Вклады Гаусса в развитие математики
Краткие биографические данные о жизни Фридриха Гаусса. История составления таблицы обратных величин. Первый успех математика, построение правильного 17-угольника циркулем и линейкой. Развитие высшей алгебры, теории чисел, дифференциальной геометрии.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 17.12.2013 |
Размер файла | 16,3 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Делимость в кольце чисел гаусса. Обратимые и союзные элементы. Деление с остатком. Алгоритм евклида. Основная теорема арифметики. Простые числа гаусса. Применение чисел гаусса.
дипломная работа [209,2 K], добавлен 08.08.2007Краткие биографические сведения из жизни и научных изысканиях ученых Евклида и Архимеда. Разработка Евклидом основ стереометрии, планометрии, алгебры, теории чисел, отражение их в труде "Начала". Вклад Архимеда в развитие арифметики, геометрии, механики.
реферат [18,0 K], добавлен 13.06.2009Особенности периода математики постоянных величин. Создание арифметики, алгебры, геометрии и тригонометрии. Общая характеристика математической культуры Древней Греции. Пифагорейская школа. Открытие несоизмеримости, таблицы Пифагора. "Начала" Евклида.
презентация [2,4 M], добавлен 20.09.2015История становления математики как науки. Период элементарной математики. Период создания математики переменных величин. Создание аналитической геометрии, дифференциального и интегрельного исчисления. Развитие математики в России в XVIII-XIX столетиях.
реферат [38,2 K], добавлен 09.10.2008Развитие математики переменных величин: создание аналитической геометрии, дифференциального и интегрального исчисления. Значение появления книги Декарта "Геометрия" в создании математики переменных величин. Становление математики в ее современном виде.
реферат [25,9 K], добавлен 30.04.2011Краткие биографические сведения и характеристика творчества В.Я. Буняковского - знаменитого русского математика. Исследования Буняковского в области теории чисел. Работы по геометрии и прикладным вопросам. Научное наследство великого математика.
реферат [25,8 K], добавлен 29.05.2010Вавилонская система счисления, таблицы обратных чисел и математика для исследования движений планет. Египетский календарь и введение символа для обозначения нуля у майя. Греческая математика, Индия и арабы. Современная математика и математический анализ.
реферат [49,7 K], добавлен 27.04.2009Общие аксиомы конструктивной геометрии. Аксиомы математических инструментов. Постановка задачи на построение, методика решения задач. Особенности методик построения: одним циркулем, одной линейкой, двусторонней линейкой, построения с помощью прямого угла.
курс лекций [4,0 M], добавлен 18.12.2009Возникновение геометрии как науки о формах, размерах и границах частей пространства, которые в нем занимают вещественные тела. Появление геометрии в Греции к концу VII в. до н. э. Теорема Пифагора и развитие методов аналитической геометрии Гаусса.
реферат [38,5 K], добавлен 16.01.2010Исследование теоретического материала, касающегося задач, решаемых ограниченными средствами. Сущность и содержание теоремы Штейнера – Понселе. Задачи школьного курса геометрии, решаемые циркулем и линейкой, их исследование и методика разрешения.
курсовая работа [856,1 K], добавлен 04.11.2015Элементы линейной алгебры. Виды матриц и операции над ними. Свойства определителей матрицы и их вычисление. Решение систем линейных уравнений в матричной форме, по формулам Крамера и методу Гаусса. Элементы дифференциального и интегрального исчислений.
учебное пособие [1,5 M], добавлен 06.11.2011Краткие биографические данные от Джоне Непере - шотландском математике, изобретателе логарифмов и замечательного вычислительного инструмента - таблицы логарифмов. Математические заслуги Брадиса; его Таблицы. Изобретение первой логарифмической линейки.
презентация [5,3 M], добавлен 30.10.2013Вычисление определителя 4-го порядка, математическое решение системы методами матрицы, Крамера и Гаусса. Характеристика понятий невырожденной и обратной, транспонированной и присоединенной матрицы, нахождение алгебраических дополнений элементов таблицы.
контрольная работа [64,5 K], добавлен 12.06.2011Обзор квадратурных формул Гаусса, их определение, интегральные конструкции, примеры, четко описывающие квадратуры Гаусса. Особенности использования некоторых алгоритмов, позволяющих отследить ход решений задач, использующих квадратурные формулы Гаусса.
контрольная работа [309,6 K], добавлен 16.12.2015Сведения о семье Якоба Бернулли, его тайное увлечение математикой в юности и последующий вклад в развитие теории вероятности. Составление ученым таблицы фигурных чисел и выведение формул для сумм степеней натуральных чисел. Расчет значений чисел Бернулли.
презентация [422,7 K], добавлен 02.06.2013Роль математики в современном мире. Основные этапы развития математики. Аксиоматический метод построения научной теории. Начала Евклида как образец аксиоматического построения научной теории. История создания неевклидовой геометрии. Стили мышления.
реферат [25,8 K], добавлен 08.02.2009Развитие математики как теории в школе Пифагора. Планиметрия прямолинейных фигур. Стереометрия, теория арифметической и геометрической пропорций. Открытие несоизмеримых величин. Бесконечность как математическая категория. Период академии, фаза упадка.
реферат [24,5 K], добавлен 29.03.2010Возникновение и основные этапы развития математики как науки о структурах, порядке и отношениях на основе операций подсчета, измерения и описания форм реальных объектов. Развитие знаний арифметики и геометрии в Древнем Востоке, Вавилоне и Древней Греции.
презентация [1,8 M], добавлен 17.12.2010Задачи на элементы теории вероятности и математической статистики. Решение систем линейных уравнений методом Крамера; методом Гаусса. Закон распределения дискретной случайной величены. Построение выпуклого многоугольника, заданного системой неравенств.
контрольная работа [96,1 K], добавлен 12.09.2008Период зарождения математики (до VII-V вв. до н.э.). Время математики постоянных величин (VII-V вв. до н.э. – XVII в. н.э.). Математика переменных величин (XVII-XIX вв.). Современный период развития математики. Особенности компьютерной математики.
презентация [2,2 M], добавлен 20.09.2015