лекция  Анализ определения математической функции

Характеристика основных способов задания выражения. Главный анализ последовательностей и их пределов. Особенность концепций раскрытия неопределенностей. Непрерывность функции в точке и на интервале. Главные свойства бесконечно малой и большой цепи.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

  .o    .oooo.         .o     .o      .ooo   
o888   d8P'`Y8b      .d88   o888    .88'     
 888  888    888   .d'888    888   d88'      
 888  888    888 .d'  888    888  d888P"Ybo. 
 888  888    888 88ooo888oo  888  Y88[   ]88 
 888  `88b  d88'      888    888  `Y88   88P 
o888o  `Y8bd8P'      o888o  o888o  `88bod8'  
                                             
                                             
                                             

Введите число, изображенное выше:

Рубрика Математика
Вид лекция
Язык русский
Дата добавления 01.04.2015
Размер файла 183,2 K

Подобные документы

  • Теоретические аспекты применения правил Лопиталя. Определение предела функции в точке. Понятия бесконечно большой и бесконечно малой функций. Рассмотрение содержания теорем о дифференцируемых функциях. Раскрытие неопределенностей по правилу Лопиталя.

    курсовая работа [1,3 M], добавлен 30.12.2021

  • Предел последовательности, его графическое изображение. Основные свойства сходящихся последовательностей. Бесконечно большие и бесконечно малые функции, связь между функций, ее приделом и бесконечно малой функцией. Первый и второй замечательный предел.

    контрольная работа [152,0 K], добавлен 14.05.2009

  • Определение второго замечательного предела. Понятие бесконечно малых функций. Математическое описание непрерывности зависимости одной переменной величины от другой в точке. Точки разрыва функции. Свойства и непрерывность ее в интервале и на отрезке.

    презентация [314,4 K], добавлен 14.11.2014

  • Общее понятие числовой последовательности. Предел функции в точке. Бесконечно большая и малая функция. Связь между функцией, ее пределом и бесконечно малой функцией. Признаки существования пределов. Основные теоремы о пределах: краткая характеристика.

    презентация [137,0 K], добавлен 25.01.2013

  • Множество как ключевой объект математики, теории множеств и логики. Операции над множествами, числовые последовательности. Множества действительных чисел. Бесконечно малые и большие функции. Непрерывность функции в точке. Свойства непрерывных функций.

    лекция [540,0 K], добавлен 25.03.2012

  • Применение второго замечательного предела для раскрытия неопределенности. Точки разрыва непрерывной функции 1-го и 2-го рода. Условия ее непрерывности в точке, интервале и на отрезке. Теоремы Вейерштрасса и Больцано-Коши. Обращение функции в ноль.

    презентация [222,8 K], добавлен 20.03.2014

  • Определение предела функции в точке. Понятие односторонних пределов. Геометрический смысл предела функции при х, стремящемся в бесконечности. Основные теоремы о пределах. Вычисление пределов и раскрытие неопределенностей. Первый замечательный предел.

    презентация [292,4 K], добавлен 14.11.2014

  • Свойства бесконечно малых величин. Произведение бесконечно малой величины на ограниченную функцию. Предел функции f(x) при x, стремящимся к бесконечности: теорема и ее доказательство. Пример решения функции и предел отношения двух малых величин.

    презентация [61,7 K], добавлен 21.09.2013

  • Область определения и свойства функции (четность, нечетность, периодичность). Точки пересечения функции с осями координат. Непрерывность функции. Характер точек разрыва. Асимптоты. Экстремумы функции. Исследование функции на монотонность. Точки перегиба.

    презентация [298,3 K], добавлен 11.09.2011

  • Вычисление математических последовательностей и определение числа, которое называется пределом последовательности. Методы расчетов предела функции. Произведение бесконечно малой функции и ограниченной функции. Определение предела последовательности.

    контрольная работа [114,0 K], добавлен 17.12.2010

  • Определение пределов функции с помощью Mathcad. Доказать, что предел данной функции в указанной точке не существует. Построение ее графика в окрестности указанной точки. Вычисление производных функции по определению в произвольной или фиксированной точке.

    лабораторная работа [718,5 K], добавлен 25.12.2011

  • Нахождение области определения, области значений функции, построение ее графиков с помощью преобразований кривых. График линейной функции с областью значений - все положительные действительные числа. Исследование функции на непрерывность. Расчет предела.

    контрольная работа [922,4 K], добавлен 13.12.2012

  • Число как одно из основных понятий математики. Виды чисел, абсолютная и переменная величины. Область определения функции, четные и нечетные функции. Построение графиков функций. Пределы последовательности и пределы функции. Непрерывность функции.

    учебное пособие [895,7 K], добавлен 09.03.2009

  • Основные свойства непрерывной функции. Теоремы о корне, промежуточном значении и об ограниченности непрерывной функции, их доказательство. Непрерывная на отрезке функция достигает максимума и минимума. Графическое представление корней уравнения.

    лекция [497,0 K], добавлен 13.02.2009

  • Непрерывность функции: определение, практические примеры, график, приращение. Точка разрыва первого и второго рода функции, примеры. Бесконечность односторонних пределов функции. Практический пример отложения точки разрыва второго рода на графике.

    презентация [270,1 K], добавлен 21.09.2013

  • Область определения функции. Очки пересечения с осями координат, промежутки знакопостоянства. Исследование функции на непрерывность. Асимптоты, определение точки экстремума и точки перегиба. Расчет области определения функций, заданных аналитически.

    контрольная работа [178,7 K], добавлен 14.06.2013

  • Задания на установление заданных пределов без использования правила Лопиталя. Определение точек разрыва функции и построение ее графика. Правило вычисления производной, заданной неявно. Исследование функции методами дифференциального исчисления.

    контрольная работа [570,8 K], добавлен 10.10.2011

  • Математическое представление, условия возрастания и убывания функции y=f(x); характеристика ее основных свойств - четности, монотонности, ограниченности и периодичности. Ознакомление с аналитическим, графическим и табличным способами задания функции.

    презентация [108,2 K], добавлен 21.09.2013

  • Введение в математический анализ. Индивидуальные домашние задания по теме "Предел функции и непрерывность» и по теме "Производная". Комбинаторика, бином Ньютона, математическая индукция и комплексные числа. Применение производной при исследовании функции.

    учебное пособие [950,8 K], добавлен 25.08.2009

  • Описание сущности функции, которая была введена немецким математиком П.В. Дирихле как пример функции, свободной от аналитического задания значения. Характеристика и описание ряда ее свойств и области определения методами математического анализа.

    курсовая работа [44,8 K], добавлен 23.11.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.