Особые точки и особые решения дифференциальных уравнений первого порядка

Теорема существования и единственности решения. Принципы графического представления задачи Коши в математике. Характеристики частного решения дифференциального уравнения. Особые точки и способы их использования дифференциальных уравнений первого порядка.

Рубрика Математика
Предмет Математика
Вид контрольная работа
Язык русский
Прислал(а) incognito
Дата добавления 04.12.2014
Размер файла 250,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Порядок и процедура поиска решения дифференциального уравнения. Теорема существования и единственности решения задачи Коши. Задачи, приводящие к дифференциальным уравнениям. Дифференциальные уравнения первого порядка, с разделяющими переменными.

    лекция [744,1 K], добавлен 24.11.2010

  • Понятие, закономерности формирования и решения дифференциальных уравнений. Теорема о существовании и единственности решения задачи Коши. Существующие подходы и методы решения данной задачи, оценка погрешности полученных значений. Листинг программы.

    курсовая работа [120,8 K], добавлен 27.01.2014

  • Задачи, приводящие к дифференциальным уравнениям. Теорема существования, единственности решения задачи Коши. Общее решение дифференциального уравнения, изображаемое семейством интегральных кривых на плоскости. Способ нахождения огибающей семейства кривых.

    реферат [165,4 K], добавлен 24.08.2015

  • Уравнения с разделяющимися переменными, методы решения. Практический пример нахождения частного и общего решения. Понятие о неполных дифференциальных уравнениях. Линейные уравнения первого порядка. Метод вариации постоянной, разделения переменных.

    презентация [185,0 K], добавлен 17.09.2013

  • Понятие о голоморфном решении задачи Коши. Теорема Коши о существовании и единственности голоморфного решения задачи Коши. Решение задачи Коши для линейного уравнения второго порядка при помощи степенных рядов. Интегрирование дифференциальных уравнений.

    курсовая работа [810,5 K], добавлен 24.11.2013

  • Дифференциальное уравнение первого порядка, разрешенное относительно производной. Применение рекуррентного соотношения. Техника применения метода Эйлера для численного решения уравнения первого порядка. Численные методы, пригодные для решения задачи Коши.

    реферат [183,1 K], добавлен 24.08.2015

  • Практическое решение дифференциальных уравнений в системе MathCAD методами Рунге—Кутты четвертого порядка для решения уравнения первого порядка, Булирша — Штера - системы обыкновенных дифференциальных уравнений первого порядка и Odesolve и их графики.

    лабораторная работа [380,9 K], добавлен 23.07.2012

  • Анализ методов решения систем дифференциальных уравнений, которыми можно описать поведение материальных точек в силовом поле, законы химической кинетики, уравнения электрических цепей. Этапы решения задачи Коши для системы дифференциальных уравнений.

    курсовая работа [791,0 K], добавлен 12.06.2010

  • Задачи Коши для дифференциальных уравнений. График решения дифференциального уравнения I порядка. Уравнения с разделяющимися переменными и приводящиеся к однородному. Однородные и неоднородные линейные уравнения первого порядка. Уравнение Бернулли.

    лекция [520,6 K], добавлен 18.08.2012

  • Особенности выражения производной неизвестной функции. Общий вид дифференциального уравнения первого порядка, его решение. Сущность теоремы Коши (о существовании и единственности решения), её геометрический смысл. Общее и частное решение уравнения.

    презентация [77,7 K], добавлен 17.09.2013

  • Теоретическое обоснование расчетных формул. Задача Коши для дифференциального уравнения первого порядка. Метод Рунге-Кутта. Ломаная Эйлера. Построение схем различного порядка точности. Выбор шага. Апостериорная оценка погрешности. Правило Рунге.

    курсовая работа [111,1 K], добавлен 13.11.2011

  • Дифференциальное уравнение первого порядка. Формулировка теоремы существования и единственности. Линейные уравнения с постоянными коэффициентами. Доказательство теоремы существования и единственности для одного уравнения. Теория устойчивости Ляпунова.

    дипломная работа [1,0 M], добавлен 11.04.2009

  • Общая характеристика и особенности двух методов решения обычных дифференциальных уравнений – Эйлера первого порядка точности и Рунге-Кутта четвёртого порядка точности. Листинг программы для решения обычного дифференциального уравнения в Visual Basic.

    курсовая работа [1,1 M], добавлен 04.06.2010

  • Особенности дифференциальных уравнений как соотношения между функциями и их производными. Доказательство теоремы существования и единственности решения. Примеры и алгоритм решения уравнений в полных дифференциалах. Интегрирующий множитель в примерах.

    курсовая работа [657,0 K], добавлен 11.02.2014

  • Правила вычисления коэффициентов n-образов. Рассмотрение алгоритмов решения линейных ОДУ с переменными коэффициентами второго и произвольного порядков. Общепринятые способы определения частного решения неоднородного дифференциального уравнения.

    книга [1,7 M], добавлен 03.10.2011

  • Понятие и математическое описание элементов дифференциального уравнения как уравнения, связывающего искомую функцию одной или нескольких переменных. Состав неполного и линейного дифференциального уравнения первого порядка, их применение в экономике.

    реферат [286,2 K], добавлен 06.08.2013

  • Вычисление общего решения дифференциальных уравнений первого порядка с разделяющимися переменными. Расчет определенного интеграла с точностью до 0,001. Определение вероятности заданных событий, математического ожидания и дисперсии случайной величины.

    контрольная работа [543,4 K], добавлен 21.10.2012

  • Производные основных элементарных функций. Правила дифференцирования. Условия существования и единственности задачи Коши. Понятие дифференциальных уравнений, их применение в моделях экономической динамики. Однородные линейные ДУ первого и второго порядка.

    курсовая работа [1,0 M], добавлен 22.10.2014

  • Виды дифференциальных уравнений: обыкновенные, с частными производными, стохастические. Классификация линейных уравнений второго порядка. Нахождение функции Грина, ее применение для решения неоднородных дифференциальных уравнений с граничными условиями.

    курсовая работа [4,8 M], добавлен 29.04.2013

  • Понятия и решения простейших дифференциальных уравнений и дифференциальных уравнений произвольного порядка, в том числе с постоянными аналитическими коэффициентами. Системы линейных уравнений. Асимптотическое поведение решений некоторых линейных систем.

    дипломная работа [395,4 K], добавлен 10.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.