Производная функция
Геометрический смысл производной. Зависимость между дифференцируемостью и непрерывностью функции. Таблица элементарных производных. Признаки постоянства, возрастания и убывания функций. Максимум и минимум функции. Признаки существования экстремума.
Рубрика | Математика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 19.01.2013 |
Размер файла | 235,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Ответ: 16v5R3/135 м3 при H = 2v5R/15.
Задача 9. В конус вписан цилиндр, одно из оснований которого лежит в плоскости основания конуса, а окружность другого основания принадлежит боковой поверхности конуса. Правильная четырехугольная призма расположена так, что ее нижнее основание лежит в плоскости верхнего основания цилиндра, вершины верхнего основания принадлежат боковой поверхности конуса. Отношение длины диагонали основания призмы к ее высоте равно отношению длины диаметра цилиндра к его высоте. При какой высоте цилиндра объем призмы будет наибольшим? Найти этот объем призмы, если высота конуса - H и радиус основания - R
Дано. ASO - конус;
SO = H;
AO = R;
CL/CM = BK/BN;
Найти. BN, чтобы Vпр = max
Решение. BN = x, CM = h, Vпр = Sосн CM = CL2h/2.
?CSD подобен ?ASO: CD/AO = SD/SO;
CD/R = (H - x - h)/H;
CD = R(H - x -h)/H.
?BSE подобен ?ASO: BE/AO = SE/SO;
BE/R = (H - h)/H;
BE = R(H - h)/H.
Находим отношение CD/BE = (H - x - h)/(H - x).
Исходя из условия (CL/CM = BK/BN) задачи делаем вывод,
что CD/BE = h/x, т. е. (H - x - h)/(H - x) = h/x => h = (Hx - x2)/H
Тогда CD = R(H - x - (Hx - x2)/H)/H = R(H2 - Hx - Hx +x2)/H2 = R(H - x)2/H2,
CL = 2CD = 2R(H - x)2/H2.
V = 4R2(H - x)4(H - x)x/(2H*H4) = 2R2(H - x)5x/H5;
V'(x) = 2R2((H - x)5 - 5(H - x)4 x)/H5 = 0,
(H - x) - 5x = 0, x = H/6.
V = 2HR2(5H/6)5/(6H5) = 2R2H*55/66.
Ответ: при H/6, Vmax = 2R2H*55/66.
В физике производная применяется в основном для вычисления наибольших или наименьших значений для каких-либо величин.
Задача 1.Потенциальная энергия U поля частицы, в котором находится другая, точно такая же частица имеет вид: U = a/r2 - b/r, где a и b -- положительные постоянные, r -- расстояние между частицами.
Найти:
а) значение r0 соответствующее равновесному положению частицы;
б) выяснить устойчиво ли это положение;
в) Fmax значение силы притяжения;
г) изобразить примерные графики зависимости U(r) и F(r).
U = a/r2 - b/r;
Решение:
a и b -- counts; Для определения r0 соответствующего равновесному r0 -- ? положению частицы исследуем f = U(r) на экстремум.
Fmax -- ? Используя связь между потенциальной энергией поля U и F, тогда F = -dU/dr, получим F = -dU/dr = - (-2a/r3+b/r2) = 0;
при этом r = r0; 2a/r3 = b/r2 => r0 = 2a/b;
Устойчивое или неустойчивое равновесие определим по знаку второй производной:
d2U/dr02= dF/dr0=-6a/r04 + 2b/r03 = -6a/(2a/b)4+2b/(2a/b)3=(-b4/8a3)<0;
равновесие устойчивое.
Для определения Fmax притяжения исследую на экстремумы функцию:
F = 2a/r3-- b/r2;
dF/dr = -6a/r4 + 2b/ r3 = 0;
при r = r1 = 3a/b;
подставляя, получу Fmax = 2a/r31 -- b/r31 = - b3/27a2;
U(r) = 0; при r = a/b; U(r)min при r = 2, a/b = r0;
F = 0; F(r)max при r = r1 = 3a/b;
Задача 2. Три резистора сопротивлениями R1, R2, R3 соединены параллельно. Сопротивление R1 в 9 раз больше сопротивления R2. Если все три резистора соединить последовательно, то сопротивление цепи равно R.
Определить сопротивления резисторов при которых сопротивление исходной цепи будет наибольшим.
R1 = 9 R2
Решение:
При параллельном соединении резисторов эквивалентное
R1, R2, R3 сопротивление по формуле:
1/Rэкв = 1/R1+1/R2+1/R3;
Rэкв max-- ? выражу R3 через R2:
R3 = R-- R1--R2=R--10R2;
тогда 1/Rэкв = (10R--91R2)/(9R2(R--10R2));
Задача сведена к определению наименьшего значения функции в интервале [0;R/10].
Возьмем производную от f(1/Rэкв) по R2 и преобразуем ее:
(1/Rэкв)' = -910(R2--R/7)(R2--R/13)/(9R22 (R-10R2)2);
В интересующем нас интервале только одна точка R2 = R/13 в которой эта производная меняет знак с “--” слева на ”+”справа. Поэтому в точке R2 = R/13 достигается минимум функции 1/Rэкв и максимум функции Rэкв, при этом
R1 = 9R/13; R2 = 1R/13; R3 = 3R/13;
Rэкв max = 9R/169;
Задача 4. В магнитном поле с большой высоты падает кольцо, имеющее диаметр d и сопротивление R. Плоскость кольца все время горизонтальна. Найти установившуюся скорость падения кольца, если вертикальная составляющая индукции магнитного поля изменяется с высотой H по закону B = B0(1 + бH), где б = const (черт.).
Решение. Пусть n - нормаль к плоскости кольца, тогда магнитный поток, созданный вертикальной составляющей магнитного поля.,
Ф = BS = B0(1 + бH)S,
где S = рd2/4 - площадь контура.
ЭДС индукции, возникающая в кольце,
E = - Ф'(t) = - (B0(1 + бH)S)' = - B0SбH'(t).
Производная H'(t) = н
н - это проекция скорости кольца на ось H. Таким образом,
Ei = - B0Sб( - нн).
Так как скорость кольца направлена против оси H, то нн = - н, где н - модуль скорости кольца и Ei = B0Sбн.
По кольцу протекает индукционный ток
J = Ei /R = B0Sбн/R.
В результате в кольце за промежуток времени Дt выделяется количество теплоты
Q = J2RДt.
На высоте H1 кольцо обладает механической энергией
W1 = mgH1 + mн2/2,
на высоте H2
W2 = mgH2 = mgH2 + mн2/2
(н = const, т. е. скорость кольца не меняется). По закону сохранения энергии
W1 = W2 + Q => mgH1 = mgH2
+ J2RДt => mg(H1 - H2) = (B
0Sбн/R)2RДt =>
mg(H1 - H2) = (B0Sбн)2
Дt/R (*)
Разность (H1 - H2) есть расстояние, пройденное кольцом при равномерном движении, поэтому H1 - H2 = нДt, и уравнение (*) примет вид:
mgнДt = (B0Sбн)2Дt/R => mg = (B0Sб)2н/R =>
н = mgR/(B0Sб)2 = 16mgR/(B0рd2б)2.
Ответ: н = mgR/(B0Sб)2 = 16mgR/(B0рd2б)2.
Задача 6. Цепь с внешним сопротивлением R = 0,9 Ом питается от батареи из k=36 одинаковых источников, каждый из которых имеет ЭДС E=2 В и внутреннее сопротивление r0 = 0,4 Ом. Батарея включает n групп, соединенных параллельно, а в каждой из них содержится m последовательно соединенных аккумуляторов. При каких значениях m, n будет получена максимальная J во внешнем R(см. рис.).
Решение:
При последовательном соединении аккумуляторов Eгр = m*E; rгр = r0*m; а при параллельном соединении одинаковых rбат = r0m/n; Eбат = m*E,
По закону Ома J = mE/(R+ r0m/n) = mEn/(nR + r0m)
Т.к. k - общее число аккумуляторов, то k = mn;
J = kE/(nR + r0m) = kE/(nR + kr0/n);
Для нахождения условия при котором J тока в цепи максимальная исследую функцию J = J(n) на экстремум взяв производную по n и приравняв ее к нулю.
J'n-(kE(R--kr0/n2))/ (nR + kr0/n)2 = 0;
n2 = kr/R; .
n = vkr/R = v3,6*0,4/0,9 = 4;
m = k/n = 36/4 = 9;
при этом Jmax = kE/(nR + mr0) = 36*2/(4*0,9 + 9*0,4) = 10 А;
Ответ: n = 4, m = 9.
Задача 7. Платформа массой М начинает двигаться вправо под действием постоянной силы F. Из неподвижного бункера на нее высыпается песок. Скорость погрузки постоянна и равна m кг/с. Пренебрегая трением, найти зависимость от времени ускорения а платформы в процессе погрузки.
Определить ускорение а1 платформы в случае, если песок не насыпается на платформу, а из наполненной высыпается через отверстие в ее дне с постоянной скоростью m кг/с.
Решение.
Рассмотрим сначала случай, когда песок насыпается на платформу
Движение системы платформа-песок можно описать с помощью второго закона Ньютона:
dP/dt = FS
P - импульс системы платформа-песок, FS - сила, действующая на систему платформа-песок.
Если через p обозначить импульс платформы, то можно написать:
dp/dt = F
Найдем изменение импульса платформы за бесконечно малый промежуток времени Dt:
Dp = (M+m(t+Dt))(u+Du) - (M+mt)u =FDt
где u - скорость платформы
Раскрыв скобки и, проведя сокращения получаем:
Dp = muDt + MDu+mDut+ mDuDt =FDt
Разделим на Dt и перейдем к пределу Dt ®0
Mdu/dt+mtdu/dt+mu=F
или
d[(M+mt)u]/dt = F
Это уравнение можно проинтегрировать, считая начальную скорость платформы равной нулю:
(M+mt)u = Ft
Следовательно:
u = Ft/(M+mt)
Тогда, ускорение платформы:
a = du/dt = (F(M+mt)-Ftm)/(M+mt)2 = FM / (M+mt)2
Рассмотрим случай, когда песок высыпается из наполненной платформы.
Изменение импульса за малый промежуток времени:
Dp = (M-m(t+Dt))(u+Du) +mDtu - (M-mt)u = FDt
Слагаемое mDtu есть импульс количества песка, которое высыпалось из платформы за время Dt
Тогда:
Dp = MDu - mtDu - mDtDu = FDt
Разделим на Dt и перейдем к пределу Dt ®0
(M-mt)du/dt = F
или
a1=du/dt= F/(M-mt)
Ответ: a = FM / (M+mt)2 , a1= F/(M-mt)
СПИСОК ЛИТЕРАТУРЫ
1. М64 И. Ф. Суворов “Курс высшей математики для техникумов”. М.: Просвещение, 1964.
2. М 71 В. В. Ткачук “Математика--абитуриенту”. М.: Просвещение, 1980.
3. P60 Д. Е. Родионов, Е. М. Родионов “Стереометрия в задачах”. М.: Учебный центр “Ориентир” - “Светоч”, 1998.
4. P60 В. А. Колесников. “Физика. Теория и методы решения конкурсных задач. Часть II”. М.: Учебный центр “Ориентир” - “Светоч”, 2000.
5. Л77 Л. М. Лоповок “1000 проблемных задач по математике”. М.: Просвещение, 1995.
6. М89 Д. Т. Письменный “Математика для старшеклассников. Теория\задачи”. М.: “Айрис”, “Рольф”, 1996.
7. С 82 М. Я. Выгодский “Справочник по элементарной математике”. Спб.: Союз, 1997.
8. В20 В. И. Васюков, И. С. Григорьян, А. Б. Зимин, В. П. Карасева “Три подсказки - и любая задача решена! Часть III”. М.: Учебный центр “Ориентир” при МГТУ им. Н. Э. Баумана, 2000.
9. Э 61 В. А. Чуянов “Энциклопедический словарь юного физика”. М.: Педагогическа-Пресс, 1999.
10. Б 27 А. Б. Басков, О. Б. Баскова, Н. В. Мирошин “Математика. Часть 2. Алгебра и начала анализа”. М.: МИФИ, 1997.
Размещено на Allbest.ru
...Подобные документы
Геометрический смысл производной. Анализ связи между непрерывностью и дифференцируемостью функции. Производные основных элементарных функций. Правила дифференцирования. Нахождение производной неявно заданной функции. Логарифмическое дифференцирование.
презентация [282,0 K], добавлен 14.11.2014Производная функция. Касательная к кривой. Геометрический смысл производной. Производные от элементарных функций. Изучение функций с помощью производной. Максимум и минимум функции. Точки перегиба. Дифференциал.
статья [122,0 K], добавлен 11.01.2004Основные признаки возрастания и убывания функции. Максимум и минимум функций. План решения текстовых задач на экстремум. Производные высших порядков. Формулы Тейлора и Маклорена. Применение дифференциалов при оценке погрешностей. Длина плоской кривой.
курсовая работа [1,0 M], добавлен 25.11.2010Определение производной функции, геометрический смысл ее приращения. Геометрический смысл заданного отношения. Физический смысл производной функции в данной точке. Число, к которому стремится заданное отношение. Анализ примеров вычисления производной.
презентация [696,5 K], добавлен 18.12.2014Условия существования предела в точке. Расчет производных функции, заданной параметрически. Нахождение точки экстремума, промежутков возрастания и убывания функций, выпуклости вверх и вниз. Уравнение наклонной асимптоты. Точка локального максимума.
курсовая работа [836,0 K], добавлен 09.12.2013Правило нахождения производной произведения функций. Формулы нахождения производных для функций, заданных параметрически. Геометрический смысл производной. Приращение и дифференциал функции. Наибольшее и наименьшее значения на замкнутом множестве.
контрольная работа [75,5 K], добавлен 07.09.2010Нахождение производных функций. Определение наибольшего и наименьшего значения функции. Область определения функции. Определение интервалов возрастания, убывания и экстремума. Интервалы выпуклости, вогнутости и точки перегиба. Производные второго порядка.
контрольная работа [98,4 K], добавлен 07.02.2015Экстремум функции: максимум и минимум. Необходимое условие экстремума. Точки, в которых выполняется необходимое условие. Схема исследования функции. Поиск критических точек функции, в которых первая и вторая производная равна нулю или не существует.
презентация [170,6 K], добавлен 21.09.2013Основные определения и теоремы производной, дифференциала функции; техника дифференцирования. Применение производных к вычислению пределов. Исследование функции на монотонность и точки локального экстремума. Полное исследование функции, асимптоты графика.
контрольная работа [539,8 K], добавлен 20.03.2016Обзор таблицы производных элементарных функций. Понятие промежуточного аргумента. Правила дифференцирования сложных функций. Способ изображения траектории точки в виде изменения ее проекций по осям. Дифференцирование параметрически заданной функции.
контрольная работа [238,1 K], добавлен 11.08.2009Понятие производной, ее геометрический и физический смысл, дифференциал. Исследование функций и построение графиков. Разложение на множители, упрощение выражений. Решение неравенств, систем уравнений и доказательство тождеств. Вычисление пределов функции.
контрольная работа [565,5 K], добавлен 16.11.2010Производные основных элементарных функций. Логарифмическое дифференцирование. Показательно-степенная функция и ее дифференцирование. Производная обратных функций. Связь между дифференциалом и производной. Теорема об инвариантности дифференциала.
лекция [191,4 K], добавлен 05.03.2009Поиск производной сложной функции как равной производной функции по промежуточному аргументу, умноженной на его производную по независимой переменной. Теорема о связи бесконечно малых величин с пределами функций. Правило дифференцирования сложной функции.
презентация [62,1 K], добавлен 21.09.2013Предел отношения приращения функции к приращению независимого аргумента, когда приращение аргумента стремится к нулю. Обозначения производной. Понятие дифференцирования функции производной и ее геометрический смысл. Уравнение касательной к кривой.
презентация [246,0 K], добавлен 21.09.2013Частные случаи производной логарифмической функции. Производная показательной функции, экспоненты, степенной, тригонометрических функций. Производная синуса, косинуса, тангенса, котангенса, арксинуса. Производные обратных тригонометрических функций.
презентация [332,2 K], добавлен 21.09.2013Сущность предела функции, ее производной и дифференциала. Основные теоремы о пределах и методы их математического вычисления. Производная, ее физический и геометрический смысл. Связь непрерывности и дифференцируемости, основные правила дифференцирования.
презентация [128,4 K], добавлен 24.06.2012Максимум и минимум, их необходимые, первое и второе достаточные условия. Разыскание наибольших и наименьших значений функции. Правило разыскания экстремума. Теорема Чевы. Задачи о треугольнике наименьшего периметра, вписанного в остроугольный треугольник.
курсовая работа [1,3 M], добавлен 11.01.2011Расчет производной функции. Раскрытие неопределенности и поиск пределов. Проведение полного исследования функции и построение ее графика. Поиск интервалов возрастания, убывания и экстремумов. Решение дифференциальных уравнений. Расчет вероятности события.
контрольная работа [117,5 K], добавлен 27.08.2013Производная — основное понятие дифференциального исчисления, характеризующее скорость изменения функции в данной точке. Геометрический и механический смысл приращения функции. Правило дифференцирования, критические точки, экстремум; интегрирование.
презентация [575,4 K], добавлен 11.09.2011Производные от функций, заданных параметрически. Геометрический смысл дифференциала. Применение дифференциала в приближенных вычислениях. Теоремы Коши, Лагранжа и Ролля о дифференцируемых функциях, их геометрическая интерпретация. Правило Лопиталя.
презентация [334,8 K], добавлен 14.11.2014