Интерполирование функций
Построение интерполяционной функции, удовлетворяющей поставленному условию. Характеристика определителя Вандермонда. Подставление переменной в функцию при известных заданных коэффициентах. Рассмотрение интерполяционных многочленов Лагранжа и Ньютона.
Рубрика | Математика |
Вид | презентация |
Язык | русский |
Дата добавления | 30.10.2013 |
Размер файла | 262,8 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Способы построения интерполяционных многочленов Лагранжа, основные этапы. Интерполирование функций многочленами Ньютона, способы построения графика. Постановка задачи аппроксимации функции одной переменной, предпосылки повышения точности расчетов.
презентация [204,5 K], добавлен 18.04.2013Разделенные разности и аппроксимация функций методом наименьших квадратов. Интерполяционные многочлены Лагранжа и Ньютона. Экспериментальные данные функциональной зависимости. Система уравнений для полинома. Графики аппроксимирующих многочленов.
реферат [139,0 K], добавлен 26.07.2009В вычислительной математике существенную роль играет интерполяция функций. Формула Лагранжа. Интерполирование по схеме Эйткена. Интерполяционные формулы Ньютона для равноотстоящих узлов. Формула Ньютона с разделенными разностями. Интерполяция сплайнами.
контрольная работа [131,6 K], добавлен 05.01.2011Нахождение интерполяционных многочленов Лагранжа и Ньютона, проходящих через четыре точки заданной функции, сравнение их степенных представлений. Решение нелинейного дифференциального уравнения методом Эйлера. Решение систем алгебраических уравнений.
задача [226,9 K], добавлен 21.06.2009Применение первой и второй интерполяционной формул Ньютона. Нахождение значений функции в точках, не являющимися табличными. Bспользование формулы Ньютона для не равностоящих точек. Нахождение значения функции с помощью интерполяционной схемы Эйткена.
лабораторная работа [481,0 K], добавлен 14.10.2013Вычисление производной по ее определению, с помощью конечных разностей и на основе первой интерполяционной формулы Ньютона. Интерполяционные многочлены Лагранжа и их применение в численном дифференцировании. Метод Рунге-Кутта (четвертого порядка).
реферат [71,6 K], добавлен 06.03.2011Определение абсолютной и относительной погрешностей приближенных чисел. Оценка погрешностей результата. Интерполирование и экстраполирование данных, интерполяционный многочлен Лагранжа и Ньютона, их основные характеристики и сравнительное описание.
лабораторная работа [74,8 K], добавлен 06.08.2013Математическая формулировка задачи, существующие численные методы и схемы алгоритмов. Интерполирование функции, заданной в узлах, методом Вандермонда. Среднеквадратичное приближение функции. Вычисление интеграла функций по составной формуле трапеций.
курсовая работа [3,4 M], добавлен 14.04.2009Метод решения задачи, при котором коэффициенты a[i], определяются непосредственным решением системы - метод неопределенных коэффициентов. Интерполяционная формула Ньютона и ее варианты. Построение интерполяционного многочлена Лагранжа по заданной функции.
лабораторная работа [147,4 K], добавлен 16.11.2015Интерполирование функции в точке, лежащей в окрестности середины интервала. Интерполяционные формулы Гаусса. Формула Стирлинга как среднее арифметическое интерполяционных формул Гаусса. Кубические сплайн-функции как математическая модель тонкого стержня.
презентация [88,1 K], добавлен 18.04.2013Методы оценки погрешности интерполирования. Интерполирование алгебраическими многочленами. Построение алгебраических многочленов наилучшего среднеквадратичного приближения. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений.
лабораторная работа [265,6 K], добавлен 14.08.2010Построение массива конечных разностей. Выполнение экстраполяции. Вычисление приближенной функции с помощью многочлена Лагранжа. Определение значения функции с помощью формул Ньютона. Квадратичная сплайн-интерполяция. Среднеквадратичная аппроксимация.
контрольная работа [1004,9 K], добавлен 01.12.2009Исследование методами математического анализа поведения функций при заданных значениях аргумента. Этапы решения уравнения функции и определения значения аргумента и параметра. Построение графиков. Сочетание тригонометрических, гиперболических функций.
контрольная работа [272,3 K], добавлен 20.08.2010Построение приближающей функции, используя исходные данные, с помощью методов Лагранжа, Ньютона и Эйткена (простая и упрощенная форма реализации). Алгоритм вычисления интерполяционного многочлена. Сравнение результатов реализации методов в среде Mathcad.
курсовая работа [299,3 K], добавлен 30.04.2011Понятие многочлена и его степени. Многочлен, у которого все коэффициенты равны нулю. Многочлены от одной переменной. Равенство и значение многочленов. Операции над многочленами, основные понятия схемы Горнера. Кратные и рациональные корни многочлена.
курсовая работа [90,2 K], добавлен 15.06.2010Роль интерполяции функций, значения которой совпадают со значениями заданной функции в некотором числе точек. Интерполирование функции полиномами, непосредственно непрерывных функций на отрезке и в точке. Определение понятия погрешности интерполяции.
курсовая работа [157,4 K], добавлен 10.04.2011Производные от функций, заданных параметрически. Геометрический смысл дифференциала. Применение дифференциала в приближенных вычислениях. Теоремы Коши, Лагранжа и Ролля о дифференцируемых функциях, их геометрическая интерпретация. Правило Лопиталя.
презентация [334,8 K], добавлен 14.11.2014Нахождение экстремума функции нескольких переменных не на всей области определения, а на множестве, удовлетворяющему некоторому условию. Практический пример нахождения точки максимума и минимума функции. Главные особенности метода множителей Лагранжа.
презентация [112,6 K], добавлен 17.09.2013Методы хорд и итераций, правило Ньютона. Интерполяционные формулы Лагранжа, Ньютона и Эрмита. Точечное квадратичное аппроксимирование функции. Численное дифференцирование и интегрирование. Численное решение обыкновенных дифференциальных уравнений.
курс лекций [871,5 K], добавлен 11.02.2012Нахождение экстремумов функций методом множителей Лагранжа. Выражение расширенной целевой функции. Схема алгоритма численного решения задачи методом штрафных функций в сочетании с методом безусловной минимизации. Построение линий ограничений.
курсовая работа [259,9 K], добавлен 04.05.2011