Функции комплексной переменной. Условия Коши-Римана
Рассмотрение теории функций комплексной переменной. Формулировка необходимого условия дифференцируемости функции комплексного переменного по условию Коши-Римана. Теорема Коши для многосвязной области. Формула среднего значения. Ряды, их виды.
Рубрика | Математика |
Предмет | Высшая математика |
Вид | шпаргалка |
Язык | русский |
Прислал(а) | incognito |
Дата добавления | 02.03.2014 |
Размер файла | 69,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Предел для функции действительного аргумента и для функции комплексного переменного. Формулировка необходимого условия дифференцируемости функции комплексного переменного (условие Коши-Римана). Понятия и примеры правильных и особых точек функции.
презентация [74,9 K], добавлен 17.09.2013Определение плоскости комплексного переменного, последовательностей комплексных чисел и пределов последовательностей. Дифференцирование функций, условия Коши, интеграл от функции. Числовые и степенные ряды, разложение функций, операционные исчисления.
курсовая работа [188,4 K], добавлен 17.11.2010Аналитические свойства интегральных преобразований. Интеграл Коши на различных кривых. Аналитическая зависимость от параметра. Существование производных всех порядков у аналитической функции. Вывод формулы Коши и формулировка следствий из данной формулы.
курсовая работа [260,2 K], добавлен 10.04.2011Ознакомление с теоремами теории аналитических функций. Определение и основные свойства индекса функции. Постановка и методы решения однородной и неоднородной задач Римана для односвязной и многосвязной областей. Принципы нахождения функции сдвига.
курсовая работа [485,6 K], добавлен 20.12.2011Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.
курсовая работа [810,5 K], добавлен 24.11.2013Слабые асимптотики произведения функций Хевисайда. Решение задачи Коши методом прямого интегрирования. Оценка задачи со ступенчатой функцией в качестве начального условия. Предел на бесконечности, получаемый при неограниченном уменьшении малого параметра.
курсовая работа [1,9 M], добавлен 23.09.2016Теорема Ролля и ее доказательство, структура и геометрический смысл. Сущность теоремы о среднем, принадлежащей Лагранжу, использование в ней результатов теоремы Ролля. Отражение и обобщение работы Лагранжа в теореме Коши, методика ее доказательства.
реферат [208,2 K], добавлен 15.08.2009Биографические сведения об Огюстене Луи Коши - французском математике XIX века, который вошел в историю благодаря открытиям в области дифференциальных уравнений, алгебры, геометрии и математического анализа. Достижения, исследования и открытия ученого.
презентация [320,4 K], добавлен 28.04.2015Понятие непрерывности функции. Понятие, физический и геометрический смысл производной. Локальный экстремум и теорема Ферма. Теорема Ролля о нулях производных. Формула конечных приращении Лагранжа. Обобщенная формула конечных приращении (формула Коши).
курсовая работа [812,7 K], добавлен 17.03.2015Характеристика интегралов, зависящих от параметра, значение их регулярности. Анализ интеграла коши на кривой и на области. Особенности аналитических свойств интегральных преобразований. Формула Коши: описание, вывод, аналитическая функция, следствия.
курсовая работа [284,2 K], добавлен 27.03.2011Понятие интеграла Римана, анализ его определений. Интеграл как предела интегральных сумм Римана, единственное число, разделяющее верхние и нижние суммы Дарбу. Интеграл от непрерывной функции как приращение первообразной (формула Ньютона-Лейбница).
курсовая работа [2,2 M], добавлен 30.10.2015Анализ уравнения гиперболического типа - волнового уравнения. Метод распространяющихся волн. Формула Даламбера, неоднородное уравнение. Задача Коши, двумерное волновое уравнение. Теорема устойчивости решения задачи Коши. Формулы волнового уравнения.
реферат [1,0 M], добавлен 11.12.2014Изучение понятия числового ряда и его суммы. Особенности сходящихся и расходящихся рядов. Число e, как сумма ряда. Критерий Коши сходимости ряда. Алгебраические операции и сходимость. Ряды с неотрицательными членами. Интегральный признак Коши-Маклорена.
методичка [514,1 K], добавлен 26.06.2010Задачи, приводящие к дифференциальным уравнениям. Теорема существования, единственности решения задачи Коши. Общее решение дифференциального уравнения, изображаемое семейством интегральных кривых на плоскости. Способ нахождения огибающей семейства кривых.
реферат [165,4 K], добавлен 24.08.2015Локальные экстремумы функции. Теоремы дифференциального исчисления: Ферма, Ролля, Коши, Лагранжа. Достаточные условия экстремума функции. Исследование функций на выпуклость и вогнутость. Точка перегиба. Асимптоты графика функции. Схема построения графика.
курс лекций [445,7 K], добавлен 27.05.2010Определение наименьшего и наибольшего значения функции в ограниченной области и ее градиента; общего интеграла и общего и частного решения дифференциального уравнения. Исследование ряда на абсолютную сходимость с применением признаков Коши и Даламбера.
контрольная работа [107,2 K], добавлен 25.11.2013Первое упоминание и использование числового ряда, его понятие и структура, этапы и направления дальнейшего исследования. Задачи, приводящие к понятию числового ряда и те, в которых он использовался. Признак Даламбера и Коши, Маклорена и сравнения.
курсовая работа [114,2 K], добавлен 01.10.2014Решение задачи Коши для дифференциального уравнения. Погрешность приближенных решений. Функция, реализующая явный метод Эйлера. Вычисление погрешности по правилу Рунге. Решение дифференциальных уравнений второго порядка. Условие устойчивости для матрицы.
контрольная работа [177,1 K], добавлен 13.06.2012Свойства дзета-функции Римана для действительного аргумента. Дзета-функцию как функция мнимого аргумента. Дзета-функция Римана широко применяется в математическом анализе, в теории чисел, в изучении распределения простых чисел в натуральном ряду.
курсовая работа [263,2 K], добавлен 29.05.2006Данный электронный учебник по математике предназначен для изучения темы "Использование неравенств при решении олимпиадных задач". Постановка и реализация задачи. Теоретические сведения по неравенствам Йенсена, Коши, Коши-Буняковского и Бернулли.
научная работа [124,1 K], добавлен 12.12.2009