Эйлеровы циклы и цепи

Алгоритм выделения эйлерова цикла в связном мультиграфе с четными степенями вершин. Гамильтоновы циклы и цепи. Остовное дерево с минимальной суммой длин содержащихся в нем ребер. Висячая вершина с инцидентным ей ребром. Изучение свойств деревьев.

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 18.10.2013
Размер файла 28,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Эйлеровы цепи и циклы, теоремы. Алгоритм построения эйлерова цикла. Обоснование алгоритма. Нахождение кратчайших путей в графе. Алгоритм Форда отыскания кратчайшего пути. Задача отыскания кратчайших расстояний между всеми парами вершин. Алгоритм Флойда.

    реферат [108,4 K], добавлен 01.12.2008

  • Общее понятие теоремы Эйлера, этапы ее доказательства. Необходимые и достаточные условия существования эйлерова цикла. Сущность задачи о построении каркаса куба. Алгоритм Флери построения эйлерова цикла. Обход полуэйлерова графа с нечетной вершины.

    презентация [27,1 K], добавлен 12.04.2014

  • Понятия теории графов, их связность и задача о кратчайшей цепи. Программная реализация метода Дейкстры, его сравнение с методом простого перебора. Описание логики программного модуля. Примеры работы программы нахождения кратчайшей цепи в связном графе.

    курсовая работа [330,2 K], добавлен 25.11.2011

  • Основные понятия теории графов. Степень вершины. Маршруты, цепи, циклы. Связность и свойства ориентированных и плоских графов, алгоритм их распознавания, изоморфизм. Операции над ними. Обзор способов задания графов. Эйлеровый и гамильтоновый циклы.

    презентация [430,0 K], добавлен 19.11.2013

  • Основные понятия теории графов. Маршруты и связность. Задача о кёнигсбергских мостах. Эйлеровы графы. Оценка числа эйлеровых графов. Алгоритм построения эйлеровой цепи в данном эйлеровом графе. Практическое применение теории графов в науке.

    курсовая работа [1006,8 K], добавлен 23.12.2007

  • Минимальное остовное дерево связного взвешенного графа и его нахождение с помощью алгоритмов. Описание алгоритма Краскала, возможность строить дерево одновременно для нескольких компонент связности. Пример работы алгоритма Краскала, код программы.

    курсовая работа [192,5 K], добавлен 27.03.2011

  • Остовное дерево связного неориентированного графа. Алгоритм создания остовного дерева, его нахождение. Сущность и главные особенности алгоритма Крускала. Порядок построения алгоритма Прима, вершина наименьшего веса. Промежуточная структура данных.

    презентация [140,8 K], добавлен 16.09.2013

  • Основные понятия, связанные с графом. Решение задачи Эйлера о семи кёнигсбергских мостах. Необходимые и достаточные условия для эйлеровых и полуэйлеровых графов. Применение теории графов к решению задач по математике; степени вершин и подсчёт рёбер.

    курсовая работа [713,8 K], добавлен 16.05.2016

  • Алгоритм перехода к графическому представлению для неориентированного графа. Количество вершин неориентированного графа. Чтение из матрицы смежностей. Связи между вершинами в матрице. Задание координат вершин в зависимости от количества секторов.

    лабораторная работа [34,0 K], добавлен 29.04.2011

  • Теория динамического программирования. Понятие об оптимальной подструктуре. Независимое и полностью зависимое множество вершин. Задача о поиске максимального независимого множества в дереве. Алгоритм Брона-Кербоша как метод ветвей, границ для поиска клик.

    реферат [224,1 K], добавлен 09.10.2012

  • Понятие и матричное представление графов. Ориентированные и неориентированные графы. Опеределение матрицы смежности. Маршруты, цепи, циклы и их свойства. Метрические характеристики графа. Применение теории графов в различных областях науки и техники.

    курсовая работа [423,7 K], добавлен 21.02.2009

  • Изучение основных вопросов теории графов и области ее применения на практике. Разработка алгоритма кластеризации по предельному расстоянию и построение минимального остовного дерева каждого кластера. Результаты тестирований работы данного алгоритма.

    курсовая работа [362,9 K], добавлен 24.11.2010

  • Понятие "граф". Отношения между разнородными элементами. Матричное представление графов. Операции над графами. Маршруты, цепи, циклы. Метрические характеристики графа. Приложение теории графов в различных областях науки и техники. Листинг программы.

    курсовая работа [725,8 K], добавлен 15.12.2008

  • Основные понятия теории графов. Содержание метода Дейкстры нахождения расстояния от источника до всех остальных вершин в графе с неотрицательными весами дуг. Программная реализация исследуемого алгоритма. Построение матриц смежности и инцидентности.

    курсовая работа [228,5 K], добавлен 30.01.2012

  • Цепь Маркова как простой случай последовательности случайных событий, области ее применения. Теорема о предельных вероятностях в цепи Маркова, формула равенства Маркова. Примеры для типичной и однородной цепи Маркова, для нахождения матрицы перехода.

    курсовая работа [126,8 K], добавлен 20.04.2011

  • Дифференциальные уравнения при входном воздействии типа скачка для заданной электрической цепи. Применение преобразования Лапласа при нулевых начальных условиях. Решение уравнения операторным методом. Построение частотных характеристик цепи. Ее динамика.

    курсовая работа [721,0 K], добавлен 27.05.2008

  • Основные понятия теории графов. Расстояния в графах, диаметр, радиус и центр. Применение графов в практической деятельности человека. Определение кратчайших маршрутов. Эйлеровы и гамильтоновы графы. Элементы теории графов на факультативных занятиях.

    дипломная работа [145,5 K], добавлен 19.07.2011

  • Определение многогранника, его сторон и вершин, отрезков, соединяющих вершины. Описание основания, боковых граней и высоты призмы. Правильная и усеченная пирамида. Теорема Эйлера. Анализ особенностей и геометрических свойств правильных многогранников.

    презентация [6,5 M], добавлен 27.10.2013

  • Анализ цепи с применением методов переменных состояния, операторного и частотного при апериодическом и периодическом воздействии. Определение амплитудного и фазового спектров входного сигнала. Получение тока на выходе цепи в виде отрезка ряда Фурье.

    курсовая работа [1,9 M], добавлен 11.01.2012

  • Описание заданного графа множествами вершин V и дуг X, списками смежности, матрицей инцидентности и смежности. Матрица весов соответствующего неориентированного графа. Определение дерева кратчайших путей по алгоритму Дейкстры. Поиск деревьев на графе.

    курсовая работа [625,4 K], добавлен 30.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.