Обобщенный метод наименьших квадратов
Метод наименьших квадратов как один из базовых методов регрессионного анализа для оценки неизвестных параметров регрессионных моделей по выборочным данным. Определение эффективности использования процедур Кохрейна-Оркатта, Хилдрета-Лу и Дарбина.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 02.02.2019 |
Размер файла | 387,3 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Вероятностное обоснование метода наименьших квадратов как наилучшей оценки. Прямая и обратная регрессии. Общая линейная модель. Многофакторные модели. Доверительные интервалы для оценок метода наименьших квадратов. Определение минимума невязки.
реферат [383,7 K], добавлен 19.08.2015Основные задачи регрессионного анализа в математической статистике. Вычисление дисперсии параметров уравнения регрессии и дисперсии прогнозирования эндогенной переменной. Установление зависимости между переменными. Применение метода наименьших квадратов.
презентация [100,3 K], добавлен 16.12.2014Оценка неизвестных величин по результатам измерений, содержащим случайные ошибки, при помощи метода наименьших квадратов. Аппроксимация многочленами, обзор существующих методов аппроксимации. Математическая постановка задачи аппроксимации функции.
курсовая работа [1,9 M], добавлен 12.02.2013Изучение аппроксимации таблично заданной функции методом наименьших квадратов при помощи вычислительной системы Mathcad. Исходные данные и функция, вычисляющая матрицу коэффициентов систему уравнений. Выполнение вычислений для разных порядков полинома.
лабораторная работа [166,4 K], добавлен 13.04.2016Аппроксимация и теория приближений, применение метода наименьших квадратов для оценки характера приближения. Квадратичное приближение таблично заданной функции по дискретной норме Гаусса. Интегральное приближение функции, которая задана аналитически.
реферат [82,0 K], добавлен 05.09.2010Неопределенный интеграл. Объем тела вращения. Эмпирическая формула. Сходимость ряда. Вычисление объема тела, образованного вращением вокруг оси ОХ фигуры, ограниченной линиями. Исследование на условную сходимость по признаку Лейбница.
контрольная работа [25,8 K], добавлен 27.05.2004Исследование вопросов построения эмпирических формул методом наименьших квадратов средствами пакета Microsoft Excel и решение данной задачи в MathCAD. Сравнительная характеристика используемых средств, оценка их эффективности и перспективы применения.
курсовая работа [471,3 K], добавлен 07.03.2015Прямолинейные, обратные и криволинейные связи. Статистическое моделирование связи методом корреляционного и регрессионного анализа. Метод наименьших квадратов. Оценка значимости коэффициентов регрессии. Проверка адекватности модели по критерию Фишера.
курсовая работа [232,7 K], добавлен 21.05.2015Исследование точности прогнозирования случайного процесса с использованием метода наименьших квадратов. Анализ расхождения между трендом и прогнозом, последующая оценка близости распределения расхождений наблюдений и распределения сгенерированного шума.
курсовая работа [1,0 M], добавлен 29.01.2010Метод Гаусса, метод прогонки, нелинейное уравнение. Метод вращения Якоби. Интерполяционный многочлен Лагранжа и Ньютона. Метод наименьших квадратов, интерполяция сплайнами. Дифференцирование многочленами, метод Монте-Карло и Рунге-Кутты, краевая задача.
курсовая работа [4,8 M], добавлен 23.05.2013Понятие интерполяционного многочлена Лагранжа как многочлена минимальной степени, порядок его построения. Решение и оценка остаточного члена. Нахождение приближающей функции в виде линейной функции, квадратного трехчлена и других элементарных функций.
курсовая работа [141,5 K], добавлен 23.07.2011Постановка задачи аппроксимации методом наименьших квадратов, выбор аппроксимирующей функции. Общая методика решения данной задачи. Рекомендации по выбору формы записи систем линейных алгебраических уравнений. Решение систем методом обратной матрицы.
курсовая работа [77,1 K], добавлен 02.06.2011Расчеты с помощью метода наименьшего квадрата для определения мольной теплоёмкости. Составление с помощью метода программирования системы нелинейных уравнений. Получение в среде Mathcad уравнения, максимально приближенного к экспериментальным данным.
лабораторная работа [469,6 K], добавлен 17.06.2014Преобразование коэффициентов полиномов Чебышева. Функции, применяемые в численном анализе. Интерполяция многочленами, метод аппроксимации - сплайн-аппроксимация, ее отличия от полиномиальной аппроксимации Лагранжем и Ньютоном. Метод наименьших квадратов.
реферат [21,5 K], добавлен 27.01.2011Статистическое описание и выборочные характеристики двумерного случайного вектора. Оценка параметров линейной регрессии, полученных по методу наименьших квадратов. Проверка гипотезы о равенстве средних нормальных совокупностей при неизвестных дисперсиях.
контрольная работа [242,1 K], добавлен 05.11.2011Градиентные уравнения и уравнения в вариациях, функционалы метода наименьших квадратов. Численное решение градиентных уравнений: полиномиальные системы, метод рядов Тейлора и метод Рунге-Кутта. Числовые модели осциллирующих процессов в живой природе.
реферат [221,4 K], добавлен 10.08.2010Закон больших чисел. Нахождение точечных оценок. Построение неизвестной дисперсии погрешности измерений. Выборочная функция распределения. Теорема Ляпунова и распределение Стьюдента. Вычисление доверительных интервалов. Построение интервальных оценок.
курсовая работа [4,3 M], добавлен 18.12.2011Интерполяция (частный случай аппроксимации). Аппроксимация функцией. Метод наименьших квадратов. Из курса математики известны 3 способа задания функциональных зависимостей: аналитический, графический, табличный.
реферат [70,4 K], добавлен 26.05.2006Основные методы измерения деревьев. Наука о математических методах систематизации. Определение дисперсии случайной величины. Выборочное исправленное среднее квадратическое отклонение. Метод наименьших квадратов. Свойства параболической регрессии.
курсовая работа [840,1 K], добавлен 15.06.2011Особенности метода аппроксимации табулированных функций. Рассмотрение преимуществ работы в среде математической программы Mathcad. Метод наименьших квадратов как наиболее распространенный метод аппроксимации экспериментальных данных, сферы применения.
курсовая работа [1,2 M], добавлен 30.09.2012