Геометрия Лобачевского и ее модели
Н.И. Лобачевский и его геометрия. Пятый постулат Евклида. Теорема о существовании параллельных прямых. Взаимное расположение двух прямых на плоскости Лобачевского. Практическое применение геометрии Лобачевского: теорема Пифагора, площадь треугольника.
Рубрика | Математика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 31.10.2017 |
Размер файла | 810,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
рис 9 рис 10
медиан треугольника в одной точке и др. теоремы которые имеют место как в евклидовой геометрии, так и в геометрии Лобачевского.
Но треугольники и четырехугольники на плоскости Лобачевского обладают рядом специфических свойств. Рассмотрим некоторые из них.
Теорема 1. Сумма углов любого треугольника меньше 2d.
?Пусть ABC-- произвольный треугольник. По первой теореме Саккери -- Лежандра (Сумма углов треугольника не больше 2d) АВС 2d. Если предположить, что АВС = 2d, то окажется справедливым V постулат, что противоречит аксиоме V*. Следовательно, АВС < 2d. Чтд.
Следствие. Сумма углов треугольника непостоянна, т. е. не одна и та же для всех треугольников.
Теорема 2. Сумма углов выпуклого четырехугольника меньше 4 d..
?Пусть ABCD --данный выпуклый четырехугольник. Проведем диагональ АС и разложим этот четырехугольник на два треугольника ABC и ADC. Тогда А+В+С+D= АВС + ADC. Но АВС < 2d и ADC < 2d, поэтому А + В + С + D <4d. Чтд.
Теорема 3. Если три угла одного треугольника соответственно равны трем углам другого треугольника, то эти треугольники равны.
?Пусть в треугольниках ABC и А'В'С' имеем A = A' B = B', C = С'. Докажем сначала, что АВ = A'В'. Предположим, что АВА'В'; для определенности допустим, что АВ> А'В'. На лучах АВ и АС возьмем точки В" и С" так, чтобы АВ" = А'В' и АС" = А'С' (рис. 10). По первому признаку равенства треугольников имеем /\АВ"С" = /\А'В'С, поэтому 1 = 2. По условию 2 = 3, следовательно, 1 = 3. Аналогично устанавливаем, что 4 = 6.
По предположению АВ > А'В' поэтому А -- В" -- В, т. е. прямая В"С" пересекает сторону АВ треугольника ABC. В силу равенства
1 = 3 прямые В" С" и ВС не пересекаются, следовательно, по аксиоме Паша прямая В"С" пересекает сторону АС треугольника ABC, и значит, А -- С" -- С. Отсюда следует, что четырехугольник BB”C”C выпуклый.
Из равенств 1 = 3 и 4 = 6 следует, что сумма углов этого четырехугольника равна 4d. Таким образом приходим в противоречие с теоремой 2. Значит, АВ = А'B'. По второму признаку равенства треугольников АВС =A'В'С'. ¦
Рис 11,12
2. Выпуклый четырехугольник называется двупрямоугольником, если два угла, прилежащие к одной стороне, прямые. Если ABCD -- двупрямоугольник с прямыми углами А и В, то сторона АВ называется основанием, а стороны AD и ВС -- боковыми сторонами. Двупрямоугольник с равными боковыми сторонами называется четырехугольником Саккери. Рассмотрим некоторые свойства двупрямоугольников.
1°. Если ABCD -- четырехугольник Саккери с основанием АВ, то С=D и каждый из углов С и D острый.
2°. Если в двупрямоугольнике ABCD с основанием АВ AD <BC, то С<D.
3°. Если в двупрямоугольнике ABCD с основанием АВ
С < D, то AD <ВС.
7. Взаимное расположение двух прямых на плоскости Лобачевского
1. Докажем следующую лемму.
Лемма 1. Если АВ || CD, то существует ось симметрии прямых
АВ и CD.
? Пусть Р и Q-- точки, лежащие соответственно на прямых АВ
рис.13 рис.14
и CD, a h и k -- биссектрисы углов QPB и PQD (рис. 13). Так как АВ || CD, то луч h пересекает луч QD в некоторой точке Е. Тогда луч k пересекает отрезок РЕ в некоторой точке S.
Докажем, что точка S равноудалена от прямых АВ и CD. Обозначим через SH1, SH2 и SH3 -- перпендикуляры, проведенные из точки S к прямым АВ, CD и PQ (рис. 13). Так как SH1 = SH3 и SH2 = SH3, то SH1 = SH2. Теперь ясно, что прямая d, содержащая биссектрису угла H1SH2, является осью симметрии прямых АВ и CD. Чтд.
Пользуясь этой леммой, легко доказать, что отношение параллельности направленных прямых удовлетворяет условию симметричности, т. е. справедлива теорема.
Теорема 1. Если АВ|| CD, то CD || АВ.
? Пусть Р -- произвольная точка прямой АВ, a d -- ось симметричных прямых АВ и CD (см. лемму 1). Тогда точка Q, симметричная точке Р относительно прямой d, лежит на прямой CD (рис. 14). Для доказательства теоремы воспользуемся признаком параллельности прямых . Прямые АВ и CD не пересекаются, поэтому достаточно доказать, что любой внутренний луч угла PQD пересекает луч РВ.
Пусть h -- произвольный внутренний луч угла PQD, a h' -- луч, симметричный лучу h относительно прямой d. Так как угол PQD симметричен углу QPB и h -- внутренний луч угла PQD, то h' -- внутренний луч угла QPB. Но АВ || CD, поэтому луч h' пересекает луч QD. Отсюда следует, что и луч h пересекает луч РВ. Чтд.
Справедлива следующая теорема.
Теорема 2. Если АВ || EF, EF || CD и прямые АВ и CD не совпадают, то АВ || CD.
2. Условимся называть две (ненаправленные) прямые а и b параллельными, если на этих прямых можно выбрать направления так, чтобы они были параллельны.
Две прямые на плоскости Лобачевского называются расходящимися (или сверхпараллельными), если они не пересекаются и не параллельны. Легко видеть, что через каждую точку М, не лежащую
Рис. 15 рис.16
на прямой а, проходит бесконечное множество прямых, каждая из которых расходится с прямой а. В самом деле, пусть прямые CD и EF параллельны прямой а в разных направлениях (см. рис. 7). Тогда любая прямая, проходящая через точку М внутри вертикальных углов CMF и EMD, расходится с прямой а.
Таким образом, на плоскости Лобачевского в отличие от плоскости Евклида имеются три случая взаимного расположения двух прямых: прямые пересекаются, параллельны или расходятся.
Теорема 3. Две прямые, имеющие общий перпендикуляр, расходятся.
? Пусть АВ и CD -- данные прямые, a PQ -- их общий перпендикуляр (рис. 15). По лемме 1 (Если при пересечении двух прямых секущей накрест лежащие углы (или соответственные углы) равны, то прямые не пересекаются) прямые АВ и CD не пересекаются. Они не могут быть параллельными, так как если допустить, что они параллельны, то прямые углы APQ и BPQ должны быть углами параллельности в точке Р относительно прямой CD. Но угол параллельности всегда острый, поэтому наше допущение неверно; значит, АВ и CD -- расходящиеся прямые. ¦
Следствие. На плоскости Лобачевского не существует общего перпендикуляра двух параллельных прямых.
3. В заключение докажем, что на плоскости Лобачевского расстояние от переменной точки одной из двух параллельных или расходящихся прямых до другой прямой есть переменная величина. Для этого предварительно докажем следующую лемму.
Лемма 2. Пусть лучи PP' и QQ' лежат в одной полуплоскости с границей PQ, PQQ' прямой, a QPP' прямой или тупой
Q H Q' Q H1 H2 Q' Q H1 H2 H3 Q'
А) Б) В)
Рис. 17
(рис. 17, а). Тогда если М -- переменная точка луча РР', а Н -- проекция этой точки на прямую QQ', то функция МН -- f (MP) является монотонной, неограниченно возрастающей функцией.
? Докажем сначала, что f -- монотонно возрастающая функция. Для этого возьмем на луче РР' две точки М1 и М2 так, чтобы РМ1 < РМ2, и докажем, что М1Н1 < М2H2, где Н1 и Н2-- проекции точек M1 и М2 на прямую QQ'. Рассмотрим три двупрямоугольника с основаниями QH1 QH2, H1H2 изображенные на рисунке 17, б. Так как РМ1 < РМ2, то Р -- М1 -- М2. Применив теорему 2 (сумма углов выпуклого четырехугольника меньше 4d) к двупрямоугольникам с основаниями QH1 и QH2 и учитывая, что Р прямой или тупой, приходим к выводу, что углы 1 и 3 острые. Так как 1 и 2 -- смежные углы, то 2 тупой. Тогда по свойству 3° в двупрямоугольнике с основанием Н1Н2 имеем Н1М1 < H2M2. Таким образом, f -- монотонно возрастающая функция.
Докажем теперь, что f -- неограниченно возрастающая функция. Для этого возьмем на луче РР' точки М1, М2, ..., Мп, следующие друг за другом так, чтобы РМ1 = М1 М2 = ... = Мn-1 Мп, где n > 2, и рассмотрим проекции H1 H2, ..., Нп этих точек на прямую QQ' (рис. 17, в).
По доказанному PQ < М1 H1 < М2Н2. Отложим на луче H1 М1 отрезки Н1М1 и Н1 М'2, равные соответственно отрезкам PQ и М2Н2. Тогда, очевидно, М'1-- М1 -- М'2.
В треугольниках РМ1 М'1 и М2М1 М'2 имеем РМ1 = М2М1 и РМ1 М'1 = M2M1M'2, но PM'1M1 первого треугольника тупой (как угол, смежный с углом М'1 четырехугольника Саккери с основанием QH1), a M2M'2M1 второго треугольника острый (как угол четырехугольника Саккери с основанием Н1Н2). Отсюда следует, что М1 М'1 < М'2М1.
Если обозначить М1М'1 через , то М1 Н1 = PQ + , М2Н2 = М1Н1 +M'2M1 > PQ + 2. Рассуждая аналогично, приходим к выводу, что М3Hз > PQ + 3, ..., МпНп> PQ + п. Отсюда следует, что f -- неограниченно возрастающая функция. ¦
Пусть АВ и CD -- расходящиеся прямые, a PQ -- общий перпендикуляр этих прямых (рис. 18). Фигуры BPQD и APQC удовлетворяют условиям леммы 2, поэтому согласно этой лемме расстояние от переменной точки М прямой АВ до прямой CD неограниченно возрастает, когда точка М удаляется от точки Р как в одном, так и в другом направлении. Образно говоря, расходящиеся прямые неограниченно «расходятся» друг от друга по мере удаления от общего перпендикуляра.
Пусть теперь АВ || CD, a PQ -- перпендикуляр, проведенный из точки Р прямой АВ на прямую CD (рис. 19). Так как QPB острый, то смежный с ним QPA тупой. Фигура APQC удовлетворяет
Рис.18
условиям леммы 2, поэтому согласно этой лемме расстояние от переменной точки М прямой АВ до прямой CD неограниченно возрастает, когда точка М удаляется от точки Р в сторону, противоположную направлению параллельности. Можно доказать, что если точка М удаляется от точки Р в сторону параллельности, то это расстояние стремится к нулю. Образно говоря, параллельные прямые, неограниченно удаляясь друг от друга в одном направлении, асимптотически приближаются в другом.
8. Три модели геометрии Лобачевского
Выделяют три различные модели геометрии Лобачевского:
1) Модель Пуанкаре
2) Модель Клейна
3) Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами)
8.1 Модель Пуанкаре
В модели Пуанкаре на евклидовой плоскости E фиксируется горизонтальная прямая x. Она носит название «абсолюта». Точками плоскости Лобачевского считаются точки плоскости E, лежащие выше абсолюта x. Таким образом, в модели Пуанкаре плоскость Лобачевского - это полуплоскость L, лежащая выше абсолюта.
Прямыми плоскости L считаются полуокружности с центрами на абсолюте или лучи с вершинами на абсолюте и перпендикулярные ему.
Рис.19
Фигура на плоскости Лобачевского - это фигура полуплоскости L. Принадлежность точки фигуре понимается так же, как и на евклидовой плоскости E. При этом отрезком плоскости L считается дуга окружности с центром на абсолюте или отрезок прямой, перпендикулярной абсолюту (рис. 20). Точка K лежит между точками C и D, значит, что K принадлежит дуге CD. В условиях нашей модели это эквивалентно тому, что K' лежит между C' и D', где C', K' и D' - проекции точек C, K и D соответственно на абсолют. Чтобы ввести понятие равенства неевклидовых отрезков в модели Пуанкаре, определяют неевклидовы движения в этой модели. Неевклидовым движением называется преобразование L, которое является композицией конечного числа инверсий с центрами на абсолюте и осевых симметрий плоскости E, оси которых перпендикулярны абсолюту. Инверсии с центром на абсолюте и осевые симметрии плоскости E, оси которых перпендикулярны абсолюту, называют неевклидовыми симметриями. Два неевклидовых отрезка называют равными, если один из них неевклидовым движением можно перевести во второй.
8.2 Модель Клейна
За плоскость принимается какой-либо круг (рис. 21.1), за точки - точки принадлежащие этому кругу, за прямые - хорды - конечно, с исключением концов, поскольку рассматривается только внутренность круга. За перемещения принимаются преобразования круга, переводящие его в себя и хорды - в хорды. Соответственно, "конгруэнтными" называются фигуры, переводимые друг в друга такими преобразованиями.
Рисунок 21
Очевидно, что в пределах определенной части плоскости (круга), как бы эта часть не была велика, можно провести через данную точку С множество прямых, не пересекающих данной прямой. Внутри круга любого конечного радиуса существует множество прямых (т.е. хорд), проходящих через т. С и не встречающих прямой АВ (рис.21.2). Всякая теорема планиметрии Лобачевского является в этой модели теоремой геометрии Евклида и, обратно, всякая теорема геометрии Евклида, говорящая о фигурах внутри данного круга, является теоремой геометрии Лобачевского. Это общее утверждение доказывается проверкой справедливости в модели аксиом геометрии Лобачевского. Поэтому, если в геометрии Лобачевского имеется противоречие, то это же противоречие имеется и в геометрии Евклида.
Далее, всякая теорема геометрии Лобачевского описывает в модели Клейна некоторые факты, имеющие место внутри круга. Именно факты, если мы берем не абстрактный круг, а реальный круг и реальные хорды и интерпритируем теоремы как утверждения об этих реальных вещах, взятые, конечно, с той точностью, которая доступна для наших построений. Таким образом, геометрия Лобачевского в модели Клейна имеет вполне реальный смысл с той точностью, с какой вообще имеет смысл геометрия в применении к реальным телам.
8.3 Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами)
Эудженио Бельтрами (1835-1900) нашел модель для неевклидовой геометрии, показав в своей работе «Опыт интерпретации неевклидовой геометрии» (1868г.), что наряду с плоскостями, на которых осуществляется евклидова геометрия, и сферическими поверхностями, на которые действуют формулы сферической геометрии, существуют и такие реальные поверхности, названные им псевдосферами (рис.23), на которых частично осуществляется планиметрия Лобачевского.
Известно, что сферу можно получить вращением полуокружности вокруг своего диаметра. Подобно тому, псевдосфера образуется вращением линии FCE, называемой трактрисой, вокруг ее оси АВ (рис.22). Итак, псевдосфера - это поверхность в обыкновенном реальном пространстве, на котором выполняются многие аксиомы и теоремы
Рис. 23
неевклидовой планиметрии Лобачевского. Например, если начертить на псевдосфере треугольник, то легко усмотреть, что сумма его внутренних углов меньше 2р. Сторона треугольника - это дуги псевдосферы, дающие кратчайшее расстояние между двумя ее точками и выполняющие ту же роль, которую выполняют прямые на плоскости. Эти линии, называемые геодезическими, можно получить, зажав туго натянутую и политую краской или мелом нить, в вершинах треугольника. Таким образом, для планиметрии Лобачевского была найдена реальная модель - псевдосфера. Формулы новой геометрии Лобачевского нашли конкретное истолкование. Ими можно было пользоваться, например, для решения псевдосферических треугольников. Псевдосферу, которую мы назвали «моделью», Бельтрами назвал интерпретацией (истолкованием) неевклидовой геометрии на плоскости.
Впоследствии, с развитием и введением в математику аксиоматического метода, под интерпретацией (или моделью) некоторой системы аксиом стали понимать любое множество объектов, в которых данная система аксиом находит свое реальное воплощение, то есть, любая совокупность объектов, отношение между которыми полностью совпадают с теми, которые описываются в данной системе аксиом. При этом полагают, что если для некоторой системы аксиом существует или можно построить интерпретацию (модель), то эта система аксиом непротиворечива, то есть, не только сами аксиомы, но и любые теоремы, на них логически основывающиеся никогда не могут противоречить одна другой.
9. Практическое применение геометрии Лобачевского
9.1 Теорема Пифагора
Теорема. Для всякого прямоугольного треугольника плоскости Лобачевского выполняется равенство ch c = ch a ·ch b, где a, b - длины катетов, c - длина гипотенузы этого треугольника, а ch x=(гиперболический косинус).
Доказательство. Воспользуемся моделью Пуанкаре плоскости Лобачевского на евклидовой полуплоскости. Будем считать (см. рисунок ниже), что вершинам A, B, C данного прямоугольного треугольника соответствуют комплексные числа где так как этого всегда можно добиться с помощью некоторого неевклидова движения.
Используя формулу
Рис. 24
для вычисления неевклидова расстояния между точками z и w в H2, получаем, что
Почленное перемножение двух первых соотношений и приводит, как показывает третье соотношение, к завершению доказательства теоремы.
9.2 Замечание к теореме Пифагора
Н.И.Лобачевским было замечено, что созданная им неевклидова геометрия в бесконечно малом, то есть в первом приближении, совпадает с геометрией евклидовой плоскости. Проиллюстрируем это на примере теоремы Пифагора. Используя разложение гиперболического косинуса в ряд
получим для теоремы Пифагора соотношение
Исключая теперь члены низшего порядка, приходим к теореме Пифагора евклидовой геометрии:
9.3 Площадь треугольника
Подробный вывод формулы площади треугольника на плоскости Лобачевского приводить не стоит ввиду его сложности (в нем используется формулы, доказываемые лишь в курсе дифференциальной геометрии).
Рис. 25
Если АВС - треугольник в модели Пуанкре, меры углов А,В и С - б, в и г соответственно, - мера угла B в треугольнике ABD, а и мера углов B и C в треугольнике BCD. Тогда вследствие этого можно сформулировать теорему
Теорема.Для площади треугольника ABC с угламисправедлива формула
Следствие1.Площадь треугольника плоскости Лобачевского ограничена.
Следствие 2.Если дан выпуклый многоугольник с внутренними углами то
9.4 Длина окружности и площадь круга
Теорема. Площадь круга с радиусом r равна
а длина окружности, ограничивающей этот круг, равна , где . Длина неевклидовой окружности не пропорциональна радиусу, как в случае евклидовой геометрии, а растет быстрее. Также площадь неевклидова круга больше площади круга евклидовой плоскости, имеющего тот же радиус.
Вывод
Открытие неевклидовой геометрии, начало которому положил Лобачевский, не только сыграло огромную роль в развитии новых идей и методов в математике естествознании, но имеет и философское значение. Господствовавшее до Лобачевского мнение о незыблемости геометрии Евклида в значительной мере основывалось на учении известного немецкого философа И. Канта (1724-1804), родоначальника немецкого классического идеализма. Кант утверждал, что человек упорядочивает явления реального мира согласно априорным представлениям, а геометрические представления и идеи якобы априорны (латинское слово aprior означает - изначально, заранее), то есть, не отражают явлений действительного мира, не зависят от практики, от опыта, а являются врожденными человеческому миру, раз и навсегда зафиксированными, свойственными человеческому разуму, его духу. Поэтому, Кант считал, что Евклидова геометрия непоколебима, неизменна, и является вечной истиной. Еще до Канта геометрия Евклида считалась незыблемой, как единственно возможное учение о реальном пространстве.
Открытие неевклидовой геометрии доказало, что нельзя абсолютировать представления о пространстве, что «употребительная» (как назвал Лобачевский геометрию Евклида) геометрия не является единственно возможной, однако это не подорвало незыблемость геометрии Евклида. Итак, в основе геометрии Евклида лежат не априорные, врожденные уму понятия и аксиомы, а такие понятия, которые связаны с деятельностью человека, с человеческой практикой. Только практика может решить вопрос о том, какая геометрия вернее излагает свойства физического пространства. Открытие неевклидовой геометрии дало решающий толчок грандиозному развитию науки, способствовало и поныне способствует более глубокому пониманию окружающего нас материального мира.
Н.И. Лобачевский, как известно, предпринял попытку исследования реального пространства, используя для этой цели астрономические данные. Он надеялся, что с помощью астрономических измерений можно будет обнаружит отклонение геометрии реального пространства от евклидовой. Хотя его вычисления не позволили опытным путем доказать гипотезу о неевклидовости реального пространства, сама гипотеза оказалась гениальным предвидением.
Из выше сказанного вытекает органическая связь между двумя великими достижениями человеческого разума - геометрией Лобачевского и теорией относительности Эйнштейна. При этом геометрия Лобачевского предшествовала теории относительности не только во времени, но и в идейном отношении.
Таким образом, аксиоматический метод и аксиоматические исследования Лобачевского сыграли огромную роль в развитии геометрии как науки, а также нашли свое отражение и в теории познания, т.е. переоценить их значение невозможно.
Литература
1. Математика XIX века, «Наука», М., 1981
2. “Квант” №11,№12 Академик АН СССР А.Д. Александров, Интернет-издания.
3. Юшкевич А.П., История математики в России, «Наука», М., 1968г.
4. Ефимов Н.В., Высшая геометрия, «Наука», М.,1971г.
5. Неевклидовы пространства и новые проблемы физики, «Белка», М., 1993г.
6. Клайн М., Математика. Утрата определенности, «Мир», М., 1984г.
7. Г.И. Глейзер. История математики в школе IX - X классы. Пособие для учителей. Москва, «Просвещение» 1983г.
8. Б.Л. Лаптев. Н.И. Лобачевский и его геометрия. Пособие для учащихся. М. «Просвещение», 1970г.
9. Розенфельд Б.А. Геометрия Лобачевского и теория относительности П Математиков в школе.- М., 1965г.
10. И.М. Яглам. Принцип относительности Галилея и неевклидова геометрия. Серия «Библиотека математического кружка» М: 1963г.
11. Н.Г.Подаева , Д.А. Жук. Лекции по основам геометрии. Елец: 2008г.
12. В.Т.Базылев, К.Л.Дуничев. Геометрия ч. II. М: 1975г.
13. Д.Гильберт. Основания геометрии.- М: ГИТТЛ 1948г.
14. Л.С.Атанасян, В.Т.Базылев. геометрия ч. II . Москва «Просвещение» 1987г.
15. Н.В.Ефимов. Высшая геометрия. М: 1978г.
16. http://www.bankreferatov.ru
17. http://www.refportal.ru
18. http://www.egu.ru
Размещено на Allbest.ru
...Подобные документы
История возникновения неевклидовой геометрии. Сравнение постулатов параллельности Евклида и Лобачевского. Основные понятия и модели геометрии Лобачевского. Дефект треугольника и многоугольника, абсолютная единица длины. Определение параллельной прямой.
курсовая работа [4,1 M], добавлен 15.03.2011Происхождение Неевклидовой геометрии. Возникновение "геометрии Лобачевского". Аксиоматика планиметрии Лобачевского. Три модели геометрии Лобачевского. Модель Пуанкаре и Клейна. Отображение геометрии Лобачевского на псевдосфере (интерпретация Бельтрами).
реферат [319,1 K], добавлен 06.03.2009Обзор пяти групп аксиом, на которых зиждется планиметрия Лобачевского. Сущность модели Кэли-Клейна в высшей геометрии. Особенности доказательства теоремы косинусов, теорем о сумме углов треугольника, о четвертом признаке конгруэнтности треугольников.
курсовая работа [629,3 K], добавлен 29.06.2013Биография русского ученого Н.И. Лобачевского. Система аксиом Гильберта. Параллельные прямые, треугольники и четырехугольники на плоскости и пространстве по Лобачевскому. Понятие о сферической геометрии. Доказательство теорем на различных моделях.
реферат [564,5 K], добавлен 12.11.2010Биография Николая Ивановича Лобачевского - выдающегося российского математика. Главные достижения Н.И. Лобачевского - доказательство того, что существует более чем одна "истинная" геометрия, геометрические исследования по теории параллельных линий.
презентация [2,9 M], добавлен 19.03.2012Краткая биография Н.И. Лобачевского. История открытия неевклидовой геометрии. Основные факты и непротиворечивость геометрии Лобачевского, её значение и применение в математике и физике. Путь признания идей Н.И. Лобачевского в России и за рубежом.
дипломная работа [1,8 M], добавлен 21.08.2011Модель Пуанкаре геометрии Лобачевского: вопрос о ее непротиворечивости. Инверсия, ее аналитическое задание. Преобразование окружности и прямой, сохранение углов при инверсии. Инвариантные прямые и окружности. Система аксиом геометрии Лобачевского.
дипломная работа [1,3 M], добавлен 10.09.2009Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.
презентация [993,0 K], добавлен 12.04.2015Биография Н.И. Лобачевского. Деятельность Лобачевского по организации печатного университетского органа и его попытки основать при университете Научное общество. История признания геометрии Н.И. Лобачевского в России. Появление неевклидовой геометрии.
дипломная работа [1,2 M], добавлен 14.09.2011Изучение истории развития геометрии, анализ постулатов Евклида, аксиоматики Гильберта, обзор других систем аксиом геометрии. Характеристика неевклидовых геометрий в системе Вейля. Элементы сферической геометрии. Различные модели плоскости Лобачевского.
дипломная работа [245,5 K], добавлен 13.02.2010Студенческие годы Н.И. Лобачевского. Первые годы преподавательской деятельности. Организация печатного университетского органа. История открытия неевклидовой геометрии. Признание геометрии Н.И. Лобачевского и ее применение в математике и физике.
дипломная работа [4,4 M], добавлен 05.03.2011Геометрия Евклида — теория, основанная на системе аксиом, изложенной в "Началах". Гиперболическая геометрия Лобачевского, ее применение в математике и физике. Реализация геометрии Римана на поверхностях с постоянной положительной гауссовской кривизной.
презентация [685,4 K], добавлен 12.09.2013Порядок проведения эксперимента "Иллюзии зрения", его сущность и содержание. Постулаты Евклидовой геометрии. Аксиомы геометрии Лобачевского. Сравнительный анализ двух геометрий, их отличительные и сходные черты, особенности преподнесения, доказательства.
презентация [872,8 K], добавлен 24.02.2011Изучение этапов развития геометрии – науки, изучающей пространственные отношения и формы, а также другие отношений и формы, сходные с пространственными по своей структуре. Геометрия Древнего Египта, Греции, средневековья. Постулаты Н.И. Лобачевского.
презентация [1,9 M], добавлен 06.05.2010Анализ проявлений недоказуемости пятого постулата Евклида. Общая характеристика и обоснование основных идей неевклидовской геометрии в работах Д. Саккери, И.Г. Ламберта, Я. Бояи, Ф. Швейкарта, Ф.А. Тауринуса, К.Ф. Гаусса, Н.И. Лобачевского, Я. Больяйя.
реферат [29,4 K], добавлен 21.09.2010Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.
курсовая работа [192,3 K], добавлен 24.11.2009Различные способы задания прямой на плоскости и в пространстве. Конструктивные задачи трехмерного пространства. Изображения фигур и их правильное восприятие и чтение. Использование в геометрии монографического и математического метода исследования.
курсовая работа [1,1 M], добавлен 22.09.2014Понятие треугольника и его роль в геометрии. Сумма углов треугольника, вычисление площади, свойства различных видов фигур. Признаки равенства и подобия треугольников, теорема Пифагора. Медианы, биссектрисы и высоты, соотношение между сторонами и углами.
курс лекций [3,7 M], добавлен 23.04.2011Основные открытия Пифагора в области геометрии, географии, астрономии, музыки и нумерологии. Изначальная и алгебраическая формулировки знаменитой теоремы. Один их многочисленных способов доказательства теоремы Пифагора, ее основные следствия и применение.
презентация [257,4 K], добавлен 05.12.2010Перпендикулярные прямые в пространстве. Определение и признак прямой, перпендикулярной к плоскости. Теорема о перпендикулярности двух параллельных, двух перпендикулярных прямых к плоскости. Перпендикуляр и наклонные. Угол между прямой и плоскостью.
презентация [160,5 K], добавлен 20.11.2014