"Фракталы, их классификация, свойства и применение"

Основные понятия геометрии фракталов. Фрактал – множество, обладающее свойством самоподобия, история происхождения. Графическая интерпретация множества Мандельброта. Алгоритм построения пейзажа с помощью фрактала. Определение фрактальной размеренности.

Рубрика Математика
Предмет Современная математика
Вид дипломная работа
Язык русский
Прислал(а) Драбинка А.Р.
Дата добавления 11.11.2019
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Классические фракталы. Самоподобие. Снежинка Коха. Ковер Серпинского. L-системы. Хаотическая динамика. Аттрактор Лоренца. Множества Мандельброта и Жюлиа. Применение фракталов в компьютерных технологиях.

    курсовая работа [342,4 K], добавлен 26.05.2006

  • Сущность понятия "фрактал". Сущность фрактальной размерности. Размерность Хаусдорфа и ее свойства. Канторово множество и его обобщение. Снежинка и кривая Коха. Кривая Пеано и Госпера, их особенности. Ковер и салфетка Серпинского. Дракон Хартера-Хейтуэя.

    курсовая работа [862,6 K], добавлен 23.07.2011

  • История появления теории фракталов. Фрактал – самоподобная структура, чье изображение не зависит от масштаба. Это рекурсивная модель, каждая часть которой повторяет в своем развитии развитие всей модели в целом. Практическое применение теории фракталов.

    научная работа [230,7 K], добавлен 12.05.2010

  • Алгоритм упорядочивания множества. Определение декартового произведения, его графическая интерпретация. Обратное декартово произведение множеств. Проецирование на оси координат и на координатные плоскости. Область определения и область значений.

    лекция [126,5 K], добавлен 18.12.2013

  • Определения понятия множество. Предельная точка множества, предел функции в точке. Эквивалентные, счетные и несчетные множества. Замкнутые и открытые множества. Функции на множестве. Свойства непрерывных функций на замкнутом ограниченном множестве.

    курсовая работа [222,3 K], добавлен 11.01.2011

  • Свойства множества Кантора. Исследование заданной функции на непрерывность. Выражение множества B (кладбище Серпинского) и D (гребёнка Кантора) через множество Кантора. Свойства и построение всюду непрерывной, но нигде не дифференцируемой функции.

    курсовая работа [1,1 M], добавлен 24.06.2015

  • История интегрального исчисления. Определение и свойства двойного интеграла. Его геометрическая интерпретация, вычисление в декартовых и полярных координатах, сведение его к повторному. Применение в экономике и геометрии для вычисления объемов и площадей.

    курсовая работа [2,7 M], добавлен 16.10.2013

  • Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.

    лекция [540,0 K], добавлен 25.03.2012

  • Теория динамического программирования. Понятие об оптимальной подструктуре. Независимое и полностью зависимое множество вершин. Задача о поиске максимального независимого множества в дереве. Алгоритм Брона-Кербоша как метод ветвей, границ для поиска клик.

    реферат [224,1 K], добавлен 09.10.2012

  • Понятие множества, его обозначения. Операции объединения, пересечения и дополнения множеств. Свойства счетных множеств. История развития представлений о числе, появление множества натуральных, рациональных и действительных чисел, операции с ними.

    курсовая работа [358,3 K], добавлен 07.12.2012

  • Выпуклые множества. Выпуклый функционал или функционал, определенный на векторном линейном пространстве и обладающий тем свойством, что его надграфик является выпуклым множеством. Функционал Минковского. Доказательство теорем Хана-Банаха и отделимости.

    курсовая работа [501,1 K], добавлен 18.05.2016

  • Понятие метрического и топологического пространства. Расстояние между множествами. Диаметр множества. Непрерывные отображения. Гомеоморфизм. Вектор-функция скалярного аргумента. Понятия пути и кривой. Гладкая и регулярная кривая, замена параметра.

    курс лекций [134,0 K], добавлен 02.06.2013

  • Определение понятия множества как совокупности некоторых объектов, объединенных по какому-либо признаку. Классификация операций над множествами. Принципы взаимно однозначного соответствия. Нахождение наибольшего общего делителя и наименьшего кратного.

    презентация [249,6 K], добавлен 24.09.2011

  • Основные законы проективной геометрии. Понятие двойного отношения, параллельности и бесконечности. Теорема Дезарга и теорема Паскаля. Пространственная интерпретация теоремы Дезарга. Стереометрия помогает планиметрии. Окружность переходит в окружность.

    курсовая работа [866,1 K], добавлен 05.12.2013

  • Понятие множества, его трактование Георгом Кантором. Условные обозначения множеств. Виды множеств, способы их задания. Операции над множествами (пересечение, объединение, разность и дополнение), условия их равенства и основные свойства, отношения.

    презентация [1,2 M], добавлен 12.12.2012

  • Краткое историческое описание становления теории множеств. Теоремы теории множеств и их применение к выявлению структуры различных числовых множеств. Определение основных понятий, таких как мощность, счетные, замкнутые множества, континуальное множество.

    дипломная работа [440,3 K], добавлен 30.03.2011

  • Нумерация как отображение некоторого подмножества множества натуральных чисел N на исследуемый класс конструктивных объектов. Приведение к общему знаменателю на основе понятия нумерованного множества. Каноническое представление морфизма функции.

    реферат [2,1 M], добавлен 16.05.2009

  • Алгоритм построения многочлена Жегалкина по совершенной дизъюнктивной нормальной форме. Диаграмма Эйлера-Венна, изображение универсального множества и подмножества. Проверка самодвойственности, монотонности и линейности логической функции двух переменных.

    контрольная работа [227,5 K], добавлен 20.04.2015

  • Понятие множества и его элементов. Обозначение принадлежности элемента множеству. Конечные и бесконечные множества. Строгое и нестрогое включение. Способы задания множеств. Равенство множеств и двухсторонее включение. Диаграммы Венна для трех множеств.

    презентация [564,8 K], добавлен 23.12.2013

  • Геометрическая картина мира и предпосылки возникновения теории фракталов. Элементы детерминированной L-системы: алфавит, слово инициализации и набор порождающих правил. Фрактальные свойства социальных процессов: синергетика и хаотическая динамика.

    курсовая работа [938,5 K], добавлен 22.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.