Решение квадратных уравнений
История формирования и развития квадратных уравнений: направления и этапы их исследования в Древнем Вавилоне, Индии, Европе XIII–XVII вв. Схема нахождения корня. Способы решения данного типа уравнений: Разложение на множители, выделение полного квадрата.
Рубрика | Математика |
Предмет | Математика |
Вид | методичка |
Язык | русский |
Прислал(а) | ebanarium97 |
Дата добавления | 18.12.2012 |
Размер файла | 37,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
История развития формул корней квадратных уравнений. Квадратные уравнения в Древнем Вавилоне. Решение квадратных уравнений Диофантом. Квадратные уравнения в Индии, в Хорезмии и в Европе XIII - XVII вв. Теорема Виета, современная алгебраическая запись.
контрольная работа [992,3 K], добавлен 27.11.2010Изучение истории квадратных уравнений. Анализ общего правила решения квадратных уравнений, изложенного итальянским математиком Леонардо Фибоначчи. Решение квадратных уравнений с помощью циркуля и линейки, с помощью номограммы, способом "переброски".
презентация [840,6 K], добавлен 16.01.2011Теоретические аспекты обучения решению уравнений в 8 классе. Основные направления изучения линий уравнений в школьном курсе алгебры. Методика изучения квадратных уравнений. Методико-педагогические основы обучения решению квадратных уравнений.
курсовая работа [134,3 K], добавлен 01.07.2008Выведение формулы решения квадратного уравнения в истории математики. Сравнительный анализ технологий различных способов решения уравнений второй степени, примеры их применения. Краткая теория решения квадратных уравнений, составление задачника.
реферат [7,5 M], добавлен 18.12.2012История квадратных уравнений: уравнения в Древнем Вавилоне и Индии. Формулы четного коэффициента при х. Квадратные уравнения частного характера. Теорема Виета для многочленов высших степеней. Исследование биквадратных уравнений. Сущность формулы Кордано.
реферат [75,8 K], добавлен 09.05.2009Знакомство с уравнениями и их параметрами. Решение уравнений первой степени с одним неизвестным, определение множества допустимых значений неизвестного. Понятие модуля числа, решение линейных уравнений с модулем и квадратных уравнений с параметром.
контрольная работа [122,1 K], добавлен 09.03.2011Решение биквадратных, симметричных и кубических уравнений, содержащих радикалы. Решение уравнений четвертой степени методом понижения степени и разложения на множители. Применение бинома Ньютона. Графический метод решения уравнений повышенной степени.
презентация [754,7 K], добавлен 29.05.2010Исследование метода квадратных корней для симметричной матрицы как одного из методов решения систем линейных алгебраических уравнений. Анализ различных параметров матрицы и их влияния на точность решения: мерность, обусловленность и разряженность.
курсовая работа [59,8 K], добавлен 27.03.2011Элементарные тригонометрические уравнения и методы их решения. Введение вспомогательного аргумента. Схема решения тригонометрических уравнений. Преобразование и объединение групп общих решений тригонометрических уравнений. Разложение на множители.
курсовая работа [1,1 M], добавлен 21.12.2009Решение нелинейных уравнений методом касательных (Ньютона), особенности и этапы данного процесса. Механизм интерполирования функции и численное интегрирование. Приближенное решение обыкновенных дифференциальных уравнений первого порядка методом Эйлера.
курсовая работа [508,1 K], добавлен 16.12.2015Характеристика и использование итерационных методов для решения систем алгебраических уравнений, способы формирования уравнений. Методы последовательных приближений, Гаусса-Зейделя, обращения и триангуляции матрицы, Халецкого, квадратного корня.
реферат [60,6 K], добавлен 15.08.2009Сведения из истории математики о решении уравнений. Применение на практике методов решения уравнений и неравенств, основанных на использовании свойств функции. Исследование уравнения на промежутках действительной оси. Угадывание корня уравнения.
курсовая работа [1,4 M], добавлен 07.09.2010Определение понятия уравнения с параметрами. Принцип решения данных уравнений при общих случаях. Решение уравнений с параметрами, связанных со свойствами показательной, логарифмической и тригонометрической функциями. Девять примеров решения уравнений.
реферат [67,0 K], добавлен 09.02.2009Содержание текстов Единого государственного экзамена. Решение уравнений высших степеней. Разложение многочлена третьей степени на множители. Определение корней квадратного уравнения и рациональных корней многочлена. Старший коэффициент делимого.
реферат [42,1 K], добавлен 20.10.2013Сущность и содержание метода Крамера как способа решения квадратных систем линейных алгебраических уравнений с ненулевым определителем основной матрицы. Содержание основных правил Крамера, сферы и особенности их практического применения в математике.
презентация [987,7 K], добавлен 22.11.2014Система линейных алгебраических уравнений. Основные формулы Крамера. Точные, приближенные методы решения линейных систем. Алгоритм реализации метода квадратных корней на языке программирования в среде Matlab 6.5. Влияние мерности, обусловленности матрицы.
контрольная работа [76,6 K], добавлен 27.04.2011Уравнения, системы линейных, квадратных и третьей степени уравнений. Уравнения высших степеней сводящиеся к квадратным. Системы уравнений, три переменные. График квадратичной функции, пределы, производные. Интегральное счисление и примеры решения задач.
шпаргалка [129,6 K], добавлен 22.06.2008Определение системы с двумя переменными, способ ее решения. Специфика преобразования линейных уравнений с двумя переменными. Способ сложения и замены переменных в этом виде уравнений, примеры их графиков. Алгоритм нахождения количества системы уравнений.
презентация [226,6 K], добавлен 08.12.2011Уравнения Фредгольма и их свойства как классический пример интегральных уравнений с постоянными пределами интегрирования, их формы и степени, порядок формирования и решения. Некоторые приложения интегральных уравнений. Общая схема метода квадратур.
курсовая работа [97,2 K], добавлен 25.11.2011Ученые математики, открытия которых являются основой научно-технического прогресса. Квадратные уравнения в Европе в XII-XVII веках. Научная деятельность Ф. Виета и её роль в развитии математики в XVI веке. Особенности применения научных открытий в жизни.
презентация [1,6 M], добавлен 16.05.2012