Криптоанализ тригонометрического шифра с помощью генетического алгоритма
Возможность применения генетического алгоритма к задаче криптоанализа тригонометрического шифра, разработанного В.П. Сизовым. Схема построения генетического алгоритма и анализ получаемых результатов для произвольных текстов на естественном языке.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 26.04.2019 |
Размер файла | 73,3 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Понятие генетического алгоритма и механизм минимизации функции многих переменных. Построение графика функции и ее оптимизация. Исследование зависимости решения от вида функции отбора родителей для кроссинговера и мутации потомков, анализ результатов.
контрольная работа [404,7 K], добавлен 04.05.2015Нахождение минимального пути от фиксированной до произвольной вершины графа с помощью алгоритма Дейкстры, рассмотрение основных принципов его работы. Описание блок-схемы алгоритма решения задачи. Проверка правильности работы разработанной программы.
курсовая работа [495,4 K], добавлен 19.09.2011Минимальное остовное дерево связного взвешенного графа и его нахождение с помощью алгоритмов. Описание алгоритма Краскала, возможность строить дерево одновременно для нескольких компонент связности. Пример работы алгоритма Краскала, код программы.
курсовая работа [192,5 K], добавлен 27.03.2011Остовное дерево связного неориентированного графа. Алгоритм создания остовного дерева, его нахождение. Сущность и главные особенности алгоритма Крускала. Порядок построения алгоритма Прима, вершина наименьшего веса. Промежуточная структура данных.
презентация [140,8 K], добавлен 16.09.2013Изучение основных вопросов теории графов и области ее применения на практике. Разработка алгоритма кластеризации по предельному расстоянию и построение минимального остовного дерева каждого кластера. Результаты тестирований работы данного алгоритма.
курсовая работа [362,9 K], добавлен 24.11.2010Теория случайных графов, модели сетей (графы Барабаши-Альберт, Эрдеша-Реньи, Уотса-Строгатса и др.) Разработка ускоренного алгоритма калибровки больших сетей по коэффициенту кластеризации на языке Java в среде Eclipse. Анализ экспериментальных данных.
дипломная работа [2,0 M], добавлен 19.11.2013Суть метода Зейделя. Расчет разностных схемам относительно неизвестной сеточной функции. Параллельное решение систем линейных алгебраических уравнений. Процедура построения параллельного алгоритма Зейделя. Оценка ускорения представленного алгоритма.
контрольная работа [98,1 K], добавлен 09.01.2011Методы решения задачи коммивояжера. Математическая модель задачи коммивояжера. Алгоритм Литтла для нахождения минимального гамильтонова контура для графа с n вершинами. Решение задачи коммивояжера с помощью алгоритма Крускала и "деревянного" алгоритма.
курсовая работа [118,7 K], добавлен 30.04.2011Теоретические основы метода отсечения, его назначение и функции в решении задач целочисленного линейного программирования. Сущность и практическая реализация первого и второго алгоритма Гомори. Применение алгоритма Дальтона, Ллевелина и Данцига.
курсовая работа [208,1 K], добавлен 12.10.2009Способы решения задач дискретной математики. Расчет кратчайшего пути между парами всех вершин в ориентированном и неориентированном графах с помощью использования алгоритма Флойда. Анализ задачи и методов ее решения. Разработка и характеристика программы.
курсовая работа [951,4 K], добавлен 22.01.2014Форма для ввода целевой функции и ограничений. Характеристика симплекс-метода. Процесс решения задачи линейного программирования. Математическое описание алгоритма симплекс-метода. Решение задачи ручным способом. Описание схемы алгоритма программы.
контрольная работа [66,3 K], добавлен 06.04.2012Обоснование алгоритма уточнения решения. Свойства последовательности стохастических матриц, которые гарантируют существование предельного конуса. Условия, при которых уточнённое по последовательности конусов оптимальное решение является единственным.
дипломная работа [117,9 K], добавлен 14.01.2011Понятие и содержание теории графов. Правила построения сетевых графиков и требования к ним. Сетевое планирование в условиях неопределенности. Теория принятия решений, используемые алгоритмы и основные принципы. Пример применения алгоритма Дейкстры.
курсовая работа [1,0 M], добавлен 26.09.2013Оптимальная настройка параметров "алгоритма отжига" при решении задачи коммивояжера. Влияние начальной температуры, числа поворотов при одной температуре и коэффициента N на результат. Сравнение и определение лучшей функции для расчётов задачи.
контрольная работа [329,9 K], добавлен 20.11.2011Условия разложения функций для тригонометрического ряда. Определение коэффициентов разложения с помощью ортогональности систем тригонометрических функций. Понятие периодического продолжения функции, заданной на отрезке. Ряд Фурье функции у=f(x).
презентация [30,4 K], добавлен 18.09.2013Численное решение уравнения методом Эйлера и Рунге-Кутта в Excel. Программа на языке Turbo Pascal. Блок-схема алгоритма. Метод Рунге-Кутта для дифференциального уравнения второго порядка. Модель типа "хищник-жертва" с учетом внутривидового взаимодействия.
курсовая работа [391,5 K], добавлен 01.03.2012Особенности решения задач Диофантовой "Арифметики", которые решаются с помощью алгебраических уравнений или системы алгебраических уравнений с целыми коэффициентами. Характеристика великой теоремы Ферма, анализ и методы приминения алгоритма Евклида.
реферат [36,8 K], добавлен 03.03.2010Особенности построения вектора А, удовлетворяющего заданному множеству условий и ограничений, если даны величины упорядоченных множеств. Характеристика алгоритма перебора вектора А и оценка его временной сложности. Анализ графического изображения вектора.
курсовая работа [164,1 K], добавлен 11.03.2010Система Ляпунова - случай одной степени свободы. Необходимые и достаточные условия существования периодических решений. Применение алгоритма Ляпунова для построения приближенного периодического решения задачи Коши для системы дифференциальных уравнений.
курсовая работа [243,8 K], добавлен 11.05.2012Построение диаграммы псевдографа, матрицы инцидентности и матрицы соседства вершин. Восстановление дерева по вектору с помощью алгоритма Прюфера. Построение таблицы истинности для функции и совершенной конъюнктивной и дизъюнктивной нормальной форм.
контрольная работа [181,9 K], добавлен 25.09.2013