Особенность начертательной геометрии

Анализ геометрических образов. Основные свойства ортогональных проекций. Система взаимно перпендикулярных плоскостей. Образование комплексного чертежа. Способ прямоугольного треугольника. Определение натуральной величины отрезка прямой общего положения.

Рубрика Математика
Вид учебное пособие
Язык русский
Дата добавления 12.01.2016
Размер файла 800,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

НАЧЕРТАТЕЛЬНАЯ ГЕОМЕТРИЯ

Т.В. Хрусталева

Рекомендовано

Дальневосточным региональным учебно-методическим центром в качестве учебного пособия для студентов специальности 210700 “Автоматика, телемеханика и связь на железнодорожном транспорте”, 240100 “Организация перевозок и управление на транспорте” вузов региона

Рецензенты:

Кафедра “Начертательная геометрия и машинная графика” Хабаровского государственного технического университета (Заведующий кафедрой, кандидат технических наук, доцент Л.Г. Вайнер)

Доктор педагогических наук, заведующий кафедрой “Изобразительное искусство и начертательная геометрия” Хабаровского государственного педагогического университета, профессор А.И. Иконников

Учебное пособие составлено в соответствии с Государственным образовательным стандартом дисциплины “Инженерная графика”, раздел “Начертательная геометрия” для студентов первого курса.

Изложены основы курса ортогонального проецирования. Рассмотрены алгоритмы решения позиционных задач на вербальном, графическом и аналитическом уровнях.

Выделен основной понятийный аппарат, способы действий, которыми необходимо владеть, вопросы для самоанализа; даны различные виды задач, домашних заданий, итоговые расчетно-графические работы, тесты с целью самоанализа усвоения курса “Начертательная геометрия”.

Предназначено для студентов первого курса ДВГУПС, обучающихся по специальностям 210700 “Автоматика, телемеханика и связь на ж.-д. транспорте”, 240100 “Организация перевозок и управление на транспорте”, направлению 657700 “Системы обеспечения движения поездов”, может быть полезно студентам инженерно-технических специальностей.

ГОУ ВПО “Дальневосточный государственный университет путей сообщения МПС России” (ДВГУПС), 2003

Оглавление

Предисловие

Введение

Глава 1. Метод проекций

1.1 Геометрические образы

1.2 Способ проецирования

1.3 Свойства ортогональных проекций

1.4 Обратимость чертежа. Метод Монжа

Глава 2. Проекция точки

2.1 Система двух взаимно перпендикулярных плоскостей

2.2 Точка в системе двух плоскостей проекций p 1 и p 2

2.3 Образование комплексного чертежа (эпюра)

2.4 Характеристика положения точки в системе p 1 и p 2

2.5 Система трех взаимно перпендикулярных плоскостей

2.6 Точка в системе p1, p2, p3

2.7 Комплексный чертеж и наглядное изображение точки в I-IV октантах

Глава 3. Прямая линия

3.1 Общие положения

3.2 Прямая общего положения в системе трех плоскостей проекций p 1, p 2, p 3

3.3 Прямые частного положения

3.4 Построение третьей проекции отрезка по двум заданным

3.5 Способ прямоугольного треугольника. Определение натуральной величины отрезка прямой линии и углов наклона прямой к плоскостям проекций

3.6 Определение натуральной величины отрезка прямой общего положения

3.7 Принадлежность точки прямой

Глава 4. Взаимное положение прямых в пространстве

4.1 Общие положения

4.2 Определение видимости прямых относительно плоскостей проекций

Глава 5. Плоскость

5.1 Общие положения

5.2 Способы задания плоскости

5.3 Положение плоскости относительно плоскостей проекций

5.4 Условия принадлежности прямой линии плоскости

5.5 Прямые особого положения в плоскости

5.6 Принадлежность точки плоскости

Глава 6. Взаимное положение двух плоскостей, прямой линии и плоскости

6.1 Взаимное положение двух плоскостей

6.2 Линия пересечения двух плоскостей общего положения

6.3 Прямая, параллельная плоскости

6.4 Пересечение прямой линии с плоскостью общего положения

6.5 Перпендикулярность прямой и плоскости

6.6 Перпендикулярность двух плоскостей

Заключение

Рекомендуемый библиографический список

Приложения

Краткий словарь специальных терминов и определений

Предисловие

Любая цивилизация сильна культурой труда, умением работать. “Информационный взрыв” конца ХХ века прошлого тысячелетия привел к противоречию между количеством знаний, необходимых для успешной профессиональной деятельности и возможностью их осмысления. Ускорились темпы развития общественного производства, науки, культуры. Через каждые 6-7 лет знания устаревают. Поэтому наше время можно назвать веком образования. Система образования обеспечивает человека знаниями, позволяющими ему вписываться в создаваемый им мир, прогнозировать дальнейшее развитие этого мира и своего места в нем.

Объективные закономерности общественного развития - научно техническая революция, информационный взрыв, внедрение принципиально-новых технологий, возрастание роли творческих элементов в различных областях человеческой деятельности - диктуют необходимость повышения интеллектуального потенциала каждого человека, развития инновационного стиля мышления, нестандартных способов осуществления любой деятельности каждого человека способного самостоятельно воспринимать и оценивать новую информацию, принимать решения, генерировать новые идеи.

Творческие умения человека развиваются посредством разнообразных приемов и методов обучения при активном использовании имеющихся знаний и умений в конкретной учебной деятельности.

Человеческое общество знает множество способов передачи информации, одним из которых является графическое изображение. Задачи строительства различных сооружений, крепостных укреплений, жилья, храмов, требовали предварительного построения изображений этих сооружений. Поэтому, зародившись в глубокой древности, различные способы построения изображений по мере развития материальной жизни общества претерпевали глубокие изменения. От примитивных изображений, передававших геометрические формы изображаемых объектов лишь весьма приближенно, постепенно совершался переход к составлению проекционных чертежей, отражающих их геометрические свойства.

Первые попытки проекционных изображений уходят своими истоками в отдаленные времена жизни народов - еще до нашей эры. Одним из наиболее древних письменных произведений, дошедших до нас, является трактат римского архитектора Марка Витрувия (I век до н. э.) “Десять книг об архитектуре”. В этом произведении применение горизонтальных и фронтальных проекций дается как нечто уже известное. В этом же произведении Витрувий рассматривает вопросы, относящиеся к построению перспективных изображений.

После упадка и застоя в Средние века в эпоху Возрождения начинается новый расцвет культуры.

К концу 17 века был накоплен большой опыт по теории и практике изображения пространственных предметов на плоскости. Это позволило французскому геометру Гаспару Монжу (1746-1881) систематизировать и обобщить весь материал и издать научный труд под названием “Начертательная геометрия”.

В своем труде Монж успешно решает проблему получения изображения на плоскости, которое позволило, во-первых, передавать информацию о форме и размерах предмета без искажения, а во-вторых, добиться однозначности и взаимозаменяемости получения изображений. Другими словами, на основе созданной им теории можно построить изображение любого предмета и, наоборот, по изображению предмета (эскиз, чертеж, рисунок) выполнить его в натуре.

Предлагаемое учебное пособие по начертательной геометрии включает основополагающие разделы курса, предусмотренные учебной программой, содержит краткие теоретические положения, различные виды заданий и задач и алгоритмы их решения. После каждого раздела даются вопросы для самоанализа, основные понятия и способы деятельности, которые необходимо знать студенту и уметь ими пользоваться, а также расчетно-графические работы.

Для лучшего усвоения учебного материала имеется тренинг умений, который включает задачи для самостоятельного выполнения по каждой главе и заключительное тестирование по всему курсу. Кроме того, для удобства пользования учебное пособие снабжено кратким словарем специальных терминов и определений.

Автор выражает признательность и благодарность редактору Долгавиной Э.Г. за неоценимую помощь в процессе подготовки к изданию настоящего пособия.

Введение

Графическая деятельность требует выполнения ряда мыслительных и познавательных действий, качественное воплощение которых осуществляется при наличии у обучающихся способностей к восприятию различных средств графической информации, ее переработке, переосмыслению, анализу целостности восприятия. Все это позволяет создать образы реально существующего или задуманного объекта или явления с последующим его отображением в виде чертежа, рисунка, схемы, графика и т.д.

Уровень графической подготовки человека сейчас определяется не столько техникой графических изображений, а тем, насколько он готов к мыслительным преобразованиям этих изображений и насколько развита подвижность образного мышления, а также уровень пространственных представлений, которые являются одним из показателей общего умственного развития.

Начертательная геометрия как наука изучает вопросы отображения геометрических образов на плоскость.

Под геометрическими образами понимают точки, линии (прямые и кривые), поверхности, плоскости. Совокупность этих образов дает любую пространственную форму (деталь, конструкцию, сооружение).

Полученное изображение на плоскости называют чертежом. По образному выражению В. Курдюмова, чертеж - язык техники, а начертательная геометрия - грамматика этого языка.

Отсюда цели и задачи курса начертательной геометрии, в результате изучения которого студент должен знать:

- правила составления, чтения и выполнения чертежа;

- правила, приемы и способы графического решения задач, связанных с пространственными формами;

уметь:

- строить изображения пространственных форм на плоскости, то есть составлять чертеж;

- решать графическим способом на чертеже ряд пространственных задач.

Общие требования и методические рекомендации
по изучению курса “начертательная геометрия”

Приступая к изучению курса “Начертательная геометрия”, студенты должны помнить, что в предлагаемом учебном пособии изложены только основные теоретические положения. Поэтому для более детального изучения прорабатываемого материала необходима систематическая работа с рекомендуемой литературой.

Учебное пособие построено таким образом, что в конце каждой главы содержатся выводы по изученным темам, даются вопросы для самоанализа и заключительные расчетно-графические работы, выделены основные ключевые понятия и виды деятельности, которые студент должен знать, уметь владеть и пользоваться ими. Новый материал сопровождается достаточным количеством подробно разработанных примеров решения задач и упражнений. Решение задач и выполнение чертежей предполагает усвоение способов их выполнения. Для этого учебное пособие содержит алгоритмы выполнения заданий, которые даны в трех уровнях: вербальном (словесном), графическом и аналитическом.

В рабочей тетради, представленной студентом на проверку преподавателю, помимо решенных задач, должны быть записи основных теоретических положений и записи последовательности производимых на чертеже операций с помощью символов, то есть должны быть составлены алгоритмы их решения (комбинирование известных способов деятельности, выбор оптимального варианта).

На последнем практическом занятии студент получает допуск к экзамену при условии, что все пять расчетно-графических работ (рекомендации по выполнению которых будут даны ниже), а также решенные задачи, выполненные по надлежащим правилам, будут сданы.

Методические указания по выполнению расчетно-графических работ

1. В первом семестре выполняется пять расчетно-графических работ (РГР), которые сдаются по мере изучения тем курса “Начертательная геометрия”.

2. Каждый студент выполняет свой вариант, выданный преподавателем.

3. Чертежи выполняются на листах чертежной бумаги формата А4, (210 х 297). Можно использовать масштаб.

4. Каждый лист оформляется рамкой и надписью по форме, приведенной в прил. 1.

Все надписи, как и отдельные обозначения в виде букв и цифр, должны быть выполнены стандартным шрифтом размером 3,5 и 5. Условия задач и все геометрические построения выполняются карандашом при помощи чертежных инструментов. На тщательность построения должно быть обращено особое внимание. Небрежное выполнение построений не только снижает качество чертежа, но и приводит к неправильным результатам.

Глава 1. Метод проекций

Начертательная геометрия является наивысшим средством развития той

таинственной способности человеческого духа, которая зовется воображением и которая является ступенью к другой царственной способности - фантазии, без которой почти не совершаются великие открытия и изобретения

Н.А. Рынин

&

[3, гл. 1, § 1-3];

[5, гл. 1, § 6];

[6, гл. 1, § 1-2];

[7, гл. 1, подразделы 1-3]

В основе правил построения изображений, рассматриваемых в начертательной геометрии и применяемых в черчении, лежит метод проекций. Изучение начинается с построения проекций точки, так как при построении изображений любой пространственной формы рассматривается ряд точек, принадлежащих этой форме.

В настоящем учебном пособии приняты следующие буквенно-цифровые обозначения геометрических фигур.

1.1 Геометрические образы

1. Плоскость проекций:

p - произвольная;

p1 - горизонтальная;

p2 - фронтальная;

p3 - профильная;

S - центр проецирования.

2. Оси проекции:

X - ось абсцисс;

Y - ось ординат;

Z - ось аппликат;

Начало координат - прописной буквой О.

1. Точки, расположенные в пространстве, обозначаются прописными буквами латинского алфавита, а также арабскими цифрами:

A, B, C, D,…, L, M, N,

1, 2, 3, 4,…,12, 13, 14,…

2. Линии, расположенные произвольно относительно плоскостей проекций, обозначаются строчными буквами латинского алфавита:

a, b, c,…, l, m, n

Линии уровня обозначаются:

h - горизонталь;

f - фронталь;

p - профильная прямая.

Для прямых линий используются также следующие обозначения:

(A, B) - прямая, проходящая через точки A и B;

[AB] - отрезок прямой, ограниченный точками А и В

3. Плоскости обозначаются прописными буквами латинского и греческого алфавита:

P, Q, R, S, T, S , L , Q …

Для обозначения плоскостей уровня используются прописные буквы только греческого алфавита:

Г - горизонтальная плоскость (гамма);

Ф - фронтальная плоскость (фи);

Р - профильная плоскость (ро).

Чтобы выделить способ задания плоскости, указывают ее геометрические элементы, которыми она определяется:

P (D ABC) - плоскость P задана треугольником ABC;

Q (a b) - плоскость Q задана пересекающимися прямыми a и b;

R (m II n) - плоскость R задана параллельными прямыми m и n;

S (A,В,С) - плоскость S задана тремя точками.

4. Проекции точек, линий и других геометрических образов обозначаются теми же буквами (или цифрами), что и оригинал, но с добавлением индекса А1, А2, А3 или 11, 12, 13, соответствующего плоскости проекций, на которой они получены:

А1, В1, С1, …, М1, N1… - горизонтальные проекции точек;

А2, В2, С2, …, М2, N2… - фронтальные проекции точек;

А3, В3, С3, …, М3, N3… - профильные проекции точек;

a1, b1, c1, …, m1,n1… - горизонтальные проекции линий;

a2, b2, c2, …, m2,n2… - фронтальные проекции линий;

a3, b3, c3,…, m3,n3… - профильные проекции линий и т. д.

Обозначение отношений между геометрическими образами

Обозначения теоретико-множественные

Сущность метода проецирования заключается в том, что проекция Аp некоторого геометрического образа А получается в результате пересечения проецирующей линии n, проходящей через точку А с плоскостью проекций p (рис.1.1):

Рис. 1.1

p - плоскость проекций;

А - геометрический образ пространства;

n - проецирующая линия;

Аp = n p I А - проекция геометрического образа пространства на плоскость проекций.

Для получения проекции линии проецируют ряд ее точек с последующим соединением полученных проекций точек (рис. 1.2).

Знание построения проекций точек и линий позволяет перейти к проецированию поверхности тела.

Рис. 1.2

1.2 Способ проецирования

В начертательной геометрии рассматриваются два основных способа проецирования: центральное и параллельное.

1. Проецирование центральное

Центральным называется проецирование, при котором все проецирующие лучи выходят из одной точки S, называемой центром проецирования. На рис. 1.3 дан пример центрального проецирования, где p - плоскость проекций; S - центр проецирования (точка, не лежащая в плоскости p ); А, В, С - точки пространства; Аp , Вp , Сp - центральные проекции точек А, В, С, на плоскость p : они получаются в пересечении проецирующих лучей SA, SB, SC c плоскостью проекций.

Если для некоторой точки D проецирующий луч окажется параллельным плоскости проекций, то принято считать, что они пересекаются, но в бесконечно удаленной точке. Проекцией точки D будет бесконечно удаленная точка Dp .

Проекции точек (А и В), лежащих на одном проецирующем луче, совпадают (Аp Вp ) (рис. 1.4).

Построение центральных проекций прямой линии АВ и кривой MN показано на (рис. 1.5 и 1.6).

2. Проецирование параллельное

Параллельным называется проецирование, при котором все проецирующие лучи между собой параллельны.

Параллельные проекции могут быть косоугольными (рис.1.7) и прямоугольными (рис. 1.8).

S - направление проецирования.

При косоугольном проецировании проецирующие лучи составляют с плоскостью проекций угол, не равный 90° .

При прямоугольном проецировании проецирующие лучи перпендикулярны плоскости проекций (прямоугольное проецирование чаще всего называют ортогональным проецированием).

Каждый из рассматриваемых способов имеет свои преимущества и недостатки. В зависимости от того, для какой цели выполняется чертеж, используется тот или иной способ.

Для выполнения чертежа, по которому изготовляется изображаемый предмет, используется ортогональное проецирование.

Косоугольное, параллельное проецирование используется в основном для получения аксонометрических изображений, центральное - для построения перспективных изображений.

В изучаемом курсе основное внимание будет уделено ортогональному проецированию.

1.3 Свойства ортогональных проекций

1. Проекция точки есть точка (рис. 1.9).

Рис. 1.9

2. Проекция прямой в общем случае есть прямая (рис. 1.10).

Если прямая располагается перпендикулярно какой-либо плоскости проекций (такая прямая называется проецирующей), то на эту плоскость она проецируется в виде точки (рис. 1.10).

3. Если точка лежит на прямой, то ее проекция располагается на соответствующей проекции этой же прямой А m Аp mp (рис. 1.11).

Примечание. Первые 3 свойства проекций являются общими для центрального и параллельного проецирования.

4. Если точка делит отрезок прямой в каком-либо отношении, то ее проекция делит проекцию отрезка в том же самом отношении (рис. 1.12).

Рис. 1.12

5. Если прямая параллельна плоскости проекций, то на эту плоскость эта прямая проецируется без искажений (рис.1.13).

m II mp = m, m II p [ Аp Вp ] = [ AB ].

Если плоская фигура параллельна плоскости проекций, то на эту плоскость она проецируется без искажения.

6. Если прямые в пространстве пересекаются, то их проекции также пересекаются (рис. 1.14).

m n = C mp пp сp

7. Если прямые в пространстве параллельны, то их проекции также параллельны (рис. 1.15).

a II b аp II bp

Примечание. Общими для косоугольного и прямоугольного проецирования являются свойства 4, 5, 6.

8. Если одна сторона прямого угла параллельна плоскости проекций, то на эту плоскость прямой угол проецируется без искажений (рис. 1.16).

ABC = 90° ; AB|| p ; BC|| p ; Аp Вp Сp = 90° ;

ABD = 90° ; AB|| p ; BD p ; Аp Вp Dp = 90° .

Примечание. Свойство 8-е только для ортогонального проецирования.

9. Параллельный перенос фигуры в пространстве или плоскости проекций не изменяет вида и размеров проекции фигуры.

1.4 Обратимость чертежа. Метод Монжа

Рассмотренный в § 2 и § 3 способ проецирования на одну плоскость проекций дает возможность решить прямую задачу (имея предмет, можно найти его проекцию), но не позволяет решить обратную задачу (имея проекцию, определить форму и размеры предмета). Например, имея проекцию Аp (рис. 1.9) нельзя определить положение самой точки в пространстве, так как не известно, насколько она удалена от плоскости проекций p . Наличие одной проекции создает неопределенность изображения. Решение этой задачи является основной в технической практике. Так, на производстве изделие изготавливают по его проекционным чертежам, которые должны полностью определять размеры и формы этого изделия. Чертеж должен быть “обратимым”, т.е. вполне определяющим проецируемые геометрические образы (объекты).

В практике нашли применение несколько способов построения “обратимых” чертежей: проекции с числовыми отметками, “федоровские проекции”, аксонометрические проекции, комплексные проекции.

В нашем случае будут рассмотрены чертежи, получаемые ортогональным проецированием на две и три взаимно перпендикулярные плоскости проекций, т. е. комплексные чертежи (метод Монжа).

Выводы

Начертательная геометрия как наука изучает вопросы изображений геометрических образов (точки, линии, плоскости, поверхности) на плоскости. Основным методом начертательной геометрии является метод проецирования. Способы проецирования могут быть центральными, параллельными (ортогональными и косоугольными).

Вопросы для самоанализа

1. На каком методе базируется начертательная геометрия?

2. Назовите способы проецирования. Дайте их определения. В чем суть каждого из них?

3. Назовите свойства проекций:

а) центральных;

б) параллельных косоугольных;

в) ортогональных.

4. Можно ли ортогональное проецирование назвать параллельным?

5. В чем заключается метод Монжа?

Основные понятия, которые необходимо знать:

метод проецирования;

центральное проецирование;

параллельное проецирование;

ортогональное проецирование;

плоскость проекций;

проецирующая линия;

проекция;

свойства центральных и параллельных проекций;

построение проекции точки на плоскости.

Глава 2. Проекция точки

2.1 Система двух взаимно перпендикулярных плоскостей

Обратимость чертежа, как об этом говорилось ранее, т. е. однозначное определение положения точки в пространстве по ее проекциям, может быть обеспечена проецированием на две взаимно перпендикулярные плоскости проекций.

1. Пространство делится на четверти двумя взаимно-перпендикулярными плоскостями.

2. Для получения изображения объекта на плоскости выбирается ортогональное (прямоугольное) проецирование.

3. Для преобразования изображений, полученных на взаимно перпендикулярных плоскостях, изображение на одну плоскость, следует считать неподвижным (плоскость p 2), а плоскость p 1 - вращающейся вокруг оси до совмещения с плоскостью p 2. Рассмотрим две взаимно перпендикулярные плоскости проекций (рис. 2.1). Плоскость p 1, расположенную горизонтально, называют горизонтальной плоскостью проекций, вертикальную плоскость p 2 - фронтальной плоскостью проекций. Х - линия пересечения плоскостей проекций, которую называют осью проекций. Ось проекций делит каждую плоскость на две полуплоскости: p 1 - положительную и отрицательную, p 2 - положительную и отрицательную. Плоскости делят окружающее пространство на четыре четверти - I, II, III, IV (рис. 2.1 и 2.2).

2.2 Точка в системе двух плоскостей проекций p 1 и p 2

Построение проекций точки (и любого геометрического образа) в системе двух взаимно перпендикулярных плоскостей проекций осуществляется ортогональным проецированием на каждую плоскость.

Рассмотрим построение проекций некоторой точки А, расположенной в первой четверти системы p1/p2 (рис. 2.3). Проведя из А перпендикуляры (проецирующие лучи из бесконечно удаленных центров S1 и S2) к плоскостям проекций p1 и p2, получаем проекции точки А: горизонтальную проекцию А1, и фронтальную проекцию А2.

Если спроецировать отрезки лучей АА1 из центра S2 и АА2 из центра S1 , то получаем две взаимно перпендикулярные прямые А2Ах и А1Ах, соответственно. Эти прямые принято называть линиями связи проекций.

Проверим, верна ли обратная задача.

Если даны проекции А1, А2 некоторой точки А, то определяют ли они положение точки в пространстве (рис. 2.4).

Решение:

1. Проведем из точки А1 перпендикуляр к плоскости p 1 (рис. 2.5).

2. Проведем из точки А2 перпендикуляр к плоскости p 2 (рис. 2.6).

3. Фигура АА1АхА2 имеет:

Следовательно, точка А есть точка, принадлежащая двум пересекающимся перпендикулярам, лежащим в одной плоскости, и она единственная.

Таким образом, доказано, что две проекции определяют положение точки в пространстве.

2.3 Образование комплексного чертежа (эпюра)

Для удобства пользования полученными изображениями от пространственной системы плоскостей перейдем к плоскостной.

Для этого:

1. Применим способ вращения плоскости p1 вокруг оси Х до совмещения с плоскостью p2

2. Совмещаем плоскости p1 и p2 в одну плоскость чертежа

Проекции А1 и А2 располагаются на одной линии связи перпендикулярной оси Х. Эта линия называется линией проекционной связи.

Рис. 2.9

Так как плоскость проекций считается бесконечной в пространстве, то границы плоскости p1, p2 можно не изображать.

Рис. 2.10

В результате совмещения плоскостей p1 и p2 получается комплексный чертеж или эпюр (от франц. epure чертеж), т.е. чертеж в системе p1 и p2 или в системе двух плоскостей проекций. Заменив наглядное изображение эпюром, мы утратили пространственную картину расположения плоскостей проекций и точки. Но эпюр обеспечивает точность и удобоизмеряемость изображений при значительной простоте построений. Чтобы представить по эпюру пространственную картину, требуется работа воображения: например, по рис. 2.11 надо представить картину, изображенную на рис. 2.12.

При наличии на комплексном чертеже оси проекций по проекциям А1 и А2 можно установить положение точки А относительно p1 и p2 (см. рис. 2.5 и 2.6). Сравнивая рис. 2.11 и 2.12 нетрудно установить, что отрезок А2 АХ - расстояние от точки А до плоскости p1, а отрезок А1АХ - расстояние от точки А до p2. Расположение А2 выше оси проекций означает, что точка А расположена над плоскостью p1. Если А1 на эпюре расположена ниже оси проекций, то точка А находится перед плоскостью p2. Таким образом, горизонтальная проекция геометрического образа определяет его положение относительно фронтальной плоскости проекций p2, а фронтальная проекция геометрического образа - относительно горизонтальной плоскости проекций p1.

2.4 Характеристика положения точки в системе p 1 и p 2

Точка, заданная в пространстве, может иметь различные положения относительно плоскостей проекций

Рис. 2.13

Рассмотрим возможные варианты расположения точки в пространстве первой четверти:

1. Точка расположена в пространстве I четверти на любом расстоянии от оси Х и плоскостей p 1p 2, например точки А, В (такие точки называются точками общего положения).

2. Точка С принадлежит плоскости p2, точка D - плоскости p1

3. Точка K принадлежит одновременно и плоскости p1 и p2, то есть принадлежит оси Х:

На основании вышеизложенного можно сделать следующий вывод:

1. Если точка расположена в пространстве I четверти, то ее проекция А2 расположена выше оси Х, а А1 - ниже оси Х; А2А1 - лежат на одном перпендикуляре (линии связи) к оси Х (рис. 2.14).

2. Если точка принадлежит плоскости p2, то ее проекция С2 С (совпадает с самой точкой С) а проекция С1 Х (принадлежит оси Х) и совпадает с СХ: С1 СХ.

3. Если точка принадлежит плоскости p1, то ее проекция D1 на эту плоскость совпадает с самой точкой D D1, а проекция D2 принадлежит оси Х и совпадает с DХ: D2 DХ.

4. Если точка принадлежит оси Х, то все ее проекции совпадают и принадлежат оси Х: К К1 К2 КХ.

Задание:

2. Построить наглядное изображение и комплексный чертеж точки по описанию:

а) точка С расположена в I четверти, и равноудалена от плоскостей p1 и p2.

б) точка М принадлежит плоскости p2.

в) точка К расположена в первой четверти, и ее расстояние до p1 в два раза больше, чем до плоскости p2.

г) точка L принадлежит оси Х.

3. Построить комплексный чертеж точки по описанию:

а) точка Р расположена в I четверти, и ее расстояние от плоскости p2 больше, чем от плоскости p1.

б) точка А расположена в I четверти и ее расстояние до плоскости p1 в 3 раза больше, чем до плоскости p2.

в) точка B расположена в I четверти, и ее расстояние до плоскости p1=0.

4. Сравнить положение точек относительно плоскостей проекций p1 и p2 и между собой. Сравнение ведется по характеристикам или признакам. Для точек эти характеристики есть расстояние до плоскостей p1; p2.

Применение вышеизложенной теории при построении изображений точки может быть осуществлено различными способами:

словами (вербальное);

графически (чертежи);

наглядное изображение (объемное);

плоскостное (комплексный чертеж).

Умение переводить информацию с одного способа на другой способствует развитию пространственного мышления, т.е. с вербального в наглядное (объемное), а затем в плоскостное, и наоборот.

Рассмотрим это на примерах (табл. 2.1 и табл. 2.2).

Таблица 2.1 Пример изображения точек в системе двух плоскостей проекций

Четверть

пространства

Наглядное

изображение

Комплексный

чертеж

Характерные

признаки

I

Фронтальная проекция точки А выше оси Х, горизонтальная проекция точки А ниже оси X

II

Фронтальная и горизонтальная проекции точки B выше оси Х

III

Фронтальная проекция точки С ниже оси Х, горизонтальная проекция точки C

выше оси X

IV

Фронтальная и горизонтальная проекции точки D ниже оси Х

Таблица 2.2 Пример изображения точек, принадлежащих плоскостям p 1 и p 2

Положение точки

Наглядное

изображение

Комплексный чертеж

Характерные признаки

Точка А

принадлежит плоскости p 1

А1 - ниже оси Х,

А2 - на оси X

Точка B

принадлежит плоскости p 1

B1 - выше оси X,

B2 - на оси X

Точка С

принадлежит плоскости p 2

С2 - выше оси X,

С1 - на оси Х

Точка D

принадлежит плоскости p 2

D1 - на оси X,

D2 - ниже оси X

Точка Е

принадлежит оси X

E1 совпадает с E2 и принадлежит оси X

Задача № 1.

Построить комплексный чертеж точки А, если:

1. точка расположена во II четверти и равноудалена от плоскостей p1 и p2.

2. точка расположена в III четверти, и ее расстояние до плоскости p1 в два раза больше, чем до плоскости p2.

3. точка расположена в IV четверти, и ее расстояние до плоскости p1 больше, чем до плоскости p2.

1. Построить наглядное изображение точек в четвертях:

а) А - общего положения в III четверти;

б) В - общего положения в IV четверти;

в) С - во второй четверти, если ее расстояние от p1 равно 0;

г) D - в I четверти, если ее расстояние от p2 равно 0.

Задача № 4.

Построить комплексный чертеж точек А, В, С, D (см. задачу 3).

2.5 Система трех взаимно перпендикулярных плоскостей

На практике исследования и построения изображений система двух взаимно перпендикулярных плоскостей не всегда дает возможность однозначного решения. Так, например, если переместить точку А вдоль оси Х, то ее изображение не изменится.

Для решения данной задачи вводят систему трех взаимно перпендикулярных плоскостей, так как при составлении чертежей, например машин и их частей, требуется не два, а больше изображений. На этом основании в некоторые построения при решении задач необходимо вводить в систему p1, p2 и другие плоскости проекций.

Эти плоскости делят все пространство на VIII частей, которые называются октантами (от лат. okto восемь). Плоскости не имеют толщины, непрозрачны и бесконечны. Наблюдатель находится в первой четверти (для систем p1, p2) или первого октанта (для систем p1, p2, p3) в бесконечном удалении от плоскостей проекций.

2.6 Точка в системе p1, p2, p3

Построение проекций некоторой точки А, расположенной в I октанте, на три взаимно перпендикулярные плоскости p1, p2, p3 показано на рис. 2.27. Используя совмещение плоскостей проекций с плоскостью p 2 и применяя способ вращения плоскостей, получаем комплексный чертеж точки А (рис. 2.28):

АА1 ^ p1; АА 2 ^ p2; АА 3 ^ p3,

где А3 - профильная проекция точки А; АХ, Аy, АZ - осевые проекции точки А.

Проекции А1, А2, А3 называются соответственно фронтальной, горизонтальной и профильной проекцией точки А.

Плоскости проекций, попарно пересекаясь, определяют три оси x, y, z, которые можно рассматривать как систему декартовых координат: ось Х называется осью абцисс, ось y - осью ординат, ось Z - осью аппликат, точка пересечения осей, обозначаемая буквой О, есть начало координат.

Так, зритель, рассматривающий предмет, находится в первом октанте.

Для получения комплексного чертежа применим способ вращения плоскостей p1 и p3 (как показано на рис. 2.27) до совмещения с плоскостью p2. Окончательный вид всех плоскостей в первом октанте приведен на рис. 2.29.

Здесь оси Оx и Оz, лежащие в неподвижной плоскости p2, изображены только один раз, ось Оy показана дважды. Объясняется это тем, что, вращаясь с плоскостью p1, ось y на эпюре совмещается с осью Оz, а вращаясь с плоскостью p3, эта же ось совмещается с осью Оx.

Рис. 2.29

Рассмотрим рис. 2.30, где точка пространства А, задана координатами (5,4,6). Эти координаты положительны, и сама она находится в первом октанте. Построение изображения самой точки и ее проекций на пространственной модели осуществляется с помощью координатного прямоугольного параллелограмма. Для этого на осях координат откладываем отрезки, соответственно отрезкам длины: ОАх = 5, OАy = 4, OАz = 6. На этих отрезках (ОАx, ОАy, ОАz), как на ребрах, строим прямоугольный параллелепипед. Одна из его вершин будет определять заданную точку А.

Рис. 2.30

Говоря о системе трех плоскостей проекций на комплексном чертеже, необходимо отметить следующее.

Первое

1. две проекции точки принадлежат одной линии связи;

2. две проекции точки определяют положение третьей ее проекции;

3. линии связи перпендикулярны соответствующей оси проекций.

Второе

Любая точка пространства задается координатами. По знакам координат можно определить октант, в котором находится заданная точка. Для этого воспользуемся табл. 2.3, в которой рассмотрены знаки координат в 1-4 октантах (5-8 октанты не представлены, они имеют отрицательное значение х, а y и z повторяются).

Таблица 2.3

x

y

z

Октант

+

+

+

I

+

_

+

II

+

_

_

III

+

+

_

IV

Образование комплексного чертежа в системе трех плоскостей проекций осуществляется совмещением плоскостей p1, p2, p3.

Рис. 2.31

Ось у в этом случае имеет два положения: y1 c плоскостью p1, y3 c плоскостью p3.

Горизонтальная и фронтальная проекции точки располагаются на линии проекционной связи, перпендикулярной оси x, фронтальная и профильная проекции - на линии проекционной связи, перпендикулярной к оси z.

А1АХ = А3АZ = АА2 - расстояние от А до p2

А2АХ = А3Аy = АА1 - расстояние от А до p1

А1Аy = А2АZ = АА3 - расстояние от А до p3

Расстояние точки от плоскости проекций измеряются аналогично отрезкам на эпюре (рис. 2.32).

Рис. 2.32

При построении проекции точки в пространстве и на комплексном чертеже могут применяться различные алгоритмы.

1. Алгоритм построения наглядного изображения точки, заданной координатами (рис. 2.30):

1.1. Соотнести знаки координат x, y, z с данными табл. 2.3.

1.2. Определить четверть, в которой расположена точка.

1.3. Выполнить наглядное (аксонометрическое) изображение четверти.

1.4. Отложить координаты точки на осях АХ, АY, АZ.

1.5. Построить проекции точки на плоскостях p1, p2, p3.

1.6. Построить перпендикуляры к плоскостям p1, p2, p3 в точках проекции А1, А2, А3.

1.7. Точка пересечения перпендикуляров есть искомая точка А.

2. Алгоритм построения комплексного чертежа точки в системе трех плоскостей проекций p 1, p 2, p 3, заданной координатами (рис. 2.32)

2.1. Определить по координатам четверть, в которой расположена точка.

2.2. Определить механизм совмещения плоскостей.

2.3. Построить комплексный чертеж четверти.

2.4. Отложить координаты точки на осях x, y, z (АХ, АY, АZ).

2.5. Построить проекции точки на комплексном чертеже.

2.7 Комплексный чертеж и наглядное изображение точки в I-IV октантах

Пример построения третьей проекции точки по двум заданным

Точка в пространстве определяется любыми двумя своими проекциями. При необходимости построения третьей проекции по двум заданным необходимо воспользоваться соответствием отрезков линий проекционной связи, полученных при определении расстояний от точки до плоскости проекций

Примеры решения задач в I октанте

Рассмотрим алгоритм построения точки А (табл. 2.5)

Таблица 2.5 Алгоритм построения точки А по заданным координатам А (x = 5, y = 20, z = -9)

Вербальная форма

Графическая форма

Соотнести знаки координат x, y, z с данными табл. 2.3

Согласно табл. 2.3,

это знаки 4-го октанта

Построить наглядное

(аксонометрическое)

изображение 4-го октанта

Определить механизм

совмещения плоскостей

Построить комплексный чертеж

4-го октанта

Отложить координаты точки

на осях: x = 5, y = 20, z = -9

В следующих главах мы будем рассматривать образы: прямые и плоскости только в первой четверти. Хотя все рассматриваемые способы можно применить в любой четверти.

Таким образом, на основании теории Г. Монжа, можно преобразовать пространственное изображение образа (точки) в плоскостное.

Эта теория основывается на следующих положениях:

1. Все пространство делится на 4 четверти с помощью двух взаимно перпендикулярных плоскостей p1 и p2, либо на 8 октантов при добавлении третьей взаимно-перпендикулярной плоскости p3.

2. Изображение пространственного образа на эти плоскости получается с помощью прямоугольного (ортогонального) проецирования.

3. Для преобразования пространственного изображения в плоскостное считают, что плоскость p2 - неподвижна, а плоскость p1 вращается вокруг оси x так, что положительная полуплоскость p1 совмещается с отрицательной полуплоскостью p2, отрицательная часть p1 - с положительной частью p2.

4. Плоскость p3 вращается вокруг оси z (линии пересечения плоскостей) до совмещения с плоскостью p2 (см. рис. 2.31).

Изображения, получающиеся на плоскостях p1, p2 и p3 при прямоугольном проецировании образов, называются проекциями.

Плоскости p1, p2 и p3 вместе с изображенными на них проекциями, образуют плоскостной комплексный чертеж или эпюр.

Линии, соединяющие проекции образа ^ осям x, y, z, называются линиями проекционной связи.

Для более точного определения образов в пространстве может быть применена система трех взаимно перпендикулярных плоскостей p1, p 2, p 3.

В зависимости от условия задачи можно выбрать для изображения либо систему p1, p2, либо p1, p2, p3.

Систему плоскостей p1, p2, p3 можно соединить с системой декартовых координат, что дает возможность задавать объекты не только графическим или (вербальным) образом, но и аналитическим (с помощью цифр).

Такой способ изображения образов, в частности точки, дает возможность решать такие позиционные задачи, как:

· расположение точки относительно плоскостей проекций (общее положение, принадлежность плоскости, оси);

· положение точки в четвертях (в какой четверти расположена точка);

· положение точек относительно друг друга, (выше, ниже, ближе, дальше относительно плоскостей проекций и зрителя);

· положение проекций точки относительно плоскостей проекций (равноудаление, ближе, дальше).

Метрические задачи:

· равноудаленность проекции от плоскостей проекций;

· отношение удаления проекции от плоскостей проекций (в 2-3 раза, больше, меньше);

· определение расстояния точки от плоскостей проекций (при введении системы координат).

Вопросы для самоанализа

1. Линией пересечения каких плоскостей является ось z?

2. Линией пересечения каких плоскостей является ось y?

3. Как располагается линия проекционной связи фронтальной и профильной проекции точки? Покажите.

4. Какими координатами определяется положение проекции точки: горизонтальной, фронтальной, профильной?

5. В какой четверти располагается точка F (10; -40; -20)? От какой плоскости проекций точка F удалена дальше всего?

6. Расстоянием от какой проекции до какой оси определяется удаление точки от плоскости p1? Какой координатой точки является это расстояние?

Основные понятия, которые необходимо знать:

- система двух и трех плоскостей проекций;

- фронтальная проекция, горизонтальная проекция, профильная проекция, комплексный чертеж (эпюр);

- линии проекционной связи.

Способы деятельности, которыми надо уметь пользоваться:

· алгоритм построения точки, заданной координатами в системе трех плоскостей проекций в пространстве и на комплексном чертеже;

· построение третьей проекции по двум заданным.

Контрольные задания

1. Дать сравнительный анализ положения проекций точек в четвертях (см. табл. 2.5): по сходству, различию, противоположности (рис. 2.33 и рис. 2.34).

Задача № 1

Определить координаты точек и их взаимное положение в пространстве.

Задача № 2

Построить проекции точки:

1. расположенной во II четверти и равноудаленной от всех трех плоскостей проекций;

2. расположенной в IV четверти, расстояние которой от плоскости p1=0.

Расчетно-графическая работа № 1.

Построение наглядного изображения и комплексного чертежа точки в системе трех плоскостей проекций

Задания (выполняются в соответствии с вариантом, указанным в нижеследующей таблице)

1. По заданным координатам построить три проекции точек А, В, С.

2. Определить, в каком октанте находятся точки.

3. Выполнить наглядные изображения и комплексный чертеж данных точек.

Варианты РГР № 1

Примечание.

1. Каждый лист оформляется рамкой и надписью в соответствии с прил. 1.

2. Образец выполнения графической работы приведен в прил. 2.

Глава 3. Прямая линия

Проецирование отрезка прямой линии

3.1 Общие положения

Линия - это одномерный геометрический образ, имеющий длину; множество всех последовательных положений движущейся точки. По определению Эвклида: "Линия же - длина без ширины". Положение прямой линии в пространстве определяется положением двух ее точек. Чтобы спроецировать прямую линию в общем случае, надо спроецировать две ее точки и соединить полученные проекции. Прямая в пространстве может быть расположена произвольно. Рассмотрим различные положения прямой относительно плоскостей проекций p1, p2, p3 (рис. 3.1).

Рис. 3.1

3.2 Прямая общего положения в системе трех плоскостей проекций p 1, p 2, p 3

Определение

Наглядное

изображение

Комплексный

чертеж

Прямой общего положения называется прямая, не параллельная ни одной из плоскостей проекций p1, p2, p3

AB - прямая в пространстве;

A1B1 - горизонтальная проекция прямой;

A2B2 - фронтальная проекция прямой;

A3B3 - профильная проекция прямой

3.3 Прямые частного положения

Прямые частного положения - это прямые, которые либо параллельны (табл. 3.1), либо перпендикулярны одной из плоскостей проекций (табл. 3.2).

Прямые уровня

Всякую линию, параллельную плоскости проекций, называют линией уровня. В начертательной геометрии различают три основные линии уровня: горизонталь, фронталь и профильную линии (табл. 3.1).

Таблица 3.1 Прямые уровня

Определение

Наглядное

изображение

Комплексный

чертеж

Горизонталью называют всякую линию, параллельную горизонтальной плоскости p1: A2B2 || Оx;

A3B3i || y.

A1B1 - натуральная величина отрезка,

b - угол наклона к p2

Проецирующие прямые

Проецирующими прямыми называют прямые, расположенные перпендикулярно к плоскостям проекций p1, p2, p3. Различают три основные проецирующие прямые: горизонтальную, фронтальную и профильную.

Если прямая перпендикулярна какой-либо из плоскостей проекций, то на эту плоскость она проецируется в виде точки. Две другие ее проекции параллельны осям и равны натуральной величине отрезка (табл. 3.2).

Таблица 3.2 Проецирующие прямые

Определение

Наглядное изображение

Комплексный чертеж

Горизонтально проецирующей прямой называют прямую, перпендикулярную к плоскости p1; A2B2 - натуральная величина AB, в плоскости p1 отрезок АВ проецируется в точку А1 В1

Фронтально проецирующей прямой называют прямую, перпендикулярную к плоскости p2; AB || p1 и AB p2, А1В1 - натуральная величина АВ, в плоскости p2 отрезок проецируется в точку А2В2

Профильно проецирующей прямой называют прямую, перпендикулярную к плоскости p3; AB || p1 и AB || p2, А1В1
и А2В2 - натуральные
величины отрезка АВ, А3В3 проецируется на p3 в точку

При сравнительном анализе изображений прямых частного положения на комплексном чертеже (табл. 3.1 и 3.2) следует:

1. Прямая уровня проецируется в натуральную величину на ту плоскость, которой она параллельна. Две остальные ее проекции обязательно параллельны осям проекций.

2. Проекция прямой уровня, к той плоскости, которой она параллельна, составляет с осями проекций углы, равные углам наклона линии уровня с плоскостями проекций.

3. Если прямая перпендикулярна плоскости проекций, то ее проекцией на эту плоскость является точка, а вторая проекция располагается перпендикулярно осям проекций.

3.4 Построение третьей проекции отрезка по двум заданным

В нашем примере мы будем рассматривать построение прямой общего положения в первой четверти (табл. 3.3).

Таблица 3.3

Вербальная форма

Графическая форма

1. Прямая AB задана двумя проекциями А1В1 и А2В2. Необходимо построить третью проекцию А3В3

2. Построить третью проекцию точки А - А3:

а) на оси z и y отложить координаты

точки А: Az и Aу

a)

б) построить Ау для профильной проекции

б)

Задача № 1

При решении задач использовать алгоритм построения третьей проекции прямой по двум заданным (табл. 3.3).

1. По двум заданным проекциям построить третью на рис. 3.1-3.9:

Задача № 2

Определить, на каком из комплексных чертежей данная прямая является натуральной величиной отрезка. Где можно определить углы наклона прямой к плоскостям проекций (рис. 3.1-рис. 3.9)?

3.5 Способ прямоугольного треугольника. Определение натуральной величины отрезка прямой линии и углов наклона прямой к плоскостям проекций

Построение проекций отрезка прямой общего и частного положения позволяет решать не только позиционные задачи (расположение относительно плоскостей проекций), но и метрические - определение длины отрезка и углов наклона к плоскостям проекций. Но эта задача может быть решена только в случае, если отрезок параллелен или перпендикулярен к одной или нескольким плоскостям. Рассмотрим способ решения такой задачи для отрезка общего положения.

Пусть дан отрезок АВ общего положения относительно плоскостей p1 и p2. АВ'В - прямоугольный треугольник (рис. 3.10), в котором катет АВ' = А1В1 (проекции отрезка АВ на плоскость p1), а катет ВВ' равен z - разности расстояний точек А и В до плоскости p1. Угол a в прямоугольном треугольнике АВ'В определяет угол наклона прямой АВ к плоскости p1.

Рассмотрим треугольник ВА'А (рис. 3.11), где катет ВА' равен проекции А2В2 (ВА' = А2В2), а второй катет АА' равен D y - разности расстояний точек А и В от плоскости p 2. Угол в прямоугольном треугольнике ВАА' определяет угол наклона прямой АВ к плоскости p2.

Таким образом, натуральная длина отрезка прямой общего положения определяется гипотенузой прямоугольного треугольника, у которого один катет равен проекции отрезка, а второй катет - алгебраической разности расстояний от концов отрезка до одной из плоскостей проекций.

3.6 Определение натуральной величины отрезка прямой общего положения

Для определения натуральной величины отрезка прямой линии общего положения по ее проекциям применяют метод прямоугольного треугольника.

Рассмотрим последовательность этого положения (табл. 3.4).

Таблица 3.4

Вербальная форма

Графическая форма

1. Определить на комплексном чертеже Аz, Bz, Ay, By:

D z - разность расстояний от точек А и В до плоскости p1;

D y - разность расстояний от точек А и В до плоскости p2

· Взять любую точку проекции прямой АВ, провести через нее перпендикуляр к отрезку:

а) либо перпендикуляр к А2В2 через точку В2 или А2;

б) либо перпендикуляр к А1В1 через точку В1 или А1

При решении подобной задачи находить натуральную величину отрезка можно только один раз (либо на p 1, либо на p 2). Если требуется определить углы наклона прямой к плоскостям проекций, то данное построение выполняется дважды - на фронтальной и горизонтальной проекциях отрезка.

3.7 Принадлежность точки прямой

Задача № 1

Определить, принадлежит ли точка С отрезку прямой АВ.

Задача № 2

Найти вторую проекцию точки В, если она принадлежит прямой а (рис. 3.12-3.15)

На основе теории Монжа можно преобразовать пространственное изображение не только точки, но и более сложных объектов, в частности прямой линии и ее отрезка.

Для получения проекций отрезка АВ строят проекции его концов-точек А и В - А1В1; А2В2; А3В3. Соединив одноименные проекции точек, получают проекции отрезка А1В1 - на плоскость p1; А2В2 - на плоскость p2; А3В3 - на плоскость p3. Проекции концов отрезков связаны линиями проекционной связи.

Точка принадлежит отрезку, если ее проекции располагаются на одноименных проекциях этой же прямой.

Отрезок прямой относительно плоскостей проекций может быть:

отрезком общего положения (углы наклона отрезка к плоскостям проекций произвольные);

отрезком уровня (параллельным какой-либо плоскости проекций);

проецирующим отрезком (перпендикулярным какой-либо плоскости проекций).

Отрезок может быть задан как в системе p1p 2, так и в p1p2p3.

По двум заданным проекциям всегда можно построить третью.

Отрезок в пространстве характеризуется длиной и углом наклона к плоскостям проекций.

Для отрезков уровня и проецирующих эти величины определяются на самом комплексном чертеже, так как одна из проекций отрезка частного положения есть его натуральная величина.

Для нахождения натуральной величины отрезка общего положения и углов его наклона к плоскостям проекций применяется метод прямоугольного треугольника.

...

Подобные документы

  • Четыре основные задачи, решаемые методами преобразования. Сущность способа замены плоскостей проекций. Решение ряда задач по преобразованию прямой общего положения в прямую уровня, а затем - в проецирующую, выполнив последовательно два преобразования.

    реферат [185,5 K], добавлен 17.10.2010

  • Понятие начертательной геометрии, ее сущность и особенности, предмет и методы изучения, история зарождения и развития. Цели и задачи начертательной геометрии, ее структура и элементы. Прямая и варианты ее расположения, разновидности и методы определения

    лекция [451,3 K], добавлен 21.02.2009

  • Основные положения теоретического курса по начертательной геометрии. Эпюры - примеры построения, а также подробные описания методов решения. Описание решения типовых задач по каждой теме начертательной геометрии и их основные теоретические положения.

    учебное пособие [8,1 M], добавлен 16.10.2011

  • Построение угла равного данному, биссектрисы данного угла, середины отрезка, перпендикулярных прямых, треугольника по трем элементам. Теорема Фалеса и геометрическое место точек. Построение с использованием свойств движений. Метод геометрических мест.

    дипломная работа [359,1 K], добавлен 24.06.2011

  • Перпендикулярные прямые в пространстве. Определение и признак прямой, перпендикулярной к плоскости. Теорема о перпендикулярности двух параллельных, двух перпендикулярных прямых к плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью.

    презентация [160,5 K], добавлен 20.11.2014

  • Ортогональное проецирование точки в разные плоскости. Проецирование прямой линии по плоскостям проекций. Плоскость на эпюре Монжа, позиционные и метрические задачи. Многогранники, кривые линии и аксонометрические поверхности, касательные и сечение.

    учебное пособие [3,6 M], добавлен 07.01.2012

  • Замкнутые пространственные фигуры, ограниченные плоскими многоугольниками. Линейчатые поверхности вращения. Точка на поверхности тора и сферы. Понятие меридиональной плоскости. Преобразование комплексного чертежа. Метод замены плоскостей проекций.

    презентация [69,8 K], добавлен 27.10.2013

  • Ознакомление с понятиями синуса, косинуса, тангенса острого угла прямоугольного треугольника и основным тригонометрическим тождеством. Нахождение площади равнобедренного прямоугольного треугольная по заданному основанию и прилегающему к нему углу.

    конспект урока [67,9 K], добавлен 17.05.2010

  • Начальные геометрические сведения и формирования представлений учеников о понятиях точки, прямой, отрезка, треугольника, параллельных прямых, их расположение относительно друг друга. Задачи на вычисление геометрических величин и изображение фигур.

    презентация [222,5 K], добавлен 15.09.2010

  • История возникновения неевклидовой геометрии. Сравнение постулатов параллельности Евклида и Лобачевского. Основные понятия и модели геометрии Лобачевского. Дефект треугольника и многоугольника, абсолютная единица длины. Определение параллельной прямой.

    курсовая работа [4,1 M], добавлен 15.03.2011

  • Общее уравнение прямой, переходящей через определенную точку. Условия перпендикулярности прямых. Условие перпендикулярности плоскостей. Свойства медианы треугольника. Нахождение направляющих векторов прямых. Условие параллельности прямой и плоскости.

    контрольная работа [87,1 K], добавлен 07.09.2010

  • Определение вписанной и описанной окружности, их свойства и признаки. Взаимное расположение прямой и окружности. Свойства прямоугольного треугольника и теорема Пифагора. Задачи с окружностью, вписанной и описанной в треугольниках и четырехугольниках.

    реферат [298,7 K], добавлен 16.06.2009

  • Рассмотрение понятия функции комплексного переменного; определение условий ее однозначности и многозначности. Установление функцией w=f(z) зависимости между точками плоскостей Z и W. Пример нахождения образа прямой при заданном отображении функции.

    презентация [64,9 K], добавлен 17.09.2013

  • Возможные случаи ориентации прямой и плоскости для заданного уравнения. Условия их перпендикулярности и параллельности. Скалярное произведение перпендикулярных векторов. Координаты точки, лежащей на прямой. Угол между прямой и плоскостью, его определение.

    презентация [65,2 K], добавлен 21.09.2013

  • Методика нахождения уравнения прямой исследуемого треугольника и параллельной ей стороне с использованием углового коэффициента. Определение уравнения высоты этого треугольника. Порядок и составление алгоритма вычисления площади данного треугольника.

    задача [21,9 K], добавлен 08.11.2010

  • Понятие параллельности как отношения между прямыми. Случаи расположения прямой и плоскости. Признаки параллельности прямой и плоскости. Основные свойства двух прямых. Отсутствие общих точек у прямой и плоскости. Признаки параллельности плоскостей.

    презентация [1,5 M], добавлен 14.10.2014

  • Жизненный путь философа и математика Пифагора. Различные способы доказательства его теоремы, устанавливающей соотношение между сторонами прямоугольного треугольника (метод площадей). Использование обратной теоремы как признака прямоугольного треугольника.

    презентация [11,6 M], добавлен 04.04.2019

  • Уравнение плоскости, проходящей через точку параллельно горизонтальной, фронтальной и профильной прямым. Угол в точке пересечения прямой с плоскостью. Условия параллельности и перпендикулярности прямой и плоскости. Метод прямоугольного треугольника.

    курсовая работа [647,0 K], добавлен 14.11.2014

  • Основные свойства многочленов Чебышева - двух последовательностей ортогональных многочленов, их роль в теории приближений. Способы определения, явные формулы. Многочлен Чебышева на отрезке. Случай произвольного отрезка. Разработка программной реализации.

    курсовая работа [391,8 K], добавлен 19.12.2012

  • Метод координат как глубокий и мощный аппарат. Основные особенности декартовых координат на прямой, на плоскости и в пространстве. Понятие вектора как направленного отрезка. Рассмотрение координат вектора и важнейших в аналитической геометрии вопросов.

    курсовая работа [573,7 K], добавлен 27.08.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.