К обоснованию метода устойчивого оценивания посредством неравенства Чебышева

Описание обоснование метода устойчивого оценивания, использующего процедуру обратноквадратичного взвешивания наблюдений, вытекающей из неравенства Чебышева. Устойчивость алгоритма устойчивого оценивания, использующего вычисление весов наблюдений.

Рубрика Математика
Вид статья
Язык русский
Дата добавления 26.04.2019
Размер файла 45,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Роль многочленов Чебышева в теории приближений и их использование в качестве узлов при интерполяции алгебраическими многочленами. Преимущества разложения функции по полиномам Чебышева. Разработка программы численного расчета решения подобной задачи.

    контрольная работа [184,2 K], добавлен 13.05.2014

  • Алгоритм построения ранговой оценки неизвестных параметров регрессии. Моделирование регрессионных зависимостей с погрешностями, имеющими распределения с "тяжёлыми" хвостами. Вычисление асимптотической относительной эффективности рангового метода.

    курсовая работа [1,2 M], добавлен 05.01.2015

  • Основные свойства многочленов Чебышева - двух последовательностей ортогональных многочленов, их роль в теории приближений. Способы определения, явные формулы. Многочлен Чебышева на отрезке. Случай произвольного отрезка. Разработка программной реализации.

    курсовая работа [391,8 K], добавлен 19.12.2012

  • Основы теории многочленов от одной переменной. Определение и простейшие свойства многочленов Чебышева. Основные теоремы о многочленах Чебышева. Формальная производная многочлена. Рациональные корни нормированного многочлена с целыми коэффициентами.

    курсовая работа [1,2 M], добавлен 04.07.2015

  • Основные формулы и алгебраические свойства. Применение многочленов Чебышева-Эрмита в квантовой механике. Определение потенциальной энергии. Ортонормированный многочлен Чебышева-Эрмита. Уравнение Шрёдингера в одномерном случае. Коэффициенты разложения.

    курсовая работа [459,1 K], добавлен 21.11.2014

  • Байесовские алгоритмы оценивания (фильтр Калмана). Постановка задачи оценивания для линейных моделей динамической системы и измерений. Запись модели эволюции и модели измерения в матричном виде. Составление системы уравнений, описывающей эволюцию системы.

    курсовая работа [3,0 M], добавлен 14.06.2011

  • Уравнения с разделяющими переменными. Частное решение линейного дифференциального уравнения. Оценка вероятностей с помощью неравенства Чебышева. Нахождение плотности нормального распределения. Построение гистограммы и выборочной функции распределения.

    контрольная работа [387,4 K], добавлен 09.12.2011

  • Представление доказательства неравенства Чебышева. Формулирование закона больших чисел. Приведение примера нахождения математического ожидания и дисперсии для равномерно распределенной случайной величины. Рассмотрение содержания теоремы Бернулли.

    презентация [65,7 K], добавлен 01.11.2013

  • Преобразование коэффициентов полиномов Чебышева. Функции, применяемые в численном анализе. Интерполяция многочленами, метод аппроксимации - сплайн-аппроксимация, ее отличия от полиномиальной аппроксимации Лагранжем и Ньютоном. Метод наименьших квадратов.

    реферат [21,5 K], добавлен 27.01.2011

  • Биографические данные Пафнутия Львовича Чебышева. Детские годы ученого, получение образования. Переезд в Петербург и защита в Петербургском университете диссертации. Наибольшее число работ Чебышева посвящено математическому анализу. Теория механизмов.

    реферат [17,8 K], добавлен 22.12.2009

  • Многочлены Чебышева. Многочлены равномерных приближений. Экономизация степенных рядов. Свойства многочлена Чебышева. Интерполяция по Чебышевским узлам. Многочлены равномерных приближений. Теорема Вейерштрасса. Кусочно-квадратичная аппроксимация.

    курс лекций [175,3 K], добавлен 06.03.2009

  • Определение и общие свойства ортогональных функций (многочленов). Рекуррентная формула и формула Кристоффеля-Дарбу. Элементарные свойства нулей, их плотность. Сущность первого и второго рода многочленов Чебышева. Нули многочленов и отклонение от них.

    курсовая работа [2,5 M], добавлен 30.06.2011

  • Форма для ввода целевой функции и ограничений. Характеристика симплекс-метода. Процесс решения задачи линейного программирования. Математическое описание алгоритма симплекс-метода. Решение задачи ручным способом. Описание схемы алгоритма программы.

    контрольная работа [66,3 K], добавлен 06.04.2012

  • Рекурсивное, тригонометрическое определение и свойства многочленов Чебышёва. Сущность теоремы Е.И. Золотарёва-А.Н. Коркина. Применение ортогональных полиномов Чебышева при нахождении кривых распределения вероятностей. Обобщение метода Грамма-Шарлье.

    курсовая работа [1,1 M], добавлен 11.01.2011

  • Математический анализ и операционное исчисление. Обращение преобразования с помощью многочленов, ортогональных на промежутке. Интегральное преобразования Лапласа с помощью смещенных многочленов Лежандра и многочленов Чебышева первого рода.

    реферат [503,6 K], добавлен 10.02.2011

  • Вклад А. Колмогорова в теорию вероятностей: публикации по проблемам дескриптивной и метрической теории функций; его глубокий интерес к философии математики. Разработка метода моментов Чебышевым. Исправление учеником Чебышева Марковым его теоремы.

    презентация [424,5 K], добавлен 28.04.2013

  • Математическое обоснование алгоритма вычисления интеграла. Принцип работы метода Монте–Карло. Применение данного метода для вычисления n–мерного интеграла. Алгоритм расчета интеграла. Генератор псевдослучайных чисел применительно к методу Монте–Карло.

    курсовая работа [100,4 K], добавлен 12.05.2009

  • Понятие неравенства, его сущность и особенности, классификация и разновидности. Основные свойства числовых неравенств. Методика графического решения неравенств второй степени. Системы неравенств с двумя переменными, с переменной под знаком модуля.

    реферат [118,9 K], добавлен 31.01.2009

  • Ознакомление с историей появления метода золотого сечения. Рассмотрение основных понятий и алгоритма выполнения расчетов. Изучение метода чисел Фибоначчи и его особенностей. Описание примеров реализации метода золотого сечения в программировании.

    курсовая работа [416,0 K], добавлен 09.08.2015

  • Поиск корней нелинейных САУ с помощью метода продолжения решения по параметру. Математическое описание метода. Программное обеспечение для построения графиков сходимости метода. Требования к программному обеспечению и описание логической структуры.

    курсовая работа [365,5 K], добавлен 27.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.