Множитель Лагранжа в вариационной задаче на условный экстремум функционала
Особенности оценки роли множителя Лагранжа при нахождении условного экстремума функционала для движущейся механической системы. Функционал как принцип действия для механической системы с двумя степенями свобод, способы процедуры его восстановления.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 27.02.2013 |
Размер файла | 150,0 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Преимущества уравнений Лагранжа и их применение. Классификация связей внутри механической системы. Возможные перемещения механической системы и число степеней свободы. Применение уравнений Лагранжа второго рода к исследованию механической системы.
курсовая работа [530,7 K], добавлен 21.08.2009Понятие функционала и оператора. Задачи, приводящие к экстремуму функционала, и необходимые условия его минимума. Связь между вариационной и краевой задачами. Функционалы, зависящие от нескольких функций. Вариационные задачи с подвижными границами.
курсовая работа [313,3 K], добавлен 23.05.2010Особенности выполнения задачи минимизации функционала. Свойства билинейной формы. Формулирование обобщенного способа решения вариационной задачи для краевых задач с самосопряженным дифференциальным оператором (вследствие квадратичности функционала).
презентация [79,5 K], добавлен 30.10.2013Нахождение экстремума функции нескольких переменных не на всей области определения, а на множестве, удовлетворяющему некоторому условию. Практический пример нахождения точки максимума и минимума функции. Главные особенности метода множителей Лагранжа.
презентация [112,6 K], добавлен 17.09.2013Нахождение решения уравнения с заданными граничными и начальными условиями, система дифференциальных уравнений. Симметричное преобразование Фурье. Решение линейного разностного уравнения. Допустимые экстремали функционала. Уравнение Эйлера-Лагранжа.
контрольная работа [51,5 K], добавлен 05.01.2016Определение экстремума функционала при определенных заданных условиях. Особенности вычисления гамма-функции. Вычисление значения и решение неоднородного линейного разностного уравнения с постоянными коэффициентами, специфика выполнения проверки решения.
контрольная работа [53,9 K], добавлен 27.09.2011Обобщенные координаты, силы и скорости. Условия равновесия системы в обобщенных координатах. Уравнения Лагранжа. Системы с голономными связями (геометрические и интегрируемые дифференциальные). Доказательство уравнения движения механической системы.
презентация [1,4 M], добавлен 26.09.2013Понятия и термины вариационного исчисления. Понятие функционала, его первой вариации. Задачи, приводящие к экстремуму функционала, условия его минимума. Прямые методы вариационного исчисления. Практическое применение метода Ритца для решения задач.
курсовая работа [1,3 M], добавлен 08.04.2015Теория задач на отыскание наибольших и наименьших величин. Достаточные условия экстремума. Решение гладкой конечномерной задачи с ограничениями типа равенств и неравенств. Конечномерная теорема об обратной функции. Доказательство теоремы Вейштрасса.
курсовая работа [148,9 K], добавлен 19.06.2012Построение графика непрерывной функции. Определение множителя Лагранжа. Критические точки - значения аргумента из области определения функции, при которых производная функции обращается в нуль. Наибольшее и наименьшее значения функции на отрезке.
контрольная работа [295,5 K], добавлен 24.03.2009Применение теоремы Лагранжа при решении задач. Ее использование при решении неравенств и уравнений, при нахождении числа корней некоторого уравнения. Решение задач с использованием условия монотонности. Связи между возрастанием или убыванием функции.
реферат [726,8 K], добавлен 14.03.2013Принцип максимума Понтрягина. Необходимое и достаточное условие экстремума для классической задачи на условный экстремум. Регулярная и нерегулярная задача. Поведение функции в различных ситуациях. Метод Ньютона решения задачи, свойства его сходимости.
курсовая работа [1,4 M], добавлен 31.01.2014Составление уравнения Эйлера, нахождение его общего решения. Нахождение с использованием уравнения Эйлера-Лагранжа оптимального управления, минимизирующего функционал для системы. Использование метода динамического программирования для решения уравнений.
контрольная работа [170,3 K], добавлен 01.04.2010Основные понятия теории обыкновенных дифференциальных уравнений. Признак уравнения в полных дифференциалах, построение общего интеграла. Простейшие случаи нахождения интегрирующего множителя. Случай множителя, зависящего только от Х и только от Y.
курсовая работа [979,1 K], добавлен 24.12.2014Нахождение частных производных по направлению вектора. Составление уравнения касательной плоскости к поверхности в заданной точке. Исследование на экстремум функции двух переменных. Определение условного максимума функции при помощи функции Лагранжа.
контрольная работа [61,5 K], добавлен 14.01.2015Модельная задача уравнения колебаний струны и деформации системы из трех струн. Вариационные методы решения: экстремум функционала, пробные функции, метод Ритца. Подпространства сплайнов и тестирование программы решения системы алгебраических уравнений.
дипломная работа [1,1 M], добавлен 29.06.2012Локальные экстремумы функции. Теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа. Достаточные условия экстремума функции. Исследование функций на выпуклость и вогнутость. Точка перегиба. Асимптоты графика функции. Схема построения графика.
курс лекций [445,7 K], добавлен 27.05.2010Развитие численных линейных методов решения задач линейного программирования. Знакомство с методами поиска целевой функции: равномерный симплекс, методы Коши, Ньютона, сопряжённого градиенты, квазиньютоновский метод. Алгоритмы нахождения экстремума.
курсовая работа [716,1 K], добавлен 12.07.2012Доказательство существования и единственности интерполяционного многочлена Лагранжа. Понятие лагранжевых коэффициентов. Способы задания наклонов интерполяционного кубического сплайна, его использование для аппроксимации функций на больших промежутках.
презентация [251,7 K], добавлен 29.10.2013Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.
лабораторная работа [147,4 K], добавлен 16.11.2015