Множитель Лагранжа в вариационной задаче на условный экстремум функционала

Особенности оценки роли множителя Лагранжа при нахождении условного экстремума функционала для движущейся механической системы. Функционал как принцип действия для механической системы с двумя степенями свобод, способы процедуры его восстановления.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 27.02.2013
Размер файла 150,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


HTML-версии работы пока нет.
Cкачать архив работы можно перейдя по ссылке, которая находятся ниже.


Подобные документы

  • Преимущества уравнений Лагранжа и их применение. Классификация связей внутри механической системы. Возможные перемещения механической системы и число степеней свободы. Применение уравнений Лагранжа второго рода к исследованию механической системы.

    курсовая работа [530,7 K], добавлен 21.08.2009

  • Понятие функционала и оператора. Задачи, приводящие к экстремуму функционала, и необходимые условия его минимума. Связь между вариационной и краевой задачами. Функционалы, зависящие от нескольких функций. Вариационные задачи с подвижными границами.

    курсовая работа [313,3 K], добавлен 23.05.2010

  • Особенности выполнения задачи минимизации функционала. Свойства билинейной формы. Формулирование обобщенного способа решения вариационной задачи для краевых задач с самосопряженным дифференциальным оператором (вследствие квадратичности функционала).

    презентация [79,5 K], добавлен 30.10.2013

  • Нахождение экстремума функции нескольких переменных не на всей области определения, а на множестве, удовлетворяющему некоторому условию. Практический пример нахождения точки максимума и минимума функции. Главные особенности метода множителей Лагранжа.

    презентация [112,6 K], добавлен 17.09.2013

  • Нахождение решения уравнения с заданными граничными и начальными условиями, система дифференциальных уравнений. Симметричное преобразование Фурье. Решение линейного разностного уравнения. Допустимые экстремали функционала. Уравнение Эйлера-Лагранжа.

    контрольная работа [51,5 K], добавлен 05.01.2016

  • Определение экстремума функционала при определенных заданных условиях. Особенности вычисления гамма-функции. Вычисление значения и решение неоднородного линейного разностного уравнения с постоянными коэффициентами, специфика выполнения проверки решения.

    контрольная работа [53,9 K], добавлен 27.09.2011

  • Обобщенные координаты, силы и скорости. Условия равновесия системы в обобщенных координатах. Уравнения Лагранжа. Системы с голономными связями (геометрические и интегрируемые дифференциальные). Доказательство уравнения движения механической системы.

    презентация [1,4 M], добавлен 26.09.2013

  • Понятия и термины вариационного исчисления. Понятие функционала, его первой вариации. Задачи, приводящие к экстремуму функционала, условия его минимума. Прямые методы вариационного исчисления. Практическое применение метода Ритца для решения задач.

    курсовая работа [1,3 M], добавлен 08.04.2015

  • Теория задач на отыскание наибольших и наименьших величин. Достаточные условия экстремума. Решение гладкой конечномерной задачи с ограничениями типа равенств и неравенств. Конечномерная теорема об обратной функции. Доказательство теоремы Вейштрасса.

    курсовая работа [148,9 K], добавлен 19.06.2012

  • Построение графика непрерывной функции. Определение множителя Лагранжа. Критические точки - значения аргумента из области определения функции, при которых производная функции обращается в нуль. Наибольшее и наименьшее значения функции на отрезке.

    контрольная работа [295,5 K], добавлен 24.03.2009

  • Применение теоремы Лагранжа при решении задач. Ее использование при решении неравенств и уравнений, при нахождении числа корней некоторого уравнения. Решение задач с использованием условия монотонности. Связи между возрастанием или убыванием функции.

    реферат [726,8 K], добавлен 14.03.2013

  • Принцип максимума Понтрягина. Необходимое и достаточное условие экстремума для классической задачи на условный экстремум. Регулярная и нерегулярная задача. Поведение функции в различных ситуациях. Метод Ньютона решения задачи, свойства его сходимости.

    курсовая работа [1,4 M], добавлен 31.01.2014

  • Составление уравнения Эйлера, нахождение его общего решения. Нахождение с использованием уравнения Эйлера-Лагранжа оптимального управления, минимизирующего функционал для системы. Использование метода динамического программирования для решения уравнений.

    контрольная работа [170,3 K], добавлен 01.04.2010

  • Основные понятия теории обыкновенных дифференциальных уравнений. Признак уравнения в полных дифференциалах, построение общего интеграла. Простейшие случаи нахождения интегрирующего множителя. Случай множителя, зависящего только от Х и только от Y.

    курсовая работа [979,1 K], добавлен 24.12.2014

  • Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.

    контрольная работа [61,5 K], добавлен 14.01.2015

  • Модельная задача уравнения колебаний струны и деформации системы из трех струн. Вариационные методы решения: экстремум функционала, пробные функции, метод Ритца. Подпространства сплайнов и тестирование программы решения системы алгебраических уравнений.

    дипломная работа [1,1 M], добавлен 29.06.2012

  • Локальные экстремумы функции. Теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа. Достаточные условия экстремума функции. Исследование функций на выпуклость и вогнутость. Точка перегиба. Асимптоты графика функции. Схема построения графика.

    курс лекций [445,7 K], добавлен 27.05.2010

  • Развитие численных линейных методов решения задач линейного программирования. Знакомство с методами поиска целевой функции: равномерный симплекс, методы Коши, Ньютона, сопряжённого градиенты, квазиньютоновский метод. Алгоритмы нахождения экстремума.

    курсовая работа [716,1 K], добавлен 12.07.2012

  • Доказательство существования и единственности интерполяционного многочлена Лагранжа. Понятие лагранжевых коэффициентов. Способы задания наклонов интерполяционного кубического сплайна, его использование для аппроксимации функций на больших промежутках.

    презентация [251,7 K], добавлен 29.10.2013

  • Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.

    лабораторная работа [147,4 K], добавлен 16.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.