Определение вычетов и функций

Изолированные особые точки аналитической функции. Определение вычетов. Нули аналитической функции. Понятие изолированных особых точек, их определение. Теорема о связи нулей и полюсов. Вычет аналитической функции в особой точке. Основная теорема о вычетах.

Рубрика Математика
Предмет Математика
Вид контрольная работа
Язык русский
Прислал(а) incognito
Дата добавления 30.07.2017
Размер файла 174,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Понятие мероморфной функции и ее основные свойства. Характеристика теоремы Миттаг-Леффлера. Общий вид мероморфной функции с заданными полюсами, ее представление в виде суммы целой функции и ряда рациональных функций. Разбор случая простых полюсов.

    курсовая работа [357,6 K], добавлен 20.07.2015

  • Определение точки экстремума для функции двух переменных. Аналог теоремы Ферма. Критические, стационарные точки. Теорема "Достаточное условие экстремума", доказательство. Схема исследования функции нескольких переменных на экстремум, практический пример.

    презентация [126,2 K], добавлен 17.09.2013

  • Определение предела функции в точке. Понятие односторонних пределов. Геометрический смысл предела функции при х, стремящемся в бесконечности. Основные теоремы о пределах. Вычисление пределов и раскрытие неопределенностей. Первый замечательный предел.

    презентация [292,4 K], добавлен 14.11.2014

  • Сущность конформного отображения 1 и 2 рода, аналитической функции в заданной области. Геометрический смысл аргумента и модуля производной функции. Величина коэффициента растяжения в точке. Сохранение функции отличной от нуля по величине и напряжению.

    презентация [83,3 K], добавлен 17.09.2013

  • Статическая характеристика элемента. Выполнение аналитической линеаризации заданной функции в определенной точке. Обратное превращение Лапласа заданной передаточной функции ОАУ. Преобразование дифференциального уравнения к нормальной форме Коши.

    контрольная работа [564,9 K], добавлен 30.03.2015

  • Роль интерполяции функций, значения которой совпадают со значениями заданной функции в некотором числе точек. Интерполирование функции полиномами, непосредственно непрерывных функций на отрезке и в точке. Определение понятия погрешности интерполяции.

    курсовая работа [157,4 K], добавлен 10.04.2011

  • Определение пределов функции с помощью Mathcad. Доказать, что предел данной функции в указанной точке не существует. Построение ее графика в окрестности указанной точки. Вычисление производных функции по определению в произвольной или фиксированной точке.

    лабораторная работа [718,5 K], добавлен 25.12.2011

  • Понятие непрерывности функции. Понятие, физический и геометрический смысл производной. Локальный экстремум и теорема Ферма. Теорема Ролля о нулях производных. Формула конечных приращении Лагранжа. Обобщенная формула конечных приращении (формула Коши).

    курсовая работа [812,7 K], добавлен 17.03.2015

  • Характеры и L-функции Дирихле, функциональное уравнение. Аналитическое продолжение L-функции Дирихле на комплексную плоскость; тривиальные и нетривиальные нули. Теорема Вейерштрасса о разложении в произведение целых функций. Обобщенная гипотеза Римана.

    реферат [573,1 K], добавлен 15.06.2011

  • Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.

    реферат [38,5 K], добавлен 16.01.2010

  • Свойства и характеристика интегралов с бесконечными пределами, признаки их сходимости. Расчет несобственных интегралов с бесконечными пределами. Определение несобственного интеграла от разрывной функции с аналитической и геометрической точки зрения.

    реферат [144,5 K], добавлен 23.08.2009

  • Знакомство с Пьером де Ферма - французским математиком, одним из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел. Разработка способов систематического нахождения всех делителей числа. Великая теорема Ферма.

    презентация [389,1 K], добавлен 16.12.2011

  • Поиск производной сложной функции как равной производной функции по промежуточному аргументу, умноженной на его производную по независимой переменной. Теорема о связи бесконечно малых величин с пределами функций. Правило дифференцирования сложной функции.

    презентация [62,1 K], добавлен 21.09.2013

  • Определение вертикальной, горизонтальной и наклонной асимптот графиков функций. Точки разрыва и область определения функции. Нахождение конечного предела функции. Неограниченное удаление точек графика от начала координат. Примеры нахождения асимптот.

    презентация [99,6 K], добавлен 21.09.2013

  • Область определения и свойства функции (четность, нечетность, периодичность). Точки пересечения функции с осями координат. Непрерывность функции. Характер точек разрыва. Асимптоты. Экстремумы функции. Исследование функции на монотонность. Точки перегиба.

    презентация [298,3 K], добавлен 11.09.2011

  • Методы интегрирования в древности. Понятие первообразной функции. Основная теорема интегрального исчисления. Свойства неопределенных и определенных интегралов и методы их вычисления, произвольные постоянные. Таблица интегралов элементарных функций.

    презентация [525,7 K], добавлен 11.09.2011

  • Теорема о представлении дзета-функции Дедекинда произведением L-рядов Дирихле, ее доказательство в виде произведения L-функций в разветвленном и неразветвленном случаях. Приложение теоремы: выведение функционального уравнения дзета-функции Дедекинда.

    курсовая работа [65,6 K], добавлен 15.06.2011

  • Элементы аналитической геометрии и линейной алгебры. Методы построения графика функции. Предел и непрерывность функции. Дифференциальное исчисление функции одной переменной. Определители и системы уравнений. Построение прямой и плоскости в пространстве.

    методичка [1,0 M], добавлен 24.08.2009

  • Теоретические аспекты применения правил Лопиталя. Определение предела функции в точке. Понятия бесконечно большой и бесконечно малой функций. Рассмотрение содержания теорем о дифференцируемых функциях. Раскрытие неопределенностей по правилу Лопиталя.

    курсовая работа [1,3 M], добавлен 30.12.2021

  • Исследование функции на непрерывность. Определение производных показательной функции первого и второго порядков. Определение скорости и ускорения материальной точки, движущейся прямолинейно по закону. Построение графиков функций, интервалов выпуклости.

    контрольная работа [180,3 K], добавлен 25.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.