Арифметика чисел

Натуральні числа, використовувані в математиці. Загальне ділення з остачею. Взаємно-прості та прості числа. Найбільший спільний дільник та методи його знаходження. Порівняння за модулем Лема. Арифметичні дії з раціональними числами і десятковими дробами.

Рубрика Математика
Предмет Математика
Вид лекция
Язык украинский
Прислал(а) chastinvest
Дата добавления 24.01.2014
Размер файла 307,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Період від виникнення рахування до формального означення чисел і арифметичних операцій над ними за допомогою аксіом. Перші достовірні відомості про арифметичні знання, виявлені в історичних пам'ятках Вавилона і Стародавнього Єгипту. Натуральні числа.

    презентация [1,7 M], добавлен 23.04.2014

  • Історія становлення поняття дійсного числа. Властивості ланцюгових дробів загального виду з додатними елементами. Зображення дійсних чисел ланцюговими дробами загального виду і системними дробами. Задачі, при розв’язанні яких використовуються ці дроби.

    курсовая работа [415,0 K], добавлен 02.03.2014

  • Изучение процесса появления действительных чисел, которые стали основой арифметики, а также способствовали возникновению рациональных и иррациональных чисел. Арифметика в трудах мыслителей Древней Греции. И. Ньютон и определение действительного числа.

    реферат [16,4 K], добавлен 15.10.2013

  • Комплексні числа як розширення множини дійсних чисел. Приклади дії над комплексними числами: додавання, віднімання та множення. Геометрична інтерпретація комплексних чисел. Тригонометрична форма запису комплексних чисел, поняття модуля і аргумента.

    реферат [75,3 K], добавлен 22.02.2010

  • Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.

    курсовая работа [104,1 K], добавлен 03.01.2008

  • Комплексные числа и комплексные равенства, их алгебраическая и тригонометрическая формы. Арифметические действия над комплексными числами. Целые функции (многочлены) и их свойства. Решение алгебраических уравнений на множестве комплексных чисел.

    лекция [464,6 K], добавлен 12.06.2011

  • Геометрическое представление комплексных чисел, алгебраическая и тригонометрическая формы. Свойства арифметических операций над комплексными числами: правила сложения (вычитания) их радиус-векторов, произведение (частное) модуля числа; формула Муавра.

    презентация [147,4 K], добавлен 17.09.2013

  • Збагачення запасу чисел, введення ірраціональних чисел. Зведення комплексних чисел у ступінь і знаходження кореня. Окремий випадок формули Муавра. Труднощі при витягу кореня з комплексних чисел. Витяг квадратного кореня із негативного дійсного числа.

    курсовая работа [130,8 K], добавлен 26.03.2009

  • Число как основное понятие математики. Натуральные числа. Простые числа Мерсенна, совершенные числа. Рациональные числа. Дробные числа. Дроби в Древнем Египте, Древнем Риме. Отрицательные числа. Комплексные, векторные, матричные, трансфинитные числа.

    реферат [104,5 K], добавлен 12.03.2004

  • Комплексные числа в алгебраической форме. Степень мнимой единицы. Геометрическая интерпретация комплексных чисел. Тригонометрическая форма. Приложение теории комплексных чисел к решению уравнений 3-й и 4-й степени. Комплексные числа и параметры.

    дипломная работа [1,1 M], добавлен 10.12.2008

  • Система, свойства и модели комплексных чисел. Категоричность и непротиворечивость аксиоматической теории комплексных чисел. Корень четной степени из отрицательного числа. Матрицы второго порядка, действительные числа. Операции сложения и умножения матриц.

    курсовая работа [1,1 M], добавлен 15.06.2011

  • Определение операций сложения, вычитания и умножения для дуальных чисел. Определение модуля и сопряжённого числа. Деление на дуальное число. Определение делителя нуля. Запись дуального числа в форме, близкой к тригонометрической форме комплексного числа.

    курсовая работа [507,8 K], добавлен 10.04.2011

  • Понятие комплексных чисел, стандартная, матричная и геометрическая модели; действия над комплексными числами; модуль и аргумент. Алгебраическое, тригонометрическое и показательное представление комплексных чисел. Формула Муавра и извлечение корней.

    контрольная работа [25,7 K], добавлен 29.05.2012

  • Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").

    презентация [435,9 K], добавлен 16.12.2011

  • Сутність, особливості та історична поява чисел "пі" та "е". Доведення ірраціональності та трансцендентності чисел "пі" та "е". Методи наближеного обчислення чисел "пі" та "е" за допомогою числових рядів та розкладу в нескінченні ланцюгові дроби.

    курсовая работа [584,5 K], добавлен 18.07.2010

  • Проблема решения уравнений в целых числах: от Диофанта до доказательства теоремы Ферма. Сущность теоремы о делимости данного числа на произведение двух взаимно простых чисел, особенности ее применения к решению неопределенных уравнений в целых числах.

    курсовая работа [108,5 K], добавлен 10.03.2014

  • Свойства чисел натурального ряда. Периодическая зависимость от порядковых номеров чисел. Шестеричная периодизация чисел. Область отрицательных чисел. Расположение простых чисел в соответствии с шестеричной периодизацией.

    научная работа [20,2 K], добавлен 29.12.2006

  • История отрицательных чисел: их отрицание в Древнем Египте, Вавилоне, Греции, узаконивание в Китае и Индии. Математические действия с ними. Подходы к определению положению нуля как натурального числа. Изучение отрицательных чисел в школьной программе.

    презентация [178,6 K], добавлен 13.05.2011

  • Простые числа-близнецы - числа, находящиеся на расстоянии друг от друга в 2 единицы.

    научная работа [65,3 K], добавлен 12.07.2008

  • Закон сохранения количества чисел Джойнт ряда в натуральном ряду чисел как принцип обратной связи чисел в математике. Структура натурального ряда чисел. Изоморфные свойства рядов четных и нечетных чисел. Фрактальная природа распределения простых чисел.

    монография [575,3 K], добавлен 28.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.