О структуре AP-многообразия на кораспределении Сасакиева многообразия

Исследование структуры, естественным образом возникающей на распределениях нулевой кривизны сасакиевых многообразий. Характеристика понятия кососимметрического тензора. Преобразование компонент допустимого тензорного поля в адаптированных координатах.

Рубрика Математика
Предмет Математика
Вид статья
Язык русский
Прислал(а) incognito
Дата добавления 17.07.2018
Размер файла 716,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Введение в алгебраическую геометрию. Определения аффинных многообразий: фиксированное алгебраически замкнутое поле; аффинное пространство, топология Зорисского на аффинной прямой; нётерово топологическое пространство. Понятия проективных многообразий.

    контрольная работа [204,1 K], добавлен 15.05.2012

  • Определение и формула аффинного преобразования в сопряжённых комплексных координатах. Уравнение образа прямой при аффинном преобразовании. Частные виды аффинных преобразований в сопряжённых комплексных координатах.

    дипломная работа [222,8 K], добавлен 08.08.2007

  • Понятие и признаки метрического пространства. Свойства топологических пространств. Замкнутые множества: внутренние, внешние и граничные точки. Топологические преобразования топологических пространств. Понятие и содержание двумерного многообразия.

    курсовая работа [481,4 K], добавлен 28.04.2011

  • Моделирование геометрией Лобачевского экспоненциальной неустойчивости на геодезических пространствах отрицательной кривизны. Формулировка аксиомы параллельности, противоположной евклидовой. Изменение кривизны в пространстве. Гауссова кривизна поверхности.

    курсовая работа [192,3 K], добавлен 24.11.2009

  • Геометрические фигуры на поверхности сферы. Основные факты сферической геометрии. Понятия геометрии Лобачевского. Поверхность постоянной отрицательной кривизны. Геометрия Лобачевского в реальном мире. Основные понятия неевклидовой геометрии Римана.

    презентация [993,0 K], добавлен 12.04.2015

  • Обобщенные координаты, силы и скорости. Условия равновесия системы в обобщенных координатах. Уравнения Лагранжа. Системы с голономными связями (геометрические и интегрируемые дифференциальные). Доказательство уравнения движения механической системы.

    презентация [1,4 M], добавлен 26.09.2013

  • Основные понятия теории течения жидкости. Создание математической модели распределения температурного поля в вязкой жидкости. Разработка цифровой модели изменения поля температуры в зависимости от: теплопроводности жидкости и металла, граничных условий.

    дипломная работа [4,0 M], добавлен 03.07.2014

  • Изложение теории поля с помощью векторного анализа и составление пособия. Циркуляция векторного поля. Оператор Гамильтона и векторные дифференциальные операции второго порядка. Простейшие векторные поля. Применение теории поля в инженерных задачах.

    дипломная работа [190,2 K], добавлен 09.10.2011

  • Прямое, обратное, двустороннее и дискретное преобразование Лапласа. Применение преобразования Лапласа. Прямое и обратное преобразования Лапласа некоторых функций. Связь с другими преобразованиями. Преобразование Лапласа по энергии и по координатам.

    реферат [674,0 K], добавлен 26.11.2010

  • Математическое объяснение понятия и свойств скалярного поля. Формулы расчета нормали к поверхности. Вычисление потока векторного поля через прямой круговой цилиндр с заданным радиусом основания. Доказательство теорем Остроградского-Гаусса и Стокса.

    реферат [264,0 K], добавлен 11.02.2011

  • Определение понятия поверхностного интеграла первого и второго рода, их основные свойств, примеры вычисления и его перевода в обыкновенный двойной. Рассмотрение потока векторного поля через поверхность, как механического смысла поверхностного интеграла.

    контрольная работа [157,6 K], добавлен 24.01.2011

  • Алгоритм вычисления преобразования Фурье для дискретного случая. Дискретное преобразование Фурье. Спектральное представление и спектральные характеристики периодического сигнала, четной непериодической функции и произвольного непериодического сигнала.

    курсовая работа [932,9 K], добавлен 23.01.2022

  • История развития алгебры как научной дисциплины. Расширения Галуа как универсальный метод решения уравнений любой степени. Определение понятия коммуникативной (абелевой) группы. Сущность кольца и его свойства. Примеры использования конечного поля.

    реферат [50,0 K], добавлен 28.05.2014

  • Теория игр - математическая теория конфликтных ситуаций. Разработка математической модели игры двух лиц с нулевой суммой, ее реализация в виде программных кодов. Метод решения задачи. Входные и выходные данные. Программа, руководство пользователя.

    курсовая работа [318,4 K], добавлен 17.08.2013

  • Основы тензорного анализа. Геометрический смысл и формула расчета коэффициентов Ламе. Взаимный базис; полярная, цилиндрическая и сферическая системы координат. Рассмотрение способов преобразования векторов при переходе к криволинейным координатам.

    курсовая работа [4,0 M], добавлен 06.11.2013

  • Криволинейные и поверхностные интегралы. Криволинейный интеграл I и ІІ рода. Поверхностный интеграл I и ІІ рода. Формулы Грина, Остроградского-Гаусса, Стокса. Основные понятия теории поля. Скалярное поле. Производная скалярного поля по направлению.

    курсовая работа [1,2 M], добавлен 09.12.2008

  • Понятия векторной алгебры: нулевой, единичный, противоположный и коллинеарный векторы. Проекция вектора на ось. Векторный базис на плоскости и в пространстве. Декартова прямоугольная система координат. Действия над векторами, заданными координатами.

    презентация [217,3 K], добавлен 16.11.2014

  • Основные правила преобразования графиков на примерах элементарных функций: преобразование симметрии, параллельный перенос, сжатие и растяжение. Построение графиков сложных функций с помощью последовательных преобразований графиков элементарных функций.

    презентация [2,4 M], добавлен 16.11.2010

  • Дискретный периодический сигнал, представленный рядом Фурье. Прямое и обратное дискретное преобразование. Его свойства: линейность и симметрия. Алгоритм вычисления круговой свертки сигналов. Равенство Парсеваля для них. Связь ДПФ с Z-преобразованием.

    презентация [72,0 K], добавлен 19.08.2013

  • Конструкции и свойства конечных полей. Понятие степени расширения, определенность поля разложения, примитивного элемента, строение конечной мультипликативной подгруппы поля. Составление программы, которая позволяет проверить функцию на примитивность.

    курсовая работа [19,2 K], добавлен 18.12.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.