (котел емкостью 15 т заполнялся в течение 12 часов). После этого выключали вентилятор, опрокидывали котёл и вручную разбивали полученную глыбу агломерата на более мелкие куски [1].

В России первые 6 котлов Геберлейна были введены в эксплуатацию в 1906 г. на Таганрогском заводе, а в 1914 г. -- ещё 5 чаш на Днепровском металлургическом заводе. Одновременно в эти же годы велись работы по созданию альтернативных аглоустановок, лишённых недостатков котлов Геберлейна: низкой производительности, тяжёлого физического труда рабочих. Были разработаны конструкции агломерационных чаш со значительно лучшими технологическими характеристиками. В 1914--1918 гг. на Днепровском заводе была построена аглофабрика с прямоугольными (стационарными) чашами системы Гриневальта, а в 1925 г. на Гороблагодатском руднике -- фабрика с 28 круглыми чашами (диаметром 2,3 м) шведской фирмы AIB. Принципиально агломерационный процесс в чашах шёл так же, как и в котлах Геберлейна. Отличие состояло в том, что толщина спекаемого слоя была уменьшена до 250--300 мм, а дутьевой режим был заменён на вакуумный -- воздух в слой засасывался сверху благодаря создаваемому вентиляторами разрежению под колосниковой решёткой. Поэтому зажигание (воспламенение частичек твердого топлива шихты) также производилось сверху. В прямоугольных чашах зажигание осуществляли с помощью передвижных зажигательных горнов с газовыми горелками.

Поскольку каждая из упомянутых агломерационных установок обладала теми или другими существенными недостатками (один из самых серьёзных -- низкая производительность), ни чаши, ни трубчатые печи не получили широкого распространения в металлургии. Прорыв в области окускования руд был сделан двумя американскими инженерами А. Дуайтом и Р. Ллойдом, которые в 1906 г. разработали конструкцию, а в 1911 г. ввели в эксплуатацию первую конвейерную агломерационную машину непрерывного действия. Процесс спекания руд шел по тому же принципу, что и в котлах Геберлейна или в чашах, -- тепло, необходимое для оплавления рудных зёрен, выделялось при слоевом сжигании частичек твёрдого топлива в результате просасывания воздуха через шихту, уложенную на колосниковую решётку. Успех в быстром и широком распространении агломерации как главного способа окускования железорудных материалов был предопределён очень удачной конструкцией агломерационной машины. Площадь спекания первой агломерационной машины Дуайта-Ллойда была 8,1 м2 (при ширине ленты 1,05 и длине 7,7 м); суточная производительность -- 140 т агломерата при спекании колошниковой пыли.

В течение 1990 гг неизмеримо выросли размеры агломерационных машин -- площадь спекания увеличилась до 600 м2 и более: суточная производительность достигла 15 000--18 000 т агломерата. Изменились марки сталей, из которых изготовляются различные детали машин, но принципиальное устройство машин осталось без изменения.

1.2 Схема установки для агломерации руд

Наиболее распространенны машины ленточного типа (рисунок1.1), которые представляют собой непрерывный ряд движущихся тележек (паллет) с колосниковыми решетками. Паллета - это ящик на роликах с двумя бортами по краям и дном в виде колосниковой решетки. Паллеты движутся по рельсам. Движение паллет происходит при помощи пары зубчатых колес, которые захватывают своими зубьями паллету снизу, выталкивают ее наверх и толкают до тех пор, пока зубья колес остаются сцепленными с роликами паллеты. При этом каждая предыдущая паллета толкает последующую.

Под верхним рельсовым путем машины расположены вакуум-камеры. Шихту загружают на паллеты в головной части машины на слой постели. Затем паллеты проходят под зажигательным горном: верхний слой шихты обрабатывают продуктами горения смеси доменного и коксового газов, подаваемой в течение 1-2 мин через газовую горелку. Горелку отводят, так как в дальнейшем процесс не нуждается в подводе тепла извне. По мере выгорания углерода зона горения топлива перемещается вниз, проходя всю высоту слоя постели за 12-15 мин. Охлаждая агломерат, воздух подогревается и его теплота используется в зоне горения твердого топлива. Отходящие продукты горения отдают свое тепло холодной сырой шихты, нагревая ее. Сырая шихта подогревается. При этом она теряет влагу. В целом агломерационный процесс проводится с избытком воздуха для микрообъемов и для него характерна восстановительная атмосфера. После выгорания углерода зона высоких температур перемещается вниз, расплав охлаждается воздухом. Готовый агломерат представляет собой продукт кристаллизации расплава.

1 - барабанный питатель для загрузки шихты; 2 - направляющие рельсы; 3 -зажигательный горн; 4 - спекательные тележки (паллеты); 5 - направляющая звездочка; 6 - вакуум-камеры; 7 - приводная звездочка.

Рисунок 1.1 - Агломерационная машина ленточного типа

Агломерационная фабрика представляет собой сложное сооружение, включающее систему подачи руды и кокса, помольное, сортировочное, смесительное отделения. Все работы на фабрике механизированы.

1.3 Роль в процессах чёрной металлургии

Агломерация железорудного концентрата (иногда в смеси с рудой, отходами металлургического производства) является заключительной операцией в комплексе мероприятий по подготовке железных руд к доменной плавке. Главная цель этой операции состоит в том, чтобы превратить мелкий рудный концентрат в более крупные куски -- агломерат, использование которого в доменной плавке обеспечивает формирование слоя шихты хорошей газопроницаемости, что является непременным условием высокопроизводительной работы доменной печи.

Доменная плавка высокой интенсивности возможна при большом количестве сгорающего в горне доменной печи кокса, что, с одной стороны, ведет в выделению большого количества тепла, а с другой -- к образованию в нижней части печи свободного пространства (благодаря газификации твердого кокса), куда опускается столб доменной шихты. Хорошая газопроницаемость шихты нужна для того, чтобы большой объем образующихся при горении кокса газов успевал проходить через межкусковые каналы слоя при относительно небольших перепадах давления газа между горном и колошником (150--200 кПа на высоте слоя шихты 20--25 м).

1.4 Технология

1.4.1 Состав шихты

Общая схема агломерационного процесса методом просасывания включает в себя следующие этапы.

Типичная шихта, идущая на производство железорудного агломерата, состоит из следующих компонентов:

-мелкий железорудный материал, как правило, концентрат;

-измельченное топливо -- кокс (фракция 0--3 мм), содержание в шихте 4--6 %;

-измельченный известняк (фракция 0--3 мм), содержание до 8--10 %;

-возврат -- некондиционный агломерат от предыдущего спекания (фракция 0--8 мм), содержание 25--30 %;

-железосодержащие добавки -- колошниковая пыль из доменных печей, окалина прокатных цехов, пиритные огарки сернокислотного производства и др. (фракция 0--3 мм), содержание до 5 %.

Отдозированные в заданном соотношении компоненты перемешивают, увлажняют (для улучшения окомкования) и после окомкования без уплотнения загружают на колосниковую решетку слоем 300--400 мм. Затем включают нагнетатель -- вентилятор, работающий на отсос. Под колосниковой решеткой создается разрежение, благодаря которому в слой вначале засасывается поток горячих горновых газов, обеспечивающих «зажигание» шихты, то есть происходит нагрев поверхностного слоя примерно до 1200 °С (в течение 1,5--2,0 мин). Поступающий затем в слой в остальное время процесса атмосферный воздух обеспечивает интенсивное горение частиц кокса шихты. В зоне максимальных температур (1400--1450°С) происходит частичное плавление рудных зерен, их слипание, а затем в ходе последующей кристаллизации образуется пористая структура -- агломерационный спёк.

1.4.2 Зональный режим

В каждый момент времени происходит воспламенение нагретых до 700--800 °С частичек топлива в слое шихты, примыкающем к нижней границе зоны горения. Одновременно заканчивается горение частиц топлива на верхней границе зоны горения. В результате этого зона горения, совмещенная с зоной плавления, непрерывно перемещается вниз, в направлении движения газового потока, как бы «внедряясь» в слой исходной шихты и оставляя за собой зону охлаждающегося агломерата.

Определяющей зоной процесса является горизонт с максимальной температурой -- зона плавления -- зона формирования агломерата. Выше этой зоны находится слой пористого агломерационного спёка. В расположенной ниже зоне интенсивного нагрева происходит быстрый нагрев спекаемого материала -- со скоростью до 800 град/мин и такое же быстрое охлаждение продуктов горения. Выходя из этой зоны, газ с температурой 300--400 °С попадает во влажную шихту -- образуется зона сушки. В этой зоне газ охлаждается до 50--60 °С и покидает её насыщенным парами воды. В расположенной ниже холодной шихте (15--20 °С) газ охлаждается, становится пересыщенным, и часть паров воды в этой зоне конденсации в виде капелек осаждается на комочках шихты, увеличивая их влагосодержание. Так как скорость движения зоны конденсации в несколько раз больше скорости перемещения по слою зоны сушки, между этими зонами со временем образуется слой переувлажненной шихты. При этом быстро уменьшается толщина слоя исходной шихты.

Общее время агломерации можно разбить на три периода:

-начальный, когда формируются основные зоны спекаемого слоя (в этот период осуществляется зажигание аглошихты, примерно за это же время происходит переувлажнение всего слоя шихты);

-основной период, когда тепловой и газодинамический режимы стабилизировались и происходит перемещение по слою зон формирования агломерата, интенсивного нагрева, сушки;

-заключительный, в течение которою последовательно «выклиниваются» все зоны спекаемого слоя, на ленте остается только охлаждающийся агломерационный спёк.

Процесс считается законченным, когда зона формирования агломерата дойдет до колосников спекательных тележек. При вертикальной скорости спекания 20 мм/мин слой шихты толщиной 300 мм превращается в агломерат за 15 мин [2].

1.5 Особенности процесса

Современный агломерационный процесс относится к типу слоевых, когда проходящий через спекаемый рудный материал воздух обеспечивает протекание двух главных процессов:

-горение твердого топлива шихты

-осуществляет перенос тепла из одного элементарного слоя в другой.

В связи с этим высокие технико-экономические показатели агломерационного процесса могут быть достигнуты только при интенсивном поступлении воздуха в спекаемый слой. Между тем агломерационные шихты, содержащие пылевидные железорудные концентраты (с размером частиц менее 0,1 мм), обладают очень высоким газодинамическим сопротивлением. Поэтому обязательной подготовительной операцией является окомкование шихт -- процесс формирования гранул размером 2--8 мм. Слой такой окомкованной, хорошо газопроницаемой шихты позволяет достичь высоких скоростей движения газового потока (до 0,5--0,6 м/с) при относительно небольших перепадах давлений над и под слоем (10--15 кПа).

Одной из характерных особенностей агломерации железорудных материалов является интенсивный тепло- и массообмен в слое шихты благодаря ее высокой удельной поверхности (30--50 см2/см3). Именно этим объясняется относительно небольшая высота (по 15--40 мм) зон плавления, интенсивного нагрева, сушки, конденсации. Следствием этой особенности процесса является небольшое время пребывания каждого элементарного объема спекаемого материала при высоких температурах -- 1,5--2,0 мин. Поэтому технологи должны обеспечить такие условия (крупность частиц компонентов шихты, скорость движения газа в слое и др.), чтобы за это небольшое время успели пройти основные химико-минералогические и физические процессы, обеспечивающие получение агломерата требуемого качества: выгорание углерода и серы, диссоциация карбонатов, нагрев рудных частиц до температур плавления, их слипание и др.

Второй особенностью процесса агломерации является возникновение неоднородного температурного поля в объеме спекаемого материала. Из-за точечного распределения частичек топлива в шихте очаги горения-плавления чередуются с участками материала (шихты или спёка), находящимися в твердом состоянии. В результате локальной усадки расплавленного материала в очаге горения образуются поры размером 3--10 мм. Благодаря этой особенности сохраняется пористая достаточно газопроницаемая структура слоя в зоне существования расплавов. Дополнительные поры возникают при выделении газов от горения углерода, серы, диссоциации карбонатов, восстановления оксидов железа и др.

Третья особенность агломерации заключается в том, что горение частиц топлива в слое происходит в условиях двойной регенерации тепла: воздух, поступающий в зону горения, предварительно подогревается до 1000--1100 °С в слое охлаждающегося спёка, а топливо (и остальная часть шихты) перед воспламенением нагревается до 700--800 °С потоком горячих газов, выходящих из зоны горения. В течение примерно 80 % времени спекания выходящий из слоя газ имеет температуру 50--60 °С. Это значит, что основное количество тепла от зажигания и горения углерода твердого топлива шихты остается внутри слоя и участвует в теплообменных процессах.

Еще одна положительная особенность агломерации железорудных материалов состоит в том, что в результате частичного восстановления оксидов железа в зоне умеренных температур значительно снижаются температуры плавления таких восстановленных материалов -- на 150--200 °С, благодаря чему существенно сокращается потребность в тепле на процесс -- это позволяет снизить содержание топлива в шихте при сохранении достаточно высокой прочности агломерата. Указанное выше делает агломерацию методом просасывания исключительно эффективным процессом с точки зрения теплотехнических показателей: при содержании углерода в шихте всего 3--5 % удается нагревать спекаемый материал до 1400--1450 °С [3].

2. ДОМЕННОЕ ПРОИЗВОДСТВО

Доменная печь или домна - это используемая в металлургии большая вертикально расположенная шахтная печь, имеющая цилиндрическую форму и позволяющая выплавлять чугун и ферросплавы из железорудного сырья или шихты (железорудный агломерат, окатыши, кокс, флюсы).

Доменная печь (рисунок 2.1) футерована огнеупорной кладкой (верхняя часть шамотным кирпичом, нижняя -- преимущественно углеродистыми блоками). Для предотвращения разгара кладки и защиты кожуха печи от высоких температур используют холодильники, в которых циркулирует вода. Кожух печи и колошниковое устройство поддерживаются колоннами, установленными на фундаменте.

1- загрузочная воронка; 2- загрузочный конвейер; 3 - шахта; 4 - шлаковая лётка; 5 - фурма;6 - шлаковоз; 7 - чугунная лётка; 8 - чугуновоз; 9 - отходящий газ; 10 - газоочистка; 11 - воздухонагреватели

Рисунок 2.1 - Схема доменной печи

Доменная печь заключена снаружи в сплошной стальной кожух с толщиной листов до 40--60 мм, футерованный изнутри огнеупорными изделиями и расположенный на фундаменте. Часть фундамента, которая возвышается над землей, называется пнем. Так как в пне развиваются температуры выше 200° С, то верхнюю часть его выполняют из жаростойкого бетона. На пне выкладывают лещадь. Кладка лещади эксплуатируется в очень тяжелых условиях, так как подвергается действию высокой температуры (порядка 1400--1550° С) и гидростатического давления чугуна, шлака и массы шихты. Помимо этого, чугун проникает в швы кладки. Если при этом кирпич не будет достаточно хорошо зажат соседними кирпичами, то он, имея меньшую объемную массу, чем чугун, всплывет. Этим самым ослабляется зажим соседних кирпичей, что может повлечь разрушение лещади. Поэтому лещадь выкладывают из высокоогнеупорных материалов (высокоглиноземистого кирпича) с очень тонкими швами между отдельными кирпичами (или блоками). Для понижения температуры кладки лещади по периферии внутри кожуха помещают холодильники -- чугунные плиты с залитыми внутри их змеевиками, по которым циркулирует вода. Снизу лещади в современных печах располагают чугунные плиты с трубами, охлаждаемыми вентиляторным воздухом. Для улучшения передачи тепла от кладки лещади к холодильникам нижнюю часть лещади и периферию ее в верхней части выкладывают из графитированных или углеродистых блоков, имеющих большую теплопроводность, чем шамотный и высокоглиноземистый кирпич, а зазор между кладкой и холодильниками заполняют углеродистой массой. Высота лещади достигает 5000 мм. Кладка металлоприемника подвержена действию высоких температур (1500--1700° С) и разъедающему действию чугуна и шлака, поэтому ее также выкладывают из высокоогнеупорных материалов с тонкими швами [4].

Важнейшей особенностью доменного процесса является его непрерывность в течение всей кампании печи (от строительства печи до её капитального ремонта) и противоток поднимающихся вверх фурменных газов с непрерывно опускающимся и наращиваемым сверху новыми порциями шихты столбом материалов.

Изобретение доменной печи принадлежит Европе и относится к середине XIV века. В России же производство металла в доменных печах появилось лишь спустя почти два века. Современные доменные печи - результат исследовательских и конструкторских разработок целого ряда поколений ученых-металлургов.

Доменная печь является одним из наиболее эффективных материалосберегающих агрегатов; коэффициент извлечения железа для чугуна составляет 99.5--99.8 %. Доменная печь занимает головное положение в структуре металлургического предприятия. Качество производимого в доменной печи чугуна определяет параметры последующего сталеплавильного передела, доменный газ служит основой энергетического хозяйства предприятия, в доменной печи утилизируется (через агломерационное производство) большая часть собственных отходов металлургического производства. Доменное производство является практически безотходным, т. к. доменный шлак представляет собой самостоятельную готовую продукцию, пользующуюся спросом не меньшим, чем чугун, а доменные шламы и пыли являются постоянными компонентами шихты агломерационного процесса.

2.1 История

Доменный процесс (доменная плавка) -- процесс получения чугуна в доменной печи. Представляет собой совокупность ряда самостоятельных физико-химических явлений, к которым относятся процессы восстановления оксидов и сложных соединений, разложения гидратов и солей, горения твердого, жидкого и газообразного горючего, твердофазные и гетерогенные химические реакции, теплообмен, движение твердых, жидких и газообразных составляющих и др.

Плавку железа в древности производили в ямах -- горнах, обмазанных глиной или выложенных камнем. В горн загружали дрова и древесный уголь. Через отверстие в нижней части горна нагнетали с помощью кожаных мехов воздух. На смесь древесного угля и дров засыпали измельченную железную руду. Сгорание дров и угля проходило интенсивно, внутри горна достигалась относительно высокая температура. Благодаря взаимодействию угля и оксида углерода CO с оксидами железа руды железо восстанавливалось и в виде тестообразных кусков, загрязнённых золой и шлаком, накапливалось на дне горна. Такое железо называли сыродутным. Из него необходимо было удалить примеси прежде, чем приступить к изготовлению изделий. Разогретый металл ковали и на наковальне выжимали остатки шлака, примесей и др. Отдельные куски железа сваривали в единое целое. Такой способ существовал вплоть до XII--XIII веков. Когда стали использовать энергию падающей воды и приводить в движение меха механическим способом, удалось увеличить объём воздуха, подаваемого в горн. Горн сделали больше, стенки его выросли из земли, он стал прообразом доменной печи -- доминцей. Домницы имели высоту в несколько метров и сужались кверху. Сначала они были квадратными, потом стали круглыми. Подачу воздуха производили через несколько фурм. В нижней части домницы имелось отверстие, замазываемое глиной, через которое после окончания плавки вынимали готовое железо. Улучшение технологии плавки, обкладка стенок домиицы природным огнеупорным камнем позволили значительно повысить температуру в горне. На дне печи образовывался жидкий сплав железа с углеродом -- чугун. Сначала чугун считали отходом производства, так как он был хрупким. Позже заметили, что чугун обладает хорошими литейными свойствами и из него стали отливать пушки, ядра, архитектурные украшения.

В начале XIV в. из чугуна научились получать ковкое железо, появился двухступенчатый способ производства металла. Куски чугуна переплавляли в небольших тиглях -- горнах, в которых удавалось получать высокую температуру и создавать окислительные условия в области фурм. Благодаря окислению из чугуна выжигали большую часть углерода, марганца, кремния. На дне тигля собирался слой железной массы -- крица. Масса была загрязнена остатками шлака. Ее извлекали из тигля клещами или ломом и в разогретом состоянии подвергали ковке для выдавливания загрязнений и сваривания в один прочный кусок. Такие горны назывались кричными. Они обладали большей производительностью, чем сыродутные, и давали металл более высокого качества. Поэтому со временем получение сыродутного железа было прекращено. Выгоднее было получать железо из чугуна, чем непосредственно из руды. По мере улучшения качества железа возрастали и потребности в нём в сельском хозяйстве, военном деле, строительстве, промышленности. Возрастало производство чугуна, домницы увеличивались в размерах, постепенно превращаясь в доменные печи. В XIV веке высота доменных печей достигала 8 м.

Ускоренное развитие металлургии началось после замены древесного угля коксом. Вырубка лесов для получения древесного угля привела к тому, что уже в XV в. в Англии было запрещено использовать древесный уголь в металлургии. Применение кокса не только решило проблему топлива, но и благоприятствовало росту производительности доменных печей. Благодаря повышенной прочности и хорошей теплотворной способности кокса стало возможным увеличение диаметра и высоты печей. В 1828 г. был выдан патент на применение в доменных печах подогретого воздуха. Эта мера позволила значительно снизить расход кокса, повысить производительность и температуру в горне печей [5].

2.2 Сырьевые материалы

В качестве шихтовых материалов доменной плавки используются кокс, агломерат, окатыши, руда, известняк. Шихтовые материалы загружаются в доменную печь в кусках размером 40--60 мм. При использовании крупных кусков длительность протекания процессов восстановления и офлюсования увеличивается. Мелкие куски забивают проходы для газов и нарушают равномерное опускание материалов в доменной печи. Куски кокса, агломерата должны быть прочными, хорошо сопротивляться истиранию. Под действием веса столба шихты в шахте доменной печи непрочные материалы превращаются в мелочь и пыль, которые засоряют проходы между крупными кусками, ухудшая газопроницаемость столба шихты. Кокс и агломерат должны иметь достаточную пористость -- это ускоряет сгорание топлива и восстановление оксидов железа. В шихтовых материалах должно быть минимальным содержание вредных примесей: фосфора, серы, мышьяка, свинца и др., которые переходят в состав чугуна, а из чугуна при его переработке -- в сталь. Эти примеси отрицательно влияют на свойства готового металла.

Также все шихтовые материалы должны иметь однородный химический состав, например постоянное содержание железа в агломерате, золы в коксе, извести в известняке и т. д. Колебания химического состава нарушают нормальный ход доменной печи, приводят к повышенному удельному расходу материалов. При прочих равных условиях производительность доменной печи повышается при повышении содержания железа в сырье.

2.3 Основные этапы

Начальная операция, являющаяся стартом кампании доменной печи, называется задувкой. Далее, при нормальном ходе доменной печи в результате сжигания топлива и кокса создаются высокие температуры, необходимые для протекания процессов восстановления оксидов железа и образования жидкого чугуна. Кроме чугуна, в доменной печи образуется жидкий шлак и доменный газ -- попутные отходы производства. Шихтовые материалы загружают в печь периодически, время их пребывания в печи составляет 5-8 часов. По мере освобождения пространства в нижней части печи в результате сгорания кокса и плавления железорудного сырья столб шихты опускается вниз, постепенно нагреваясь от поднимающихся вверх газов.

2.3.1 Горение топлива

Собственно работа доменной печи начинается с момента зажигания в ней топлива. Процесс горения топлива в доменной печи происходит в сферообразных пространствах перед воздушными фурмами в так называемых фурменных очагах и является одной из важнейших необходимых составляющих доменного процесса. Через фурмы доменной печи подают горячее воздушное дутье при температуре 1000--1200 °С. Непосредственно перед фурмами печи происходит сгорание кокса, образуются окислительные зоны. Кокс в этих зонах сгорает во взвешенном состоянии. Вблизи фурм образуется полость, в которой происходит вихревое движение газов, приводящее к циркуляции кусков кокса. Куски кокса переносятся потоками воздуха от фурм, а на их место попадают раскаленные до 1500°С другие куски кокса и здесь сгорают. При сгорании развиваются температуры до 2000°С. Глубина зоны достигает 1500 мм. Вокруг зоны циркуляции располагается область, в газовой фазе которой содержится CO2. Пространство перед фурмами, в котором происходит окисление углерода кокса кислородом дутья и CO2, называется окислительной зоной. По мере удаления от фурм в условиях высокой температуры и избытка углерода CO2 взаимодействует с углеродом и восстанавливается до CO. Если увеличивать давление дутья, повышать температуру и содержание кислорода в воздухе, то размеры окислительной зоны будут уменьшаться. Сгорание кокса происходит на поверхности кусков в результате контакта с окислительными газами.

Генерация подавляющего количества тепла, выделяющегося в объеме доменной печи, которое расходуется на:

-нагрев образующихся газов;

-нагрев газами продуктов плавки и шихтовых материалов;

-эндотермические химические реакции;

-нагрев охлаждающей воды системы охлаждения печи;

-потери тепла с отходящими колошниковыми газами;

-потери тепла через поверхность кожуха и других металлоконструкций доменной печи в окружающее пространство.

Генерация восстановительного газа, компонентами которого являются СО и H2 и который осуществляет всю работу по восстановлению высших оксидов железа в шахте доменной печи до вюстита и основную работу по восстановлению вюстита до железа в гетерогенных процессах восстановления.

Освобождение пространства в горне печи, куда опускаются новые порции кокса, обеспечивая тем самым непрерывное движение всех шихтовых материалов сверху вниз.

Частичное окисление кислородом дутья элементов чугуна, значительная часть капель которого стекает из зоны когезии через фурменные зоны и отбрасывается к противоположной границе фурменной зоны. Сюда же отбрасываются и капли шлака, стекающего из зоны плавления над фурменными зонами. Образующиеся при окислении элементов чугуна оксиды металлов переходят в шлаки и полностью или частично восстанавливаются затем углеродом коксовой насадки или кремнием чугуна.

Горение углерода топлива в фурменных очагах доменной печи принципиально отличается от горения топлива в любой другой печи наличием вокруг фурменных очагов плотного слоя кокса (коксового тотермана, или коксовой насадки) с температурой не менее 1300 °С, при которой появляющиеся в результате горения топлива окислители с высокой скоростью восстанавливаются углеродом кокса коксовой насадки

2.3.2 Удаление влаг и летучих веществ

Содержание физически адсорбированной или гигроскопической влаги в агломератах и окатышах зависит от климата, времени года и составляет от 0,2--0,5 до 1--2 %, в коксе (мокрого тушения) 1--4 %, в марганцевой руде иногда 5 % и более. Температура на колошнике доменной печи, куда попадают компоненты шихты, 200--400 °С, то есть значительно выше температуры кипения воды. Поэтому испарение гигроскопической влаги и удаление пара начинаются на верхних горизонтах печи сразу после нагрева кусков шихты до температуры колошника. Гидратная вода может попадать в доменную печь с бурожелезняковыми рудами или рудами, содержащими гидратную воду в пустой породе. Поскольку практически 100 % сырья для доменной плавки проходит термическую обработку, гидратной влагой можно пренебречь.

Доля карбонатов, поступающих в доменную шихту с железными (FeCO3) и марганцевыми (MnCO3) рудами, невелика. Большое значение имеют флюсующие добавки к шихте -- известняк или доломит (CaCO3, CaCO3*MgCO3). В доменной печи разложение карбонатов протекает по реакциям:

-CaCO3 = CaO + CO2 ? 177,9 МДж;

-MgCO3 = MgO + CO2 ? 109,87 МДж;

-MnCO3 = MnO + CO2 ? 96,35 МДж;

-FeCO3 = FeO + CO2 ? 87,91 МДж.

2.3.3 Восстановительные процессы

Основными восстановителями в доменном процессе являются углерод, монооксид углерода и водород. Элементы, попадающие с шихтой в доменную печь, в зависимости от их превращений в условиях доменной плавки можно разделить на практически полностью восстанавливающиеся (Fe, Ni, Со, Pb, Си, Р, Zn); частично восстанавливающиеся (Si, Mn, Cr, V, Ti); не претерпевающие восстановления (Ca, Mg, Al, Ba).

Восстановление оксидов железа газами в доменной печи протекает по реакциям:

-3Fe2O3 + CO = 2Fe3O4 + CO2? 37,25 МДж;

-Fe3O4 + CO = 3FeO + CO2 ? 20,96 МДж;

-FeO + CO = Fe + CO2 ? 13,65 МДж;

-3Fe2O3+ H2 = 2Fe3O4 + H2O ? 4,20 МДж;

-Fe3O4 + H2 = 3FeO + H2O ? 62,41 МДж;

-FeO + H2 = Fe + H2O ? 27,80 МДж.

2.3.4 Формирование чугуна

Металлическое железо появляется в нижней части шахты печи и распаре. По мере опускания материалов в доменной печи и их дальнейшего нагрева железо растворяет в себе углерод в увеличивающемся количестве. При этом температура плавления его снижается, металл плавится и в виде капель стекает в горн. Окончательный состав чугуна формируется в горне печи.

Можно выделить 4 стадии науглероживания железа в современной доменной печи.

Первая стадия -- происходит выпадение сажистого углерода на поверхности свежевосстановленного железа по реакциям (t = 400--1000 °С):

CO + H2 = Cсаж + H2O;

2CO = Cсаж + CO2.

Все факторы, способствующие протеканию этих реакций, вызывают увеличение содержания углерода в чугуне (рост давления в печи, высокая восстановимость шихт, рост основности, повышение содержания водорода в газовой фазе и др.). Вторая стадия связана с первой и характеризуется диффузией сажистого углерода в массу металлического железа (950--1150 °С):

3Fe + 2СО = Fe3C + СO2.

Третья стадия -- плавление металла с содержанием примерно 2 % С при температуре выше 1150 °С и стекание капель по коксовой насадке с растворением углерода кокса в металле: 3Fe + Cк = Fe3C.

Четвертая стадия -- это процесс, протекающий в горне. Здесь, с одной стороны, продолжается растворение углерода кокса в жидком металле, а с другой -- идет окисление углерода чугуна в фурменных очагах (связано с размером печи).

2.3.5 Формирование шлака

Состав образующегося в доменной печи шлака зависит от множества факторов (минералогический и гранулометрический состав шихты, температурный режим плавки). Значительно отличается процесс шлакообразования при работе печи с добавлением известняка и при работе на офлюсованном агломерате. Нормальной для доменного шлака считается основность равная 1,0.

Первичный доменный шлак может содержать фаялит, волластонит, геленит. В нижней половине шахты или в распаре происходит размягчение и плавление первичного шлака. Положение зоны первичного шлакообразования в печи зависит от состава шлака и распределения температуры по высоте печи. Наиболее сложной в практике эксплуатации печи является проплавка трудновосстановимой руды с легкоплавкой пустой породой, когда значительное количество оксидов железа присоединяется к первичному шлаку уже в середине шахты. Восстановление железа из шлака затруднено. Значительная часть железа восстанавливается в этом случае прямым путем, что приводит к перерасходу кокса. Преждевременное плавление первичного шлака ухудшает газопроницаемость столба шихты в печи, так как большая часть печи оказывается заполненной полурасплавленными (тестообразными) массами, представляющими значительное сопротивление проходу газов.

При плавке титаномагнетитового сырья (например, агломерат и окатыши Качканарского ГОКа) в шлак переходят значительные количества соединений титана. При этом в горне доменной печи в массе жидкого титансодержашего шлака находятся мельчайшие твердые частицы не успевшего восстановиться ильменита и карбида титана. Присутствие твердых частиц резко увеличивает вязкость шлака, что затрудняет выпуск из печи. Доменный шлак часто используется в качестве основного сырья для извлечения ценных компонентов [6].

3. СТАЛЕПЛАВИЛЬНОЕ ПРОИЗВОДСТВО

3.1 Сущность сталеплавильного производства

Сталеплавильное производство- производство стали из чугуна и стального лома в сталеплавильных агрегатах металлургических заводов. Сталеплавильное производство используется для получения из различного железосодержащего сырья стали заданного химического состава. Как правило, в сталеплавильном сырье железо находится в уже восстановленном виде, поэтому основной задачей является удаление примесей. Обычно примеси переводятся в шлак в виде соответствующих оксидов, поэтому сталеплавильные процессы являются окислительными.

Основными процессами производства стали в наше время являются кислородно-конвертерный и электросталеплавильный процессы. Сырьем обычно служит передельный чугун, металлический лом, иногда металлизированные железорудные материалы; или сочетание перечисленных компонентов.

Рассмотрим два основных современных сталеплавильных процесса и используемое в них оборудование.

3.2 Кислородный конвертер

Кислородный конвертор - периодически действующий агрегат, предназначенный для производства стали из жидкого чугуна. В конвертор подается передельный чугун, производимый в доменных печах, а также металлический лом и флюсы. С помощью фурм осуществляется продувка жидкого металла технически чистым кислородом, в результате чего окисляются примеси: углерод, кремний, марганец, фосфор. Газообразный оксид углерода удаляется из рабочего пространства. Оксиды других примесей, вместе с флюсами (обычно известь, плавиковый шпат) и материалом футеровки образуют шлак. Известь добавляют для наиболее полного протекания реакций удаления фосфора и серы. Процесс протекает автогенно, металл нагревается за счет тепла реакций окисления примесей. Металлолом играет роль охладителя, поглощая избыточную теплоту. В конце процесса металл нагревается до определенной температуры, необходимой для дальнейших технологических операций.

Жидкая сталь, получаемая в конверторе, обычно требует доводки химического состава, поэтому она отправляется на операции внепечной обработки: раскисление, легирование, продувку аргоном, вакуумирование, обработку синтетическими шлаками и т. П [7].

3.2.1 Описание устройства работы конвертера

Кислородно-конвертерный процесс осуществляется в конвертере с основной футеровкой путем подачи технически чистого кислорода под давлением 1,0 1,5 МПа через водоохлаждаемую фурму, опускаемую через горловину конвертера и имеющую на конце сопло, в жидкий чугун.

Чистота технического кислорода составляет 98 99,5 % (практически отсутствуют газообразные охладители: N2, H2O, CO2). Лучшие результаты для получения минимального содержания азота в стали получают при чистоте кислорода не менее 99 %. С целью образования основного шлака, связывающего фосфор, в конвертер в начале продувки добавляют известь.

Основным источником тепла является физическое тепло жидкого чугуна и тепло экзотермических реакций окисления примесей металлошихты: Si, Mn, P, C. Доля тепла, вносимого каждым из перечисленных элементов, зависит от удельного теплового эффекта реакции окисления, их процентного содержания в металлошихте (чугуне и металлоломе) и условий проведения процесса.

Под воздействием дутья примеси чугуна окисляются, выделяя значительное количество тепла, в результате этого одновременно снижается содержание примесей в металле и повышается температура, поддерживающая его в жидком состоянии. Когда содержание углерода достигает требуемого значения, (количество углерода определяется по времени от начала продувки и по количеству израсходованного кислорода), продувку прекращают и фурму извлекают из конвертера. Полученный металл содержит избыток кислорода, поэтому заключительная стадия плавки - раскисление и легирование металла. Течение кислородно-конвертерного процесса (то есть последовательность реакций окисления) обуславливается температурным режимом процесса и регулируется изменением количества дутья или введением в конвертер «охладителей» (скрапа, железной руды, извести). Средняя температура металла при выпуске около 1600 С.

Тепловой баланс конвертерной плавки должен быть замкнутым, то есть расход тепла на нагрев стали, шлака, газов и тепловые потери не должны превышать прихода тепла.

Кислородный конвертер представляет собой футерованный изнутри сосуд грушевидной формы, изготовленный из стального листа и имеющий сверху отверстие - горловину. Горловина служит для загрузки шлакообразующих материалов и скрапа, заливки чугуна, ввода в полость конвертера кислородной фурмы, отвода газов, слива шлака.

Конвертер состоит из трех частей (рисунок 3.1):

? верхней разъемной шлемной частью в форме усеченного конуса с меньшим основанием вверху (горловиной);

? средняя цилиндрическая часть;

? днище (разъемное или неразъемное), имеет полусферическую чашеобразную форму, выполняют съемным для удобства ремонта или глуходонным.

1 - корпус конвертера; 2 - огнеупорная футеровка; 3 - рабочее пространство конвертера; 4 - горловина; 5 - опорное кольцо с цапфами; 6 - опорные узлы; 7 - станина; 8 - водоохлаждаемая кислородная фурма.

Рисунок 3.1 ? Устройство кислородного конвертера

Для отделения металла от шлака при сливе в ковш конвертер снабжают леткой (сталевыпускным отверстием). Кожух конвертера сваривают из толстых стальных листов толщиной от 20 до 110 мм. Футеровку делают трехслойной:

? арматурный (теплозащитный) слой толщиной 110 250 мм, примыкающий к кожуху, выполняют из магнезитового или магнезитохромитового кирпича;

? рабочий (внутренний, огнеупорный) слой из периклазоизвесткового, периклазоуглеродистого и др. кирпича, толщина которого в зависимости от вместимости конвертера составляет 380 750 мм;

? промежуточный (между арматурным и рабочим слоем) обычно делают набивку толщиной 70 100 мм из огнеупорной массы.

Общая толщина футеровки конвертеров вместимостью 50 300 тонн составляет 700 1000 мм. Перед вводом конвертера в работу футеровку обжигают при 1100 1200 С. Обычно футеровка выдерживает 800 2000 плавок. В настоящее время при использовании периклазоуглеродистых кирпичей и создании шлакового гарнисажа, путем раздува шлака после каждой плавки, достигнута стойкость ~ 15000 плавок.

Корпус конвертера крепится в опорном кольце с цапфами, опирающимися на подшипники, установленными в опорных узлах на станинах. Цапфы соединены с механизмом поворота, обеспечивающим поворот конвертера на 360 в любом направлении.

По вертикальной оси конвертера сверху через горловину вводится водоохлаждаемая фурма. Над конвертером, кроме фурмы, находятся газоотводящий тракт и система загрузки сыпучих материалов. Под конвертером по рельсам перемещаются сталевоз и шлаковоз (тележки для сталеразливочного и шлакового ковшей). Конвертер имеет две водоохлаждаемые фурмы, которые служат для подачи кислорода при продувке металла в конверторе. Одна фурма рабочая, другая резервная. Фурма изготовляется из 3 цельнотянутых труб, концентрически входящих одна в другую. Кислород, поступающий из кислородного цеха, подается по внутренней трубе; по наружной трубе подводится, а по третьей трубе отводится охлаждающая вода. К нижней части фурмы привинчивается или приваривается медная головка-сопло. Фурма устанавливается в вертикальном положении строго по оси конвертора [8].

3.2.2 Технологический процесс

Кислородно-конверторный процесс- это выплавка стали из жидкого чугуна с добавкой лома в конверторе с основной футеровкой и продувкой кислородом сверху через фурму.

Основной задачей управления конверторной плавкой является получение стали с заданным содержанием углерода, необходимой температурой и содержанием вредных примесей.

Достижение этой цели требует правильного расчета шихтовки исходных материалов, т.е. количество чугуна, скрапа, руды, извести, боксита и синхронного хода процессов нагрева ванны и удаление примесей.

Сущность конвертерных процессов на воздушном дутье заключается в том, что залитый в плавильный агрегат (конвертор) чугун продувают сверху воздухом; кислород воздуха окисляет примеси чугуна, в результате чего он превращается в сталь.

3.3 Электросталеплавильный цех

Применяемая в электросталеплавильном цеху (ЭСПЦ) технология позволяет стабильно обеспечивать в стали массовую долю серы до 0,005% и фосфора до 0,015% и менее каждого, а также высокую чистоту стали по содержанию неметаллических включений. Эта технология гарантирует получение проката с механическими свойствами, превышающими требования отечественных и зарубежных стандартов.

Весь металл выплавляемый в цехе, подвергают внепечной обработке, включающей в себя: ввод в ковш твёрдой шлакообразующей смеси, продувку металла в ковше инертным газом через фурму в скоростном режиме. Разливку стали на машину непрерывного литья заготовок (МНЛЗ) производят с зашитой струи металла от вторичного окисления. Технология гарантирует получение проката с механическими свойствами, превышающими требования отечественных (ГОСТ) и зарубежных (ОГМ) стандартов.

Электросталеплавильный цех отличается высоким уровнем автоматизации и механизации производственных процессов.

В ЭСПЦ используются ДСП с отворачивающимся сводом (рисунок 3.2), который подвешивают к Г-образной конструкции (полупорталу). Приподнятый свод вместе со стойками и полупорталом поворачивают в горизонтальной плоскости вокруг вертикальной оси на 75-- 90°, открывая рабочее пространство. Все механизмы, за исключением механизма вращения корпуса, выполнены с гидравлическими приводами. Основная несущая конструкция печи (люлька) опирается на фундамент двумя сегментами. Свод жестко закреплен на полупортале, соединенном с корпусом печи. При работе печи нагрузка от свода, полупортала и электродержателей передается на кожух печи.

Механизм подъема и отворота свода расположен на отдельном фундаменте и не связан с люлькой.

Основные достоинства электропечей заключаются в возможности быстро нагреть металл, что позволяет вводить в печь большие количества легирующих добавок, иметь в печи восстановительную атмосферу и безокислительные шлаки, что предопределяет малый угар легирующих элементов, также плавно и точно регулировать температуру металла, более полно, что в других печах раскислять металл, получая его с низким содержанием неметаллических включений, получать сталь с низким содержанием серы.

...

Подобные документы

  • Краткая характеристика сырьевой базы Западносибирского металлургического комбината. Коксохимическое и агломерационное производство. Исследование особенностей технологии производства стали в конвертерах с пониженным расходом чугуна. Безопасность проекта.

    дипломная работа [3,9 M], добавлен 15.10.2013

  • Технико-экономические показатели доменного производства. Способы улучшения качества стального слитка. Производство стали в кислородных конвертерах. Интенсификация доменного процесса. Устройство и работа мартеновской печи. Маркировка магния и его сплавов.

    контрольная работа [58,8 K], добавлен 03.07.2015

  • Окускование полезных ископаемых. Агломерационное производство как один из начальных этапов металлургического цикла. Схема расположения оборудования на фабрике. Производство окатышей. Зависимость прочности окатышей от диаметра и температуры обжига.

    реферат [1,3 M], добавлен 18.11.2013

  • Современное металлургическое производство чугуна и стали. Схема современного металлургического производства. Продукция черной металлургии. Откатывание (производство окатышей). Образование сплава железа с углеродом при низкой температуре. Восстановление ме

    лекция [1,0 M], добавлен 06.12.2008

  • Металлургическое производство и его структура. Основные перспективы развития металлургии. Применение продукции металлургического производства. Фрезерование как обработка материалов резанием с помощью фрезы. Классификация фрез по направлению зубьев фрезы.

    курсовая работа [720,3 K], добавлен 24.09.2012

  • Металлургия стали как производство. Виды стали. Неметаллические включения в стали. Раскисление и легирование стали. Шихтовые материалы сталеплавильного производства. Конвертерное, мартеновское производство стали. Выплавка стали в электрических печах.

    контрольная работа [37,5 K], добавлен 24.05.2008

  • Основные способы производства стали. Конвертерный способ. Мартеновский способ. Электросталеплавильный способ. Разливка стали. Пути повышения качества стали. Обработка жидкого металла вне сталеплавильного агрегата. Производство стали в вакуумных печах.

    курсовая работа [1,5 M], добавлен 02.01.2005

  • Основы металлургического производства. Производство чугуна и стали. Процессы прямого получения железа из руд. Преимущество плавильных печей. Способы повышения качества стали. Выбор метода и способа получения заготовки. Общие принципы выбора заготовки.

    курс лекций [5,4 M], добавлен 20.02.2010

  • Структура прокатного производства. Прокатное производство, представляющее комплекс взаимосвязанных технологических переделов, определяющих качество прокатной продукции. Технологический процесс производства. Информационные потоки на участках цехов.

    отчет по практике [34,5 K], добавлен 30.11.2010

  • Полный металлургический цикл. Характеристика доменного, сталеплавильного и прокатного производства. Состав оборудования прокатных станов. Расчет на износ узлов трения, динамической нагруженности элементов системы и усталостной долговечности деталей.

    учебное пособие [33,9 M], добавлен 24.12.2015

  • Общая характеристика Новолипецкого металлургического комбината, его производственные мощности и история развития. Особенности доменного цеха, производства динамной стали, горячего и холодного проката. Место предприятия на металлургическом рынке.

    отчет по практике [1,6 M], добавлен 07.12.2010

  • Направления деятельности основных и вспомогательных цехов металлургического завода. Особенности выбора технологии и оборудования для технического перевооружения сталеплавильного производства. Рассмотрение технологии плавки в современной дуговой печи.

    отчет по практике [36,1 K], добавлен 02.11.2010

  • Основные характеристики доменных печей ОАО "Новолипецкого металлургического комбината". Основные причины невозможности повышения эффективности работы доменного производства. Производство горячего и холодного проката. Экологическая политика компании.

    курсовая работа [1,6 M], добавлен 05.12.2014

  • Особенности металлургического производства. Недостаток при анализе хода технологического процесса. Этапы внедрения SPC в литейном производстве. Описание математической модели изменчивости. Пример проведения корреляционного анализа производства.

    презентация [1,7 M], добавлен 05.11.2011

  • Промышленная классификация металлов. Исходные материалы для доменной плавки. Производство стали в кислородных конвертерах, в мартеновских и двухванных печах. Продукты доменного производства. Пирометаллургические и гидрометаллургические процессы.

    реферат [1,8 M], добавлен 22.10.2013

  • Характеристика сталеплавильного и термического участков цеха металлургического комбината. Описание технологии термообработки деталей, оборудования для термической обработки звездочек. Обзор предложений по увеличению срока службы деталей аглодробилок.

    отчет по практике [4,1 M], добавлен 05.04.2012

  • АМК как одно из старейших и крупнейших предприятий черной металлургии Украины. Технология выплавки чугуна и используемое для этого оборудование. Продукты доменного производства. Производство стали в мартеновской печи. Описание станочного парка цеха.

    отчет по практике [36,9 K], добавлен 30.04.2011

  • Характеристика рельсовой стали - углеродистой легированной стали, которая легируется кремнием и марганцем. Химический состав и требования к качеству рельсовой стали. Технология производства. Анализ производства рельсовой стали с применением модификаторов.

    реферат [1022,5 K], добавлен 12.10.2016

  • Классификация и маркировка стали. Характеристика способов производства стали. Основы технологии выплавки стали в мартеновских, дуговых и индукционных печах. Универсальный агрегат "Conarc". Отечественные агрегаты ковш-печь для внепечной обработки стали.

    курсовая работа [2,1 M], добавлен 11.08.2012

  • Исходные материалы для выплавки чугуна. Устройство доменной печи. Выплавка стали в кислородных конвертерах, мартеновских, электрических печах. Продукты доменного производства. Производство меди, алюминия. Термическая и химико-термическая обработка стали.

    учебное пособие [7,6 M], добавлен 11.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.