Метод Монте-Карло

Исследование машинных систем методом имитационного моделирования (метод Монте-Карло), простые и экономные способы формирования последовательности случайных чисел. Характеристика области применения метода Монте-Карло, его достоинства и недостатки.

Рубрика Математика
Предмет Исследование систем управления
Вид реферат
Язык русский
Прислал(а) incognito
Дата добавления 18.03.2014
Размер файла 20,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Некоторые сведения теории вероятностей. Математическое ожидание, дисперсия. Точность оценки, доверительная вероятность. Доверительный интервал. Нормальное распределение. Метод Монте-Карло. Вычисление интегралов методом Монте-Карло. Алгоритмы метода.

    курсовая работа [112,9 K], добавлен 20.12.2002

  • Математическое обоснование алгоритма вычисления интеграла. Принцип работы метода Монте–Карло. Применение данного метода для вычисления n–мерного интеграла. Алгоритм расчета интеграла. Генератор псевдослучайных чисел применительно к методу Монте–Карло.

    курсовая работа [100,4 K], добавлен 12.05.2009

  • Исследование способа вычисления кратных интегралов методом Монте-Карло. Общая схема метода Монте-Карло, вычисление определенных и кратных интегралов. Разработка программы, выполняющей задачи вычисления значений некоторых примеров кратных интегралов.

    курсовая работа [349,3 K], добавлен 12.10.2009

  • Метод Монте-Карло як метод моделювання випадкових величин з метою обчислення характеристик їхнього розподілу, оцінка похибки. Обчислення кратних інтегралів методом Монте-Карло, його принцип роботи. Приклади складання програми для роботи цим методом.

    контрольная работа [41,6 K], добавлен 22.12.2010

  • Метод Гаусса, метод прогонки, нелинейное уравнение. Метод вращения Якоби. Интерполяционный многочлен Лагранжа и Ньютона. Метод наименьших квадратов, интерполяция сплайнами. Дифференцирование многочленами, метод Монте-Карло и Рунге-Кутты, краевая задача.

    курсовая работа [4,8 M], добавлен 23.05.2013

  • Получение интервальной оценки. Построение доверительного интервала. Возникновение бутстрапа или практического компьютерного метода определения статистик вероятностных распределений, основанного на многократной генерации выборок методом Монте-Карло.

    курсовая работа [755,6 K], добавлен 22.05.2015

  • Многие переменные, минимизация их функций. Точки максимума и минимума называются точками экстремума функции. Условия существования экстремумов функции многих переменных. Квадратичная форма, принимающая, как положительные, так и отрицательные значения.

    реферат [70,2 K], добавлен 05.09.2010

  • Основные определения теории уравнений в частных производных. Использование вероятностных, численных и эмпирических методов в решении уравнений. Решение прямых и обратных задач методом Монте-Карло на примере задачи Дирихле для уравнений Лапласа и Пуассона.

    курсовая работа [294,7 K], добавлен 17.06.2014

  • Понятие математического моделирования: выбор чисел случайным образом и их применение. Критерий частот, серий, интервалов, разбиений, перестановок, монотонности, конфликтов. Метод середины квадратов. Линейный конгруэнтный метод. Проверка случайных чисел.

    контрольная работа [55,5 K], добавлен 16.02.2015

  • Математические модели явлений или процессов. Сходимость метода простой итерации. Апостериорная оценка погрешности. Метод вращений линейных систем. Контроль точности и приближенного решения в рамках прямого метода. Метод релаксации и метод Гаусса.

    курсовая работа [96,7 K], добавлен 13.04.2011

  • Методы решения систем линейных алгебраических уравнений, их характеристика и отличительные черты, особенности и сферы применения. Структура метода ортогонализации и метода сопряженных градиентов, их разновидности и условия, этапы практической реализации.

    курсовая работа [197,8 K], добавлен 01.10.2009

  • Понятие матрицы. Метод Гаусса. Виды матриц. Метод Крамера решения линейных систем. Действия над матрицами: сложение, умножение. Решение систем линейных уравнений методом Гаусса. Элементарные пребразования систем. Математические перобразования.

    лекция [45,4 K], добавлен 02.06.2008

  • Сущность и характеристика метода покоординатного спуска (метод Гаусса-Зейделя). Геометрическая интерпретация метода покоординатного спуска для целевой функции z=(x,y). Блок-схема и алгоритм для написания программы для оптимизации методом Хука-Дживса.

    контрольная работа [878,3 K], добавлен 26.12.2012

  • Методы решения систем линейных уравнений. Метод Якоби в матричной записи. Достоинство итерационного метода верхних релаксаций, вычислительные погрешности. Метод блочной релаксации. Разбор метода релаксаций в системах линейных уравнений на примере.

    курсовая работа [209,1 K], добавлен 27.04.2011

  • Векторная запись нелинейных систем. Метод Ньютона, его сущность, реализации и модификации. Метод Ньютона с последовательной аппроксимацией матриц. Обобщение полюсного метода Ньютона на многомерный случай. Пример реализации метода Ньютона в среде MATLAB.

    реферат [140,2 K], добавлен 27.03.2012

  • Понятие и специфические черты системы линейных алгебраических уравнений. Механизм и этапы решения системы линейных алгебраических уравнений. Сущность метода исключения Гаусса, примеры решения СЛАУ данным методом. Преимущества и недостатки метода Гаусса.

    контрольная работа [397,2 K], добавлен 13.12.2010

  • Способы получения псевдослучайных чисел. Общая характеристика генератора псевдослучайных чисел фон Неймана. Сущность равномерного закона распределения. Понятие о критериях согласия. Анализ критериев Пирсона и Колмогорова.

    курсовая работа [176,9 K], добавлен 28.04.2010

  • Классификация методов кластеризации и их характеристика. Метод горной кластеризации в Matlab. Возможная область применения кластеризации в различных предметных областях. Математическое описание метода. Пример использования метода на реальных данных.

    реферат [187,0 K], добавлен 28.10.2010

  • Методы нахождения минимума функций градиентным методом наискорейшего спуска. Моделирование метода и нахождение минимума функции двух переменных с помощью ЭВМ. Алгоритм программы, отражение в ней этапов метода на языке программирования Borland Delphi 7.

    лабораторная работа [533,9 K], добавлен 26.04.2014

  • Основные понятия теории систем уравнений. Метод Гаусса — метод последовательного исключения переменных. Формулы Крамера. Решение систем линейных уравнений методом обратной матрицы. Теорема Кронекер–Капелли. Совместность систем однородных уравнений.

    лекция [24,2 K], добавлен 14.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.