Платоновы тела
Определение понятия правильного многогранника или платонового тела — выпуклого многогранника с максимально возможной симметрией. Ознакомление с символами Шлефли для правильных многогранников. Рассмотрение и характеристика геометрических свойств.
Рубрика | Математика |
Предмет | Геометрия |
Вид | реферат |
Язык | русский |
Прислал(а) | Барсуков Максим |
Дата добавления | 18.05.2022 |
Размер файла | 320,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Понятие правильного многогранника. Полное математическое описание правильных многогранников Евклида. Открытие двух законов орбитальной динамики. Основные характеристики икосаэдра. Отношение количества вершин правильного многогранника к количеству рёбер.
презентация [3,5 M], добавлен 19.02.2017Определение правильного многогранника, его сторон, вершин, отрезков, соединяющих вершины. Анализ особенностей, геометрических свойств и видов правильных многогранников. Правильные многогранники, которые встречаются в живой природе и архитектуре.
презентация [1,2 M], добавлен 13.11.2015Определение многогранника, его сторон и вершин, отрезков, соединяющих вершины. Описание основания, боковых граней и высоты призмы. Правильная и усеченная пирамида. Теорема Эйлера. Анализ особенностей и геометрических свойств правильных многогранников.
презентация [6,5 M], добавлен 27.10.2013Выпуклые многогранники, теорема Эйлера. Свойства выпуклых многогранников. Определение правильного многогранника. Понятие полуправильных многогранников. Свойства ромбокубооктаэдра, кубооктаэдра, тетраэдра, октаэдра, икосаэдра, додекаэдра и куба.
методичка [638,2 K], добавлен 30.04.2012Понятие многогранника и его элементы с точки зрения топологии. Определение площади и боковой поверхности призмы, параллелепипеда, пирамиды. Понятие правильных, полуправильных, звездчатых многогранников. Многогранники в разных областях культуры и науки.
курсовая работа [4,6 M], добавлен 02.04.2012Определение развертки многогранника, теорема о развертке А.Д. Александрова. Теорема Д. Бликера, рассматривающая два правильных многогранника - куб и додекаэдр, условие треугольности граней как технический момент, позволивший доказать свою теорему.
реферат [14,0 K], добавлен 25.09.2009Первые упоминания о правильных многогранниках. Классификация многогранников, их виды, свойства, теоремы о развертках выпуклых многогранников (Коши и Александрова). Создание моделей правильных многогранников с помощью разверток и методами оригами.
курсовая работа [2,8 M], добавлен 18.01.2011Изучение однородных выпуклых и однородных невыпуклых многогранников. Определение правильных многогранников. Двойственность куба и октаэдра. Теорема Эйлера. Тела Архимеда. Получение тел Кеплера-Пуансо. Многогранники в геологии, ювелирном деле, архитектуре.
презентация [4,9 M], добавлен 27.10.2013Различные виды правильных и полуправильных многогранников, их основные свойства. Многогранные поверхности, многогранники, топологические, простейшие и правильные многогранники. Грани, ребра и вершины поверхности многогранника. Пирамиды и призмы.
курсовая работа [1,7 M], добавлен 21.08.2013Понятие многогранной поверхности, виды многоугольников. Грани, стороны и вершины многогранников. Свойства пирамиды, призмы и параллелепипеда. Объем многогранника, его измерение с помощью выбранной единицы измерения объемов. Основные свойства объемов.
реферат [73,5 K], добавлен 08.05.2011Фигуры вращения правильных многогранников, использование их теории. Виды поверхностей в фигурах вращения. Теорема о пересечении гиперболической и цилиндрической поверхностей вращения. Классификация задач на вращение многогранников и вычисление объемов.
реферат [1,1 M], добавлен 25.09.2009Тела Платона, характеристика пяти правильных многогранников, их место в системе гармоничного устройства мира И. Кеплера. Агроритм построения треугольника средствами Mathcad. Формирование матрицы вершины координат додекаэдра, график поверхности.
курсовая работа [644,0 K], добавлен 19.12.2010Куб (гексаэдр) – представитель правильных выпуклых многогранников, его объем, сечения, площадь и свойства. Характеристика типов правильных многогранников в XIII книге "Начал" Евклида и идеалистической картине мира Платона. Отношение к кубу в философии.
презентация [531,0 K], добавлен 03.11.2011Пространственная симметрия правильного многогранника. Тетраэдр, октаэдр, икосаэдр, куб, додекаэдр. Геометрические свойства: площадь, объем. Роль Теэтета Афинского в развитии геометрии. Структура Солнечной системы и отношения расстояний между планетами.
презентация [831,5 K], добавлен 04.05.2013Определение геометрических размеров заданного тела. Расчет массы мерного стакана без жидкости, с жидкостью вытесненной из переливного стакана. Вычисление объема тела методом гидростатического взвешивания, основанного на использовании закона Архимеда.
лабораторная работа [121,2 K], добавлен 11.11.2014Пространственные тела и их сечения; точка, прямая, плоскость и векторы. Методы построения, задание и построение сечений пространственных тел, исследование свойств сечения. Способы визуализации трехмерного пространства. Создание компьютерного приложения.
курсовая работа [533,7 K], добавлен 15.07.2010Изучение свойств геометрического тела, состоящего из трёх пар равных параллелограммов, лежащих в параллельных плоскостях. Определение прямого, прямоугольного, правильного параллелепипеда. Нахождение высоты и объема параллелепипеда. Доказательство теоремы.
презентация [459,8 K], добавлен 22.04.2015История развития понятия пирамиды как многогранника в стереометрии, её элементы, свойства и виды. Частные случаи пирамид: правильная, усечённая, прямоугольная. Теоремы, связывающие пирамиду с другими геометрическими телами и формулы, связанные с ней.
презентация [2,7 M], добавлен 15.03.2016Неопределенный интеграл. Объем тела вращения. Эмпирическая формула. Сходимость ряда. Вычисление объема тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями. Исследование на условную сходимость по признаку Лейбница.
контрольная работа [25,8 K], добавлен 27.05.2004Обзор и характеристика различных методов построения сечений многогранников, определение их сильных и слабых сторон. Метод вспомогательных сечений как универсальный способ построения сечений многогранников. Примеры решения задач по теме исследования.
презентация [364,3 K], добавлен 19.01.2014