История введения в школьный курс математики темы "Иррациональные числа"
История введения в школьный курс математики темы "Иррациональные числа", краткая характеристика материала учебников данного периода. Исследование начальной информации про иррациональные числа и действия с ними. Извлечение числа из кубического корня.
Рубрика | Математика |
Вид | статья |
Язык | русский |
Дата добавления | 11.10.2024 |
Размер файла | 15,4 K |
Соглашение об использовании материалов сайта
Просим использовать работы, опубликованные на сайте, исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Число как основное понятие математики. Натуральные числа. Простые числа Мерсенна, совершенные числа. Рациональные числа. Дробные числа. Дроби в Древнем Египте, Древнем Риме. Отрицательные числа. Комплексные, векторные, матричные, трансфинитные числа.
реферат [104,5 K], добавлен 12.03.2004Письменная история числа "пи", происхождение его обозначения и "погоня" за десятичными знаками. Определение числа "пи" как отношения длины окружности к её диаметру. История числа "е", мнемоника и мнемоническое правило, числа с собственными именами.
реферат [125,9 K], добавлен 28.11.2010Натуральные, целые, иррациональные числа. Арифметическая и геометрическая прогрессии. Экономические вопросы, связанные с деньгами, прибылью, доходами. История открытий (Эвклид, Архимед, Лобачевский, Эйнштейн).
творческая работа [50,0 K], добавлен 18.06.2007История отрицательных чисел: их отрицание в Древнем Египте, Вавилоне, Греции, узаконивание в Китае и Индии. Математические действия с ними. Подходы к определению положению нуля как натурального числа. Изучение отрицательных чисел в школьной программе.
презентация [178,6 K], добавлен 13.05.2011Приближение действительных чисел конечными десятичными дробями. Действия над комплексными числами. Свойства функции и способы ее задания. Тригонометрические функции числового аргумента. Частные случаи тригонометрических уравнений, аксиомы стереометрии.
шпаргалка [2,2 M], добавлен 29.06.2010Частное решение неоднородных дифференциальных уравнений. Геометрический смысл комплексного числа. Аргумент комплексного числа, его поиск с учетом четверти. Комплексное число в тригонометрической форме, извлечение корня третьей степени, формула Эйлера.
контрольная работа [24,8 K], добавлен 09.09.2009Проблема несоизмеримых, первый кризис в основании математики, его следствия и попытки преодоления. Зарождение и развитие понятия числа. Становление теории предела, создание теории действительного числа. Великие метематики: Вейерштрасс, Кантор, Дедекинд.
реферат [65,2 K], добавлен 26.11.2009Рациональные и иррациональные числа и их свойства. Гипотеза Акулича и явные формулы. Разбиение натурального ряда на две непересекающиеся возрастающие последовательности. Свойства арифметических действий над рациональными и иррациональными числами.
научная работа [1,1 M], добавлен 05.02.2011Об истории возникновения комплексных чисел и их роли в процессе развития математики. Алгебраические действия над комплексными числами и их геометрический смысл. Применение комплексных чисел к решению алгебраических уравнений 3-ей и 4-ой степеней.
курсовая работа [104,1 K], добавлен 03.01.2008Определение числа e, вычисление его приближенного значения и его трансцендентность. Анализ формул числа е с помощью рядов и пределов функции. Проявление числа e в реальной жизни и его практическое применение. Применение числа e в математических задачах.
курсовая работа [352,9 K], добавлен 17.05.2021Понятие иррационального уравнения. Применение формул сокращённого умножения. Посторонние корни и причины их появления. Возведение обеих частей уравнения в одну и ту же степень. Метод замены переменной. Иррациональные уравнения, не имеющие решений.
презентация [94,6 K], добавлен 08.11.2011Доказательства существования иррациональных чисел. Арифметический подход Евклида к множеству иррациональных чисел. Рассуждения Дедекинда о непрерывности области вещественных чисел, неявном понятии точной верхней грани. Анализ бесконечно малых величин.
реферат [1,9 M], добавлен 08.05.2012Робота присвячена важливісті математики, їх використанню у різних галузях науки. Інформація, яка допоможе зацікавити учнів при вивченні математики. Етапи розвитку математики. Філософія числа піфагорійців. Математичні формули у фізиці, хімії, психології.
курсовая работа [347,2 K], добавлен 12.09.2009Решение стандартных, нестандартных, показательных, логарифмических, повышенного уровня иррациональных уравнений с применением производной и основных свойств функции (области определения, значения, монотонности ограниченности), введения новой переменной.
курсовая работа [331,3 K], добавлен 15.06.2010Извлечение квадратного корня - операция нахождения квадратного корня из неотрицательного числа. Сравнительный анализ способов приближенного извлечения квадратных корней. Характеристика арифметического способа. Вавилонский способ (первый метод Герона).
реферат [48,7 K], добавлен 15.05.2012История происхождения числа "пи" - отношения любой окружности к ее диаметру. Письменная история числа "пи", происхождение его обозначения и "погоня" за десятичными знаками. Влияние трудов Архимеда, Уильяма Джонса, Лудольфа ван Цейлена на вычисления "пи".
презентация [1,1 M], добавлен 22.04.2015Появление отрицательных чисел. Понятие мнимых и комплексных чисел. Формула Эйлера, связывающая показательную функцию с тригонометрической. Изображение комплексного числа на координатной плоскости. "Гиперкомплексные" числа Гамильтона ("кватернионы").
презентация [435,9 K], добавлен 16.12.2011Общая характеристика и обозначение числа пи, его математическое обоснование и исторические периоды исследования: древний, классический. Поэзия цифр данного числа, методика его расчета, а также определение основных факторов, влияющих на его значение.
реферат [28,7 K], добавлен 10.04.2016Краткая биографическая справка из жизни Пьера Ферма. Общее понятие про правильные многоугольники. Числа математика, их история. Великая теорема Ферма, случаи доказательства. Особенности облегченной и малой теоремы. Роль математики в деятельности Уайлсома.
контрольная работа [501,2 K], добавлен 14.06.2012Достижения древнеегипетской математики. Источники, по которым можно судить об уровне знаний древних египтян. Задачи на арифметическую и геометрическую прогрессии, нахождение числа Пи, подчёркивают практический и теоретический характер древней математики.
реферат [165,8 K], добавлен 14.12.2009