Комплекс программ численного интегрирования функций методом прямоугольников
Разработка приближенных методов вычисления определенных интегралов. Классические методы численного интегрирования по квадратурным формулам - наиболее распространенные методы вычисления одномерных определенных интегралов. Сущность метода прямоугольников.
Рубрика | Математика |
Предмет | Математика |
Вид | курсовая работа |
Язык | русский |
Прислал(а) | Кристина |
Дата добавления | 20.05.2013 |
Размер файла | 91,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Постановка задачи вычисления значения определённых интегралов от заданных функций. Классификация методов численного интегрирования и изучение некоторых из них: методы Ньютона-Котеса (формула трапеций, формула Симпсона), квадратурные формулы Гаусса.
реферат [99,0 K], добавлен 05.09.2010Понятие определенного интеграла, его геометрический смысл. Численные методы вычисления определенных интегралов. Формулы прямоугольников и трапеций. Применение пакета Mathcad для вычисления интегралов, проверка результатов вычислений с помощью Mathcad.
курсовая работа [1,0 M], добавлен 11.03.2013Вычисление относительной и абсолютной погрешности табличных определённых интегралов. Приближенные методы вычисления определённых интегралов: метод прямоугольников, трапеций, парабол (метод Симпсона). Оценка точности вычисления "не берущихся" интегралов.
курсовая работа [187,8 K], добавлен 18.05.2019Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.
презентация [525,7 K], добавлен 11.09.2011Исследование способа вычисления кратных интегралов методом Монте-Карло. Общая схема метода Монте-Карло, вычисление определенных и кратных интегралов. Разработка программы, выполняющей задачи вычисления значений некоторых примеров кратных интегралов.
курсовая работа [349,3 K], добавлен 12.10.2009Рассмотрение задач численного интегрирования по простейшим формулам. Понятие тройных интегралов и их применение для вычисления объема, массы, площади, моментов инерции, статистических моментов и координат центра масс тела на конкретных примерах.
курсовая работа [348,5 K], добавлен 17.12.2013Задача численного интегрирования функций. Вычисление приближенного значения определенного интеграла. Нахождение определенного интеграла методами прямоугольников, средних прямоугольников, трапеций. Погрешность формул и сравнение методов по точности.
методичка [327,4 K], добавлен 01.07.2009Особенность метода Остроградского. Процесс вычисления производных и нахождения интегралов различных функций. Алгоритм Евклида. Интегрирование биноминальных дифференциалов. Тригонометрические и гиперболические подстановки. Основные виды рациональностей.
курсовая работа [916,8 K], добавлен 06.11.2014Выбор точных методов численного интегрирования при наибольшем количестве разбиений. Вычисление интеграла аналитически, методом средних прямоугольников, трапеций, методом Симпсона. Вычисление интеграла методом Гаусса: двухточечная и трехточечная схема.
курсовая работа [366,2 K], добавлен 25.12.2012Вычисление приближенных величин и погрешностей. Решение алгебраических и трансцендентных уравнений, интерполяция функций и методы численного интегрирования. Применение метода наименьших квадратов к построению эмпирических функциональных зависимостей.
курсовая работа [378,5 K], добавлен 08.01.2013Характеристика методов численного интегрирования, квадратурные формулы, автоматический выбор шага интегрирования. Сравнительный анализ численных методов интегрирования средствами MathCAD, а также с использованием алгоритмических языков программирования.
контрольная работа [50,8 K], добавлен 06.03.2011Рассмотрение основных способов решения задач на вычисление неопределенных и определенных интегралов по формулам Ньютона-Лейбница и Симпсона. Ознакомление с примерами нахождения области, ограниченной линиями, и объема тела, ограниченного поверхностями.
контрольная работа [194,2 K], добавлен 28.03.2014Нахождение неопределенных интегралов (с проверкой дифференцированием). Разложение подынтегральных дробей на простейшие. Вычисление определенных интегралов, представление их в виде приближенного числа. Вычисление площади фигуры, ограниченной параболой.
контрольная работа [123,7 K], добавлен 14.01.2015Особенности решения алгебраических, нелинейных, трансцендентных уравнений. Метод половинного деления (дихотомия). Метод касательных (Ньютона), метод секущих. Численные методы вычисления определённых интегралов. Решение различными методами прямоугольников.
курсовая работа [473,4 K], добавлен 15.02.2010Непосредственное (элементарное) интегрирование, вычисление интегралов с помощью основных свойств неопределенного интеграла и таблицы интегралов. Метод замены переменной (метод подстановки). Интегрирование по частям, определение точности интегралов.
презентация [117,8 K], добавлен 18.09.2013Решение дифференциального уравнения методом численного интегрирования Адамса. Методы, основанные на применении производных высших порядков. Формулы, обеспечивающие более высокую степень точности, требующие вычисления третьей производной искомого решения.
курсовая работа [81,9 K], добавлен 29.08.2010Число Пи как математическая константа. Основные особенности вычисления числа Пи. Методы определения численного значения числа Пи. Влияние трудов И. Ньютона и Г. Лейбница на ускорение вычисления приближенных значений Пи. Анализ формул древних ученных.
курсовая работа [1,8 M], добавлен 26.09.2012Математическая модель: определение интеграла и его геометрический смысл. Приближённые методы вычисления. Формула прямоугольников, трапеций, парабол. Программа для вычисления значения интеграла методом трапеций в среде пакета Matlab. Цикл if и for.
контрольная работа [262,8 K], добавлен 05.01.2015Особенности применения степенных рядов для вычислений с различной степенью точности значений функций и определенных интегралов. Рассмотрение примеров решения ряда задач этим математическим методом с условием принятия значений допустимой погрешности.
презентация [68,4 K], добавлен 18.09.2013Интегралы, у которых один или оба предела интегрирования бесконечны, и у которых функция не ограничена на отрезке интегрирования. Понятие несобственных интегралов с бесконечными пределами интегрирования. Геометрический смысл несобственного интеграла.
презентация [104,1 K], добавлен 18.09.2013