Платоновы тела
Определение понятия правильного многогранника или платонового тела — выпуклого многогранника с максимально возможной симметрией. Ознакомление с символами Шлефли для правильных многогранников. Рассмотрение и характеристика геометрических свойств.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 18.05.2022 |
Размер файла | 320,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Реферат «Платоновы тела»
Выполнил: ученик 10 класса Барсуков Максим
Содержание
Введение
1. Список правильных многогранников
2. Комбинаторные свойства
3. Геометрические свойства
3.1 Углы
3.2 Радиусы, площади и объёмы
4. История
5. В больших размерностях
Введение
Додекаэдр
Правильный многогранник или платоново тело -- это выпуклый многогранник с максимально возможной симметрией.
Многогранник называется правильным, если:
1. Он выпуклый;
2. Все его грани являются равными правильными многоугольниками;
3. В каждой его вершине сходится одинаковое число рёбер.
1. Список правильных многогранников
Существует всего пять правильных многогранников
Изображение |
Тип правильного многогранника |
Число сторон у грани |
Число рёбер, примыкающих к вершине |
Общее число вершин |
Общее число рёбер |
Общее число граней |
|
Тетраэдр |
3 |
3 |
4 |
6 |
4 |
||
Гексаэдр или Куб |
4 |
3 |
8 |
12 |
6 |
||
Октаэдр |
3 |
4 |
6 |
12 |
8 |
||
Додекаэдр |
5 |
3 |
20 |
30 |
12 |
||
Икосаэдр |
3 |
5 |
12 |
30 |
20 |
Всего в природе существует пять правильных многогранников. По сравнению с количеством правильных многоугольников это - очень мало: для каждого целого n>2 существует один правильный n-угольник, т.е. правильных многоугольников - бесконечно много. Правильные многогранники имеют названия по числу граней: тетраэдр (4 грани): гексаэдр (6 граней), октаэдр (8 граней), додекаэдр (12 граней) и икосаэдр (20 граней).
По-гречески "хедрон" означает грань, "тетра", "гекса" и т. д. - указанные числа граней. Нетрудно догадаться, что гексаэдр есть не что иное, как всем знакомый куб. Грани тетраэдра, октаэдра и икосаэдра - правильные треугольники, куба - квадраты, додекаэдра - правильные пятиугольники.
Правильным многогранником называется выпуклый многогранник, грани которого - равные правильные многоугольники, а двугранные углы при всех вершинах равны между собой. Доказано, что в каждой из вершин правильного многогранника сходится одно и то же число граней и одно и то же число ребер.
2. Комбинаторные свойства
· Эйлером была выведена формула, связывающая число вершин (В), граней (Г) и рёбер (Р) любого выпуклого многогранника простым соотношением:
В + Г = Р + 2.
· Отношение количества вершин правильного многогранника к количеству рёбер одной его грани равно отношению количества граней этого же многогранника к количеству рёбер, выходящих из одной его вершины. У тетраэдра это отношение равно 4:3, у гексаэдра и октаэдра -- 2:1, а у додекаэдра и икосаэдра -- 4:1.
· Правильный многогранник может быть комбинаторно описан символом Шлефли {p, q}, где:
p -- число сторон каждой грани;
q -- число рёбер, сходящихся в каждой вершине.
Символы Шлефли для правильных многогранников приведены в следующей таблице:
Многогранник |
Вершины |
Рёбра |
Грани |
Символ Шлефли |
||
тетраэдр |
4 |
6 |
4 |
{3, 3} |
||
куб |
8 |
12 |
6 |
{4, 3} |
||
октаэдр |
6 |
12 |
8 |
{3, 4} |
||
додекаэдр |
20 |
30 |
12 |
{5, 3} |
||
икосаэдр |
12 |
30 |
20 |
{3, 5} |
· Другой комбинаторной характеристикой многогранника, которую можно выразить через числа p и q, является общее количество вершин (В), рёбер (Р) и граней (Г). Поскольку любое ребро соединяет две вершины и лежит между двумя гранями, выполняются соотношения:
Из этих соотношений и формулы Эйлера можно получить следующие выражения для В, Р и Г:
3. Геометрические свойства
3.1 Углы
С каждым правильным многогранником связаны определённые углы, характеризующие его свойства. Двугранный угол между смежными гранями правильного многогранника {p, q} задаётся формулой:
Иногда удобнее пользоваться выражением через тангенс:
где h принимает значения 4, 6, 6, 10 и 10 для тетраэдра, куба, октаэдра, додекаэдра и икосаэдра соответственно.
Угловой дефект при вершине многогранника - это разность между 2р и суммой углов между рёбрами каждой грани при этой вершине. Дефект д при любой вершине правильного многогранника:
По теореме Декарта, он равен 4р делённым на число вершин (т.е. суммарный дефект при всех вершинах равен 4р).
Трёхмерным аналогом плоского угла является телесный угол. Телесный угол Щ при вершине правильного многогранника выражается через двугранный угол между смежными гранями этого многогранника по формуле: многогранник платонов геометрический
Телесный угол, стягиваемый гранью правильного многогранника, с вершиной в центре этого многогранника, равен телесному углу полной сферы (4р стерадиан), делённому на число граней. Он также равен угловому дефекту дуального к данному многогранника.
Различные углы правильных многогранников приведены в следующей таблице. Числовые значения телесных углов даны в стерадианах. Константа - золотое сечение.
Многогранник |
Двугранный угол и |
Плоский угол между рёбрами при вершине |
Угловой дефект (д) |
Телесный угол при вершине (Щ) |
Телесный угол, стягиваемый гранью |
|||
тетраэдр |
70.53° |
60° |
р |
р |
||||
куб |
90° |
1 |
90° |
|||||
октаэдр |
109.47° |
?2 |
60°, 90° |
|||||
додекаэдр |
116.57° |
108° |
||||||
икосаэдр |
138.19° |
60°, 108° |
3.2 Радиусы, площади и объёмы
С каждым правильным многогранником связаны три концентрические сферы:
· Описанная сфера, проходящая через вершины многогранника;
· Срединная сфера, касающаяся каждого его ребра в середине;
· Вписанная сфера, касающаяся каждой его грани в её центре.
Радиусы описанной (R) и вписанной (r) сфер задаются формулами:
где и - двугранный угол между смежными гранями многогранника. Радиус срединной сферы задаётся формулой:
где h - величина описанная выше, при определении двугранных углов (h = 4, 6, 6, 10 или 10). Отношения описанных радиусов к вписанным радиусам симметрично относительно p и q:
Площадь поверхности S правильного многогранника {p, q} вычисляется, как площадь правильного p-угольника, умноженная на число граней Г:
Объём правильного многогранника вычисляется, как умноженный на число граней объём правильной пирамиды, основанием которой служит правильный p-угольник, а высотой -- радиус вписанной сферы r:
Приведённая таблица содержит список различных радиусов, площадей поверхностей и объёмов правильных многогранников. Значение длины ребра a в таблице приравнены к 2.
Многогранник (a = 2) |
Радиус вписанной сферы (r) |
Радиус срединной сферы (с) |
Радиус описанной сферы (R) |
Площадь поверхности (S) |
Объём (V) |
|
тетраэдр |
||||||
куб |
||||||
октаэдр |
||||||
додекаэдр |
||||||
икосаэдр |
Константы ц и о задаются выражениями
Среди правильных многогранников как додекаэдр, так и икосаэдр представляют собой лучшее приближение к сфере. Икосаэдр имеет наибольшее число граней, наибольший двугранный угол и плотнее всего прижимается к своей вписанной сфере. С другой стороны, додекаэдр имеет наименьший угловой дефект, наибольший телесный угол при вершине и максимально заполняет свою описанную сферу.
4. История
Правильные многогранники известны с древнейших времён. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников.
В значительной мере правильные многогранники были изучены древними греками. Некоторые источники (такие как Прокл Диадох) приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинскому, современнику Платона. В любом случае, Теэтет дал математическое описание всем пяти правильным многогранникам и первое известное доказательство того, что их ровно пять.
Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». Платон писал о них в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику. Земля сопоставлялась кубу, воздух -- октаэдру, вода -- икосаэдру, а огонь -- тетраэдру. Для возникновения данных ассоциаций были следующие причины: жар огня ощущается чётко и остро (как маленькие тетраэдры); воздух состоит из октаэдров: его мельчайшие компоненты настолько гладкие, что их с трудом можно почувствовать; вода выливается, если её взять в руку, как будто она сделана из множества маленьких шариков (к которым ближе всего икосаэдры); в противоположность воде, совершенно непохожие на шар кубики составляют землю, что служит причиной тому, что земля рассыпается в руках, в противоположность плавному току воды. По поводу пятого элемента, додекаэдра, Платон сделал смутное замечание: «…его бог определил для Вселенной и прибегнул к нему в качестве образца». Аристотель добавил пятый элемент -- эфир и постулировал, что небеса сделаны из этого элемента, но он не сопоставлял его платоновскому пятому элементу.
Евклид дал полное математическое описание правильных многогранников в последней, XIII книге Начал. Предложения 13--17 этой книги описывают структуру тетраэдра, октаэдра, куба, икосаэдра и додекаэдра в данном порядке. Для каждого многогранника Евклид нашёл отношение диаметра описанной сферы к длине ребра. В 18-м предложении утверждается, что не существует других правильных многогранников. Андреас Шпейзер отстаивал точку зрения, что построение пяти правильных многогранников является главной целью дедуктивной системы геометрии в том виде, как та была создана греками и канонизирована в «Началах» Евклида[1]. Большое количество информации XIII книги «Начал», возможно, взято из трудов Теэтета.
В XVI веке немецкий астроном Иоганн Кеплер пытался найти связь между пятью известными на тот момент планетами Солнечной системы (исключая Землю) и правильными многогранниками. В «Тайне мира», опубликованной в 1596 году, Кеплер изложил свою модель Солнечной системы. В ней пять правильных многогранников помещались один в другой и разделялись серией вписанных и описанных сфер. Каждая из шести сфер соответствовала одной из планет (Меркурию, Венере, Земле, Марсу, Юпитеру и Сатурну). Многогранники были расположены в следующем порядке (от внутреннего к внешнему): октаэдр, за ним икосаэдр, додекаэдр, тетраэдр и, наконец, куб. Таким образом, структура Солнечной системы и отношения расстояний между планетами определялись правильными многогранниками. Позже от оригинальной идеи Кеплера пришлось отказаться, но результатом его поисков стало открытие двух законов орбитальной динамики -- законов Кеплера, -- изменивших курс физики и астрономии, а также правильных звёздчатых многогранников (тел Кеплера-Пуансо).
5. В больших размерностях
· Всего существует 6 правильных четырёхмерных многогранников:
· Во всех пространствах размерности n > 4 существует только 3 типа правильных многогранников: n-мерный симплекс, n-мерный октаэдр и n-мерный куб (гиперкуб).
Размещено на Allbest.ru
...Подобные документы
Понятие правильного многогранника. Полное математическое описание правильных многогранников Евклида. Открытие двух законов орбитальной динамики. Основные характеристики икосаэдра. Отношение количества вершин правильного многогранника к количеству рёбер.
презентация [3,5 M], добавлен 19.02.2017Определение правильного многогранника, его сторон, вершин, отрезков, соединяющих вершины. Анализ особенностей, геометрических свойств и видов правильных многогранников. Правильные многогранники, которые встречаются в живой природе и архитектуре.
презентация [1,2 M], добавлен 13.11.2015Определение многогранника, его сторон и вершин, отрезков, соединяющих вершины. Описание основания, боковых граней и высоты призмы. Правильная и усеченная пирамида. Теорема Эйлера. Анализ особенностей и геометрических свойств правильных многогранников.
презентация [6,5 M], добавлен 27.10.2013Выпуклые многогранники, теорема Эйлера. Свойства выпуклых многогранников. Определение правильного многогранника. Понятие полуправильных многогранников. Свойства ромбокубооктаэдра, кубооктаэдра, тетраэдра, октаэдра, икосаэдра, додекаэдра и куба.
методичка [638,2 K], добавлен 30.04.2012Понятие многогранника и его элементы с точки зрения топологии. Определение площади и боковой поверхности призмы, параллелепипеда, пирамиды. Понятие правильных, полуправильных, звездчатых многогранников. Многогранники в разных областях культуры и науки.
курсовая работа [4,6 M], добавлен 02.04.2012Определение развертки многогранника, теорема о развертке А.Д. Александрова. Теорема Д. Бликера, рассматривающая два правильных многогранника - куб и додекаэдр, условие треугольности граней как технический момент, позволивший доказать свою теорему.
реферат [14,0 K], добавлен 25.09.2009Первые упоминания о правильных многогранниках. Классификация многогранников, их виды, свойства, теоремы о развертках выпуклых многогранников (Коши и Александрова). Создание моделей правильных многогранников с помощью разверток и методами оригами.
курсовая работа [2,8 M], добавлен 18.01.2011Изучение однородных выпуклых и однородных невыпуклых многогранников. Определение правильных многогранников. Двойственность куба и октаэдра. Теорема Эйлера. Тела Архимеда. Получение тел Кеплера-Пуансо. Многогранники в геологии, ювелирном деле, архитектуре.
презентация [4,9 M], добавлен 27.10.2013Различные виды правильных и полуправильных многогранников, их основные свойства. Многогранные поверхности, многогранники, топологические, простейшие и правильные многогранники. Грани, ребра и вершины поверхности многогранника. Пирамиды и призмы.
курсовая работа [1,7 M], добавлен 21.08.2013Понятие многогранной поверхности, виды многоугольников. Грани, стороны и вершины многогранников. Свойства пирамиды, призмы и параллелепипеда. Объем многогранника, его измерение с помощью выбранной единицы измерения объемов. Основные свойства объемов.
реферат [73,5 K], добавлен 08.05.2011Фигуры вращения правильных многогранников, использование их теории. Виды поверхностей в фигурах вращения. Теорема о пересечении гиперболической и цилиндрической поверхностей вращения. Классификация задач на вращение многогранников и вычисление объемов.
реферат [1,1 M], добавлен 25.09.2009Тела Платона, характеристика пяти правильных многогранников, их место в системе гармоничного устройства мира И. Кеплера. Агроритм построения треугольника средствами Mathcad. Формирование матрицы вершины координат додекаэдра, график поверхности.
курсовая работа [644,0 K], добавлен 19.12.2010Куб (гексаэдр) – представитель правильных выпуклых многогранников, его объем, сечения, площадь и свойства. Характеристика типов правильных многогранников в XIII книге "Начал" Евклида и идеалистической картине мира Платона. Отношение к кубу в философии.
презентация [531,0 K], добавлен 03.11.2011Пространственная симметрия правильного многогранника. Тетраэдр, октаэдр, икосаэдр, куб, додекаэдр. Геометрические свойства: площадь, объем. Роль Теэтета Афинского в развитии геометрии. Структура Солнечной системы и отношения расстояний между планетами.
презентация [831,5 K], добавлен 04.05.2013Определение геометрических размеров заданного тела. Расчет массы мерного стакана без жидкости, с жидкостью вытесненной из переливного стакана. Вычисление объема тела методом гидростатического взвешивания, основанного на использовании закона Архимеда.
лабораторная работа [121,2 K], добавлен 11.11.2014Пространственные тела и их сечения; точка, прямая, плоскость и векторы. Методы построения, задание и построение сечений пространственных тел, исследование свойств сечения. Способы визуализации трехмерного пространства. Создание компьютерного приложения.
курсовая работа [533,7 K], добавлен 15.07.2010Изучение свойств геометрического тела, состоящего из трёх пар равных параллелограммов, лежащих в параллельных плоскостях. Определение прямого, прямоугольного, правильного параллелепипеда. Нахождение высоты и объема параллелепипеда. Доказательство теоремы.
презентация [459,8 K], добавлен 22.04.2015История развития понятия пирамиды как многогранника в стереометрии, её элементы, свойства и виды. Частные случаи пирамид: правильная, усечённая, прямоугольная. Теоремы, связывающие пирамиду с другими геометрическими телами и формулы, связанные с ней.
презентация [2,7 M], добавлен 15.03.2016Неопределенный интеграл. Объем тела вращения. Эмпирическая формула. Сходимость ряда. Вычисление объема тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями. Исследование на условную сходимость по признаку Лейбница.
контрольная работа [25,8 K], добавлен 27.05.2004Обзор и характеристика различных методов построения сечений многогранников, определение их сильных и слабых сторон. Метод вспомогательных сечений как универсальный способ построения сечений многогранников. Примеры решения задач по теме исследования.
презентация [364,3 K], добавлен 19.01.2014