Системное моделирование

Рассмотрение подходов к изучению моделирования. Методы имитации случайных величин. Этапы построения математической модели. Проблема оценки внешней среды. Характеристика особенностей имитационного моделирования. Анализ аспектов генетических алгоритмов.

Рубрика Математика
Вид реферат
Язык русский
Дата добавления 18.01.2014
Размер файла 829,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Интерполяция по Лагранжу

Интерполяционный многочлен по формуле Лагранжа имеет вид:

(1.6)

Интерполяционный многочлен Лагранжа приближает заданную табличную функцию, т.е. Ln(xi) = yi и мы можем использовать его в качестве вспомогательной функции для решения задач интерполирования, т.е. .

Чем больше узлов интерполирования на отрезке [x0,xn] , тем точнее интерполяционный многочлен приближает заданную табличную функцию (11.1), т.е. тем точнее равенство:

Однако с увеличением числа узлов интерполирования возрастает степень интерполяционного многочлена n и в результате значительно возрастает объем вычислительной работы. Поэтому при большом числе узлов необходимо применять ЭВМ. В этом случае удобно находить значения функции в промежуточных точках, не получая многочлен в явном виде.

При решении задачи экстраполирования функции с помощью интерполяционного многочлена вычисление значения функции за пределами отрезка [x0,xn] обычно производят не далее, чем на один шаг h, равный наименьшей величине

так как за пределами отрезка [x0,xn] погрешности, как правило, увеличиваются.

Интерполяция по Ньютона

Интерполяционный многочлен по формуле Ньютона имеет вид:

(1.7)

где n - степень многочлена,

- разделенные разности 0-го, 1-го, 2-го,:., n-го порядка, соответственно.

Разделенные разности

Разделенная разность n-го порядка на участке [x0,xn] равна , т.е. равна разности разделенных разностей (n-1)-го порядка, разделенной на длину участка [x0,xn].

Решение задачи интерполяции по Ньютону имеет некоторые преимущества по сравнению с решением задачи интерполяции по Лагранжу. Каждое слагаемое интерполяционного многочлена Лагранжа зависит от всех значений табличной функции yi, i=0,1,:n. Поэтому при изменении количества узловых точек N и степени многочлена n (n=N-1) интерполяционный многочлен Лагранжа требуется строить заново. В многочлене Ньютона при изменении количества узловых точек N и степени многочлена n требуется только добавить или отбросить соответствующее число стандартных слагаемых в формуле Ньютона. Это удобно на практике и ускоряет процесс вычислений.

26. Аппроксимация опытных данных

Задача аппроксимации заключается в отыскании аналитической зависимости y=f(x) полученной табличной функции.

В настоящее время существует 2 способа аппроксимации опытных данных:

Первый способ. Этот способ требует, чтобы аппроксимирующая кривая F(x), аналитический вид которой необходимо найти, проходила через все узловые точки таблицы. Эту задачу можно решить с помощью построения интерполяционного многочлена степени n:

(1.12)

Однако этот способ аппроксимации опытных данных имеет недостатки:

1-Точность аппроксимации гарантируется в небольшом интервале [x0, xn] при количестве узловых точек не более 7-8.

2-Значения табличной функции в узловых точках должны быть заданы с большой точностью.

Второй способ. На практике нашел применение другой способ аппроксимации опытных данных - сглаживание опытных данных. Сущность этого метода состоит в том, что табличные данные аппроксимируют кривой F(x), которая не обязательно должна пройти через все узловые точки, а должна как бы сгладить все случайные помехи табличной функции.

Размещено на Allbest.ru

...

Подобные документы

  • Классификация случайных событий. Функция распределения. Числовые характеристики дискретных случайных величин. Закон равномерного распределения вероятностей. Распределение Стьюдента. Задачи математической статистики. Оценки параметров совокупности.

    лекция [387,7 K], добавлен 12.12.2011

  • Основные положения теории математического моделирования. Структура математической модели. Линейные и нелинейные деформационные процессы в твердых телах. Методика исследования математической модели сваи сложной конфигурации методом конечных элементов.

    курсовая работа [997,2 K], добавлен 21.01.2014

  • Теоретические основы моделирования: понятие модели и моделирования. Моделирование в решении текстовых задач. Задачи на встречное движение двух тел. Задачи на движение двух тел в одном направлении и в противоположных направлениях. Графические изображения.

    курсовая работа [98,9 K], добавлен 03.07.2008

  • Применение системы MathCAD при решении прикладных задач технического характера. Основные средства математического моделирования. Решение дифференциальных уравнений. Использование системы MathCad для реализации математических моделей электрических схем.

    курсовая работа [489,1 K], добавлен 17.11.2016

  • Сходимость последовательностей случайных величин. Центральная предельная теорема для независимых одинаково распределенных случайных величин. Основные задачи математической статистики, их характеристика. Проверка гипотез по критерию однородности Смирнова.

    курсовая работа [1,6 M], добавлен 13.11.2012

  • Математическое моделирование задач коммерческой деятельности на примере моделирования процесса выбора товара. Методы и модели линейного программирования (определение ежедневного плана производства продукции, обеспечивающей максимальный доход от продажи).

    контрольная работа [55,9 K], добавлен 16.02.2011

  • Сущность математического моделирования. Аналитические и имитационные математические модели. Геометрический, кинематический и силовой анализы механизмов подъемно-навесных устройств. Расчет на устойчивость мобильного сельскохозяйственного агрегата.

    курсовая работа [636,8 K], добавлен 18.12.2015

  • Изучение физического процесса как объекта моделирования. Описание констант и параметров, переменных, используемых в физическом процессе. Схема алгоритма математической модели, обеспечивающая вычисление заданных зависимостей физического процесса.

    курсовая работа [434,5 K], добавлен 21.05.2022

  • Процесс выбора или построения модели для исследования определенных свойств оригинала в определенных условиях. Стадии процесса моделирования. Математические модели и их виды. Адекватность математических моделей. Рассогласование между оригиналом и моделью.

    контрольная работа [69,9 K], добавлен 09.10.2016

  • Понятие корреляционного момента двух случайных величин. Математическое ожидание произведения независимых случайных величин Х и У. Степень тесноты линейной зависимости между ними. Абсолютное значение коэффициента корреляции, его расчет и показатель.

    презентация [92,4 K], добавлен 01.11.2013

  • Изучение актуальной задачи математического моделирования в биологии. Исследование модифицированной модели Лотки-Вольтерра типа конкуренция хищника за жертву. Проведение линеаризации исходной системы. Решение системы нелинейных дифференциальных уравнений.

    контрольная работа [239,6 K], добавлен 20.04.2016

  • Компьютерное моделирование в базовом курсе информатики. Роль компьютерного моделирования в процессе обучения. Методические рекомендации курса "Математические основы моделирования 3D объектов" базового курса "компьютерное моделирование".

    дипломная работа [284,6 K], добавлен 07.07.2003

  • Проведение численного моделирования системы, описанной системой дифференциальных уравнений первого порядка. Схемы моделирования методом последовательного (непосредственного) интегрирования, вспомогательной переменной и методом канонической формы.

    контрольная работа [550,9 K], добавлен 12.12.2013

  • Двумерная функция распределения вероятностей случайных величин. Понятие условной функции распределения и плотности распределения вероятностей. Корреляция двух случайных величин. Система произвольного числа величин, условная плотность распределения.

    реферат [325,3 K], добавлен 23.01.2011

  • Знакомство с основными требованиями к вычислительным методам. Рассмотрение особенностей математического моделирования. Вычислительный эксперимент как метод исследования сложных проблем, основанный на построении математических моделей, анализ этапов.

    презентация [12,6 K], добавлен 30.10.2013

  • Основные понятия математического моделирования, характеристика этапов создания моделей задач планирования производства и транспортных задач; аналитический и программный подходы к их решению. Симплекс-метод решения задач линейного программирования.

    курсовая работа [2,2 M], добавлен 11.12.2011

  • Диаграмма рассеивания как точки на плоскости, координаты которых соответствуют значениям случайных величин X и Y, порядок ее построения и назначение. Нахождение коэффициентов и построение графика линейного приближения, графика квадратичного приближения.

    курсовая работа [1,1 M], добавлен 03.05.2011

  • Функциональные и стохастические связи. Статистические методы моделирования связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Проверка адекватности регрессионной модели.

    курсовая работа [214,6 K], добавлен 04.09.2007

  • Определение понятия модели, необходимость их применения в науке и повседневной жизни. Характеристика методов материального и идеального моделирования. Классификация математических моделей (детерминированные, стохастические), этапы процесса их построения.

    реферат [28,1 K], добавлен 20.08.2015

  • Моделирование как метод научного познания, его сущность и содержание, особенности использования при исследовании и проектировании сложных систем, классификация и типы моделей. Математические схемы моделирования систем. Основные соотношения моделей.

    курсовая работа [177,9 K], добавлен 15.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.