Группы с операторами
Подгруппы и факторгруппы групп с операторами. Теоремы о гомоморфизмах. Содержание и принципы реализации теорем Шура – Цассенхауза и Фейта – Томпсона. Понятие и содержание, свойства обобщенной подгруппы Фраттини. Расширения посредством автоморфизмов.
Рубрика | Математика |
Предмет | Математика |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | sirius2011 |
Дата добавления | 08.01.2013 |
Размер файла | 825,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Исследование свойств конечной разрешимой группы с заданными инвариантами подгруппы Шмидта. Основные свойства проекторов и инъекторов. Определение подгруппы группы, максимальной подгруппы группы, инъектора и биектора. Изложение теорем, следствий и лемм.
курсовая работа [177,7 K], добавлен 22.09.2009Строение конечных групп по заданным свойствам их обобщенно субнормальных подгрупп. Использование методов абстрактной теории групп и теории формаций конечных групп. Субнормальные и обобщенно субнормальные подгруппы и их свойства. Обобщение теоремы Хоукса.
дипломная работа [288,7 K], добавлен 20.12.2009Понятие алгебраической системы (группы), ключевые условия, которым она удовлетворяет и ее нейтральный элемент. Основные свойства группы. Мультипликативные и аддитивные циклические подгруппы и группы. Теорема Лагранжа и характеристика следствий из нее.
курсовая работа [173,6 K], добавлен 10.01.2015Группа, как совокупность преобразований, замкнутая относительно их композиции. Изучение нильпотентных групп, их простейших свойств и признаков. Особенности доказывания теорем Силова, Лагранжа, Виланда. Подгруппа Фраттини конечной группы нильпотентна.
курсовая работа [553,1 K], добавлен 10.04.2011Характеристика и основополагающие свойства силовых подгрупп конечных групп, определение и доказательство соответствующих лемм. Понятие и свойства супердобавлений. Строение группы с максимальной и силовской подгруппой, обладающей супердобавлением.
курсовая работа [489,5 K], добавлен 05.01.2010Исследование существования примарных нормальных подгрупп в бипримарных группах. Конечные бипримарные группы, разрешимые группы порядка. Порядки силовских подгрупп общей линейной группы. Доказательство лемм и теорем с использованием бинома Ньютона.
курсовая работа [527,0 K], добавлен 26.09.2009Теория групп как фундаментальное понятие и один из разделов современной математики. Основные определения и теоремы. Смежные классы: правые и левые, двойные. Нормальные подгруппы, фактор-группы. Способы их использования в решении различных задач.
курсовая работа [136,6 K], добавлен 30.03.2010Сущность теории групп. Роль этого понятия в математике. Мультипликативная форма записи операций, примеры групп. Формулировка сущности подгруппы. Гомоморфизмы групп. Полная и специальная линейная группы матриц. Классические группы малых размерностей.
курсовая работа [241,0 K], добавлен 06.03.2014Группы и их подгруппы. Централизаторы и нормализаторы. Разрешимые, сверхразрешимые, нильпотентные и холловы группы. Прямое, полупрямое произведения и сплетение групп. Простейшие свойства классов Фиттинга. Нормальные классы Фиттинга и их произведение.
дипломная работа [177,3 K], добавлен 19.04.2011Неразрешимые конечные группы с нильпотентными добавлениями к несверхразрешимым подгруппам. Нормальные подгруппы конечных-обособленных груп. Факторизуемые группы с разрешимыми факторами нечетных индексов. Произведения 2-разложимых групп специальных видов.
курсовая работа [546,1 K], добавлен 26.09.2009Выработка современного абстрактного понятия групп. Простейшие свойства конечных нильпотентных групп. Подгруппа Фраттини конечной группы нильпотентна. Нахождение прямого произведения нильпотентных групп. Бинарная алгебраическая операция на множестве.
курсовая работа [393,4 K], добавлен 21.09.2013Розвиток теорії задачi Кошi та двоточкової задачi для еволюцiйних рiвнянь з псевдо-Бесселевими операторами в класах початкових умов, що є узагальненими. Вивчення властивостей перетворення Бесселя функції та оператора узагальненого зсуву аргументу.
автореферат [21,1 K], добавлен 11.04.2009Разрешимость факторизуемой группы с разложимыми факторами. Свойства конечных групп, являющихся произведением двух групп, одна из которых группа Шмидта, вторая - 2-разложимая. Произведение бипримарной и 2-разложимой групп. Доказательство теорем и лемм.
курсовая работа [475,0 K], добавлен 22.09.2009Конструкции и свойства конечных полей. Понятие степени расширения, определенность поля разложения, примитивного элемента, строение конечной мультипликативной подгруппы поля. Составление программы, которая позволяет проверить функцию на примитивность.
курсовая работа [19,2 K], добавлен 18.12.2011Исследование самых абстрактных алгебраических систем, в частности, универсальных алгебр. Основные определения, обозначения и используемые результаты. Свойства централизаторов конгруэнции универсальных алгебр. Конгруэнция Фраттини, подалгебра Фраттини.
курсовая работа [264,7 K], добавлен 22.09.2009Виды преобразования симметрии фигур. Понятие оси и плоскости симметрии. Одновременное применение преобразований поворота и отражения, зеркально-поворотная ось. Сопряженные элементы, подгруппы и общие свойства и классификация групп операций симметрии.
реферат [28,0 K], добавлен 25.06.2009Доказательство первой, второй и третей теоремы Силова. Описание групп порядка pq. Смежные классы по подгруппе и теорема Лагранжа. Классы сопряженных элементов. Нормализатор множества в группе. Теоремы о гомоморфизмах. Примеры силовских подгрупп.
курсовая работа [246,9 K], добавлен 21.04.2011Описание ненильпотентных групп с перестановочными обобщенно максимальными подгруппами. Изучение групп с Х-перестановочными I-максимальными подгруппами. Особенности групп, в которых 2-максимальные подгруппы перестановочны с 3-максимальными подгруппами.
курсовая работа [431,8 K], добавлен 02.03.2010Особенности факторизации четырехмерных симплектических групп. Исследование и анализ композиции геометрических преобразований. Характеристика изометрии, закономерных пространств. Методы решения структурных теорем – центры, коммутанты, теоремы о простоте.
дипломная работа [605,8 K], добавлен 14.02.2010Доказательство теорем Силова о конечных группах, которые представляют собой неполный вариант обратной теоремы к теореме Лагранжа и для некоторых делителей порядка группы G гарантируют существование подгрупп такого порядка. Нахождение силовских р-подгрупп.
курсовая работа [161,3 K], добавлен 31.03.2011