Фракталы в природе
Фрактал как геометрическое образование, представляющее систему самоподобных фигур, расположенных закономерным образом. Фрактальные свойства в природе. Построение Снежинки Коха и фрактал раковина. Актуальность фракталов в нашей жизни и фракталы-анимация.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 09.12.2012 |
Размер файла | 1,2 M |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Классические фракталы. Самоподобие. Снежинка Коха. Ковер Серпинского. L-системы. Хаотическая динамика. Аттрактор Лоренца. Множества Мандельброта и Жюлиа. Применение фракталов в компьютерных технологиях.
курсовая работа [342,4 K], добавлен 26.05.2006История появления теории фракталов. Фрактал – самоподобная структура, чье изображение не зависит от масштаба. Это рекурсивная модель, каждая часть которой повторяет в своем развитии развитие всей модели в целом. Практическое применение теории фракталов.
научная работа [230,7 K], добавлен 12.05.2010Геометрическая картина мира и предпосылки возникновения теории фракталов. Элементы детерминированной L-системы: алфавит, слово инициализации и набор порождающих правил. Фрактальные свойства социальных процессов: синергетика и хаотическая динамика.
курсовая работа [938,5 K], добавлен 22.03.2014Сущность понятия "фрактал". Сущность фрактальной размерности. Размерность Хаусдорфа и ее свойства. Канторово множество и его обобщение. Снежинка и кривая Коха. Кривая Пеано и Госпера, их особенности. Ковер и салфетка Серпинского. Дракон Хартера-Хейтуэя.
курсовая работа [862,6 K], добавлен 23.07.2011Сущность и общая характеристика метода "барона Мюнхгаузена", его применение в алгебре. Нахождение значений выражений с бесконечным числом элементов, использование формулы куба суммы и разности. "Метод барона Мюнхгаузена": золотое сечение и фракталы.
реферат [2,8 M], добавлен 18.01.2011Фрактал та історія його виникнення. Види фракталів, методи їх створення. Типи самоподібності у фракталах. Класифікація алгоритмів створення. Системи ітеріруємих функцій. Стиснюючі афінні перетворення. Метод простої заміни, серветка Серпінського.
реферат [2,0 M], добавлен 26.07.2010Изучение последовательности чисел Фибоначчи. Вклад в математику Леонардо Пизанского. Золотое сечение в жизни и в природе, ее геометрическое изображение. Построение точки, делящей отрезок единичной длины. Золотой прямоугольник и спираль Фибоначчи.
презентация [421,5 K], добавлен 15.06.2017Перегляд основ математики. Фрактальні властивості в природі. Фрактальна розмірність Хаусдорфа-Безиковича. Канторівский пил, крива Пеано, сніжинка фон Коха, килим Серпінського. Поняття типових фракталів та порівняння їх між собою. Загальна теорія хаосу.
реферат [18,8 K], добавлен 06.04.2011Исследование понятия симметрии, соразмерности, пропорциональности и одинаковости в расположении частей. Характеристика симметрических свойств геометрических фигур. Описания роли симметрии в архитектуре, природе и технике, в решении логических задач.
презентация [1001,7 K], добавлен 06.12.2011Цепочка теорем, которая охватывает весь курс геометрии. Средняя линия фигур как отрезок, соединяющий середины двух сторон данной фигуры. Свойства средних линий. Построение различных планиметрических и стереометрических фигур, рациональное решение задач.
научная работа [2,0 M], добавлен 29.01.2010Понятие и свойства многогранников. Геометрическое моделирование как неотъемлемая часть современного математического образования. Применение изображений пространственных фигур в преподавании геометрии, роль наглядных средств при изучении многогранников.
дипломная работа [4,7 M], добавлен 28.10.2012Краткая история изучения циклоиды. Геометрическое определение, свойства и особенности построения циклоиды. Параметрическое уравнение циклоиды и уравнение в декартовых координатах. Задачи на нахождение частей циклоиды и фигур, образованных циклоидой.
курсовая работа [1,1 M], добавлен 16.01.2011Оптимальные фигуры многоугольников на плоскости. Соотношение размеров соседних фигур на плоскости на примере соприкасающихся окружностей. Реализация шестигранных ячеек в природе. Характеристика таких категорий: целое и части, дискретное и непрерывное.
статья [290,7 K], добавлен 28.03.2012Градиентные уравнения и уравнения в вариациях, функционалы метода наименьших квадратов. Численное решение градиентных уравнений: полиномиальные системы, метод рядов Тейлора и метод Рунге-Кутта. Числовые модели осциллирующих процессов в живой природе.
реферат [221,4 K], добавлен 10.08.2010Построение угла равного данному, биссектрисы данного угла, середины отрезка, перпендикулярных прямых, треугольника по трем элементам. Теорема Фалеса и геометрическое место точек. Построение с использованием свойств движений. Метод геометрических мест.
дипломная работа [359,1 K], добавлен 24.06.2011Изучение проявлений геометрических законов в живой природе и использования их в образовательной практической деятельности. Описание геометрических законов и сущность геометрических построений. Графическое образование и его место в современном мире.
дипломная работа [2,3 M], добавлен 24.06.2010Понятие и свойства симметрии, ее типы: центральная и осевая, зеркальная и поворотная. Распространенность симметрии в живой природе. Гомотетия (преобразование подобие). Оценка роли и значения данного явления в химии, архитектуре, технических объектах.
презентация [3,9 M], добавлен 04.12.2013Первая таблица простых чисел, составленная математиком Эратосфеном. Периодические цикады как род цикад с 13- и 17-летними жизненными циклами, распространенных в Северной Америки. Принцип действия кредитной карты. Закономерности и свойства простых чисел.
научная работа [25,8 K], добавлен 28.01.2014Основные сведения о тетраэдре - поверхности, составленной из четырех треугольников. Количество его граней, ребер, вершин. Свойства тетраэдра, формулы нахождения объема, радиуса, высоты. Тетраэдры в живой природе, технике. Теорема Менелая для тетраэдра.
презентация [4,2 M], добавлен 20.04.2014Значение математики в нашей жизни. История возникновения счета. Развитие методов вычислительной математики в настоящее время. Использование математики в других науках, роль математического моделирования. Состояние математического образования в России.
статья [16,2 K], добавлен 05.01.2010