Группировки и кластерный анализ
Кластерный анализ как инструмент группировки объектов. Коэффициенты оценки подобия на практике. Задача кластерного анализа. Иерархические методы его применения. Проверка качества кластеризации. Методика применения основных методов кластерного анализа.
Рубрика | Математика |
Вид | курс лекций |
Язык | русский |
Дата добавления | 19.09.2017 |
Размер файла | 209,6 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Классификация методов кластеризации и их характеристика. Метод горной кластеризации в Matlab. Возможная область применения кластеризации в различных предметных областях. Математическое описание метода. Пример использования метода на реальных данных.
реферат [187,0 K], добавлен 28.10.2010Методика проведения группировки объектов на основе алгоритма K-средних, используя рандомизацию исходных данных (объединенной центрированной матрицы наблюдений). Оценка требуемого числа итераций. Расчет расстояния от объектов до новых центров кластеров.
практическая работа [195,6 K], добавлен 20.09.2011Общее понятие о дисперсионном анализе, его сущность и значение. Использование INTERNET и компьютера для проведения дисперсионного анализа, особенности работы в среде MS Excel. Примеры применения однофакторного и двухфакторного дисперсионного анализа.
курсовая работа [820,4 K], добавлен 17.02.2013Подходы к оценке кредитного риска: недостатки методик Базеля II. Модели оценки: качество и прозрачность методик, структура данных. Скоринговые методики, кластерный и дискриминантный анализ, нейронные сети и дерево классификаций, data mining и регрессии.
курсовая работа [3,3 M], добавлен 21.08.2008Главная задача спектрального анализа временных рядов. Параметрические и непараметрические методы спектрального анализа. Сущность понятия "временный ряд". График оценки спектральной плотности для окна Дирихле, при центрированном случайном процессе.
курсовая работа [332,8 K], добавлен 17.09.2009Изучение основных вопросов теории графов и области ее применения на практике. Разработка алгоритма кластеризации по предельному расстоянию и построение минимального остовного дерева каждого кластера. Результаты тестирований работы данного алгоритма.
курсовая работа [362,9 K], добавлен 24.11.2010Математические методы распознавания (классификации с учителем) и прогноза. Кластеризация как поиск оптимального разбиения и покрытия. Алгоритмы распознавания и интеллектуального анализа данных. Области практического применения систем распознавания.
учебное пособие [2,1 M], добавлен 14.06.2014Проведение аналитической группировки и дисперсионного анализа данных, с целью количественно определить тесноту связи. Определение степени корреляции между группировочными признаками и вариационной зависимости переменной, обусловленной регрессией.
контрольная работа [140,5 K], добавлен 17.08.2014Функциональные и стохастические связи. Статистические методы моделирования связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Проверка адекватности регрессионной модели.
курсовая работа [214,6 K], добавлен 04.09.2007Понятие и история развития криптографии как науки, предмет и методы ее исследования. Существующие шифры и закономерности процесса шифрования. Сравнительное описание шифров Плейфера и Тритемиуса, условия и анализ примеров их применения на практике.
курсовая работа [66,2 K], добавлен 07.05.2016Возникновение науки исследования операций и особенности применения операционных методов. Отделение формы задачи от ее содержания с помощью процесса абстракции. Классы задач. Некоторые математические методы, используемые для получения решений на моделях.
реферат [17,7 K], добавлен 27.06.2011Теоретические основы, значение, особенности и методика применения различных способов решения нестандартных задач в развитии математического мышления младших школьников. Логические задачи как средство развития математического мышления младших школьников.
курсовая работа [180,1 K], добавлен 19.04.2010Дифференциальные уравнения как математический инструмент моделирования и анализа разнообразных явлений и процессов в науке и технике. Описание математических методов решения систем дифференциальных уравнений. Методы расчета токов на участках цепи.
курсовая работа [337,3 K], добавлен 19.09.2011Общая характеристика факультативных занятий по математике, основные формы и методы проведения. Составление календарно-тематического плана факультативного курса по теме: "Применение аппарата математического анализа при решении задач с параметрами".
курсовая работа [662,1 K], добавлен 27.09.2013Дисперсионный анализ. Применение дисперсионного анализа в различных задачах и исследованиях. Дисперсионный анализ в контексте статистических методов. Векторные авторегрессии. Факторный анализ.
курсовая работа [139,8 K], добавлен 29.05.2006Преобразования подобия, их свойства. Доказательство теоремы: гомотетия есть преобразование подобия. Основные признаки подобия треугольников, решение типовых задач. Углы, вписанные в окружность. Пропорциональность отрезков хорд и секущих окружности.
реферат [729,0 K], добавлен 02.06.2009Предпосылки корреляционного анализа - математико-статистического метода выявления взаимозависимости компонентов многомерной случайной величины и оценки их связи. Точечные оценки параметров двумерного распределения. Аппроксимация уравнений регрессии.
контрольная работа [648,3 K], добавлен 03.04.2011Понятие математического анализа. Предшественники математического анализа - античный метод исчерпывания и метод неделимых. Л. Эйлер - входит в первую пятерку великих математиков всех времен и народов. Современная пятитомная "Математическая энциклопедия".
реферат [68,3 K], добавлен 04.08.2010Анализ исследований в области лечения диабета. Использование классификаторов машинного обучения для анализа данных, определение зависимостей и корреляции между переменными, значимых параметров, а также подготовка данных для анализа. Разработка модели.
дипломная работа [256,0 K], добавлен 29.06.2017Анализ роли математики в оценке количественных и пространственных взаимоотношений объектов реального мира. Трактовка и обоснование математических теорем Ферма, Ролля, Лагранжа, Коши и Лопиталя. Обзор биографии, деятельности и трудов великих математиков.
курсовая работа [467,9 K], добавлен 08.04.2013