Изменение парциального давления газов и заболевания водолазов связанного с ним

Историческая справка, патогенез, клинические проявления, оказание помощи, профилактика и лечение отравления кислородом и углекислым газом. Общая характеристика состояния кислородного голодания и применение азотного наркоза в водолазной практике.

Рубрика Медицина
Вид курсовая работа
Язык русский
Дата добавления 03.08.2013
Размер файла 657,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Легочная форма отравления кислородом может возникнуть при продолжительном пребывании человека под водой или в барокамере под повышенным давлением воздуха, например, при проведении лечебной рекомпрессии. Следует иметь в виду, что токсическое действие кислорода усиливается в присутствии примеси СО2 и при повышенном парциальном давлении азота. Развитию легочной формы отравления кислородом способствуют низкая и высокая температуры, высокая (более 90 %) и низкая (менее 20 %) относительная влажность, а также тяжелая физическая работа.

Гипероксия может вызвать две формы токсического поражения легких: острую, развивающуюся при дыхании кислородом с парциальным давлением свыше 0,8 кгс/см2 и первично-хроническую, возникающую при парциальном давлении кислорода 0,4-0,8 кгс/см2 (Kistler G. и соавт., 19б7; Жиронкин А.Г, 1972; Broussole В., 1977).

Острая форма токсического поражения легких может сочетаться с развитием судорожной формы отравления. Отчетливые проявления легочной формы отравления кислородом у человека при дыхании газовыми смесями с парциальным давлением в них кислорода 0,4; 1,0 и 2,5 кгс/см2 развиваются через 1,5--2,5 месяца, 8-16 и 3--6 ч соответственно.

По вопросу о механизме возникновения и развития патологии легких при токсическом действии кислорода существует несколько точек зрения.

Первое представление о механизме возникновения и развития легочной формы отравления кислородом было сформулировано Л.Смитом (1899). Оно сводилось к тому, что легочная патология при гипероксии возникает вследствие непосредственного поражающего действия кислорода на клетки дыхательных путей и легочных альвеол.

В более поздних исследованиях было показано, что прямое действие кислорода на изолированном участке легочной ткани в значительной степени отличается от действия в условиях целостного организма. В связи с этим были предприняты специальные исследования, направленные на решение вопроса о соотношении прямого действия кислородной среды на легочную ткань и действия, опосредованного нейрогуморальным звеном. Прямое действие кислорода было продемонстрировано в опытах K.Penrod (1958) при заполнении одного легкого кислородом, а другого индифферентным газом. Поражение легких отмечалось на оксигенируемом легком. Роль нервных и гуморальных механизмов в происхождении кислородной «пневмонии» показана многими исследователями (Сапов И.А., 1954,1972; Bean J., 1966 и др.). Установлено, что двусторонняя блокада или перерезка блуждающих нервов усиливает поражение легких при действии кислорода, тогда как перерезка задних корешков С6 7 -- D4 5 или денервация синокаротидной и аортальной зон значительно ослабляет или предотвращает развитие патологического процесса в легких. Атропинизация животных также уменьшает патологические изменения в легочной ткани. Предварительное удаление гипофиза у животных, подвергшихся повторному действию кислорода, сопровождается менее выраженным поражением легких по сравнению с контрольными животными. Введение гипофизэктомированным животным адренокортикотропного гормона устраняет этот положительный эффект. У собак с предварительно изолированными от кровообращения надпочечниками обнаруживаются менее выраженные патологические изменения в легких при высоком парциальном давлении кислорода по сравнению с контрольными животными. Большое значение придается изменениям сурфактанта -- поверхностно-активного вещества легких (KistlerG. и соавт., 1967; Shields Т., 1977), ослаблению антиоксидантных систем, в частности, активности дисмутазы, глутатион-пероксидазной системы и др. (Crapo J., Tierney D., 1974).

К. Ламберетсен (1966) считает, что в основе кислородного повреждения легких лежит такое же угнетение ферментных систем, как и при других формах кислородной интоксикации, переполнение кровью легочных капилляров, иногда с кровоизлияниями и проникновением в альвеолы и просвет бронхов геморрагического экссудата.

Экссудат обычно содержит большое количество лейкоцитов и слу-щенных эпителиальных клеток. В межальвеолярных перегородках и в стенках бронхов отмечается инфильтрация со скоплением лейкоцитов, по преимуществу эозинофилов. Наблюдается перерождение альвеолярного эпителия и альвеолярных мембран.

При длительном воздействии кислорода геморрагический альвеолит принимает разлитой характер и патологическим процессом охватывается все легкое, развивается уплотнение и опеченение легочной ткани. Могут возникать обширные ателектазы центральных частей и эмфизематозные поражения краевых участков.

Кратковременное воздействие кислорода при относительно высоком парциальном давлении (около 3 абс. кгс/см2) приводит к поражению легочной ткани очагового характера.

В целом процесс в легких определяется как прогрессивная дегенерация, протекающая в две фазы: полностью обратимую экссудатавную и частично обратимую пролиферативную. В экссудативной фазе развиваются отек альвеол и геморрагии, идет выпотевание фибринозного экссудата, образование гиалиновых мембран и параллельно происходит деструкция эпителия и альвеолярных эпителиальных клеток. В пролиферативную фазу развиваются интерстициальный фибриноз, фибробластическая пролиферация и гиперплазия эпителиальных альвеолярных клеток. Процесс может закончиться рубцеванием легочной ткани. На субклеточном уровне определяются потеря плотности и вакуолизация матрикса, разбухание и разрыв митохондрий клеток альвеолярного эпителия. Отмечаются также увеличение свободных рибосом и расширение цистерн эндоплазматического ретикулума. Одновременно с поражением легких развивается застойное полнокровие во всех внутренних органах (головном мозге, печени, почках, железах внутренней секреции, кишечнике и др.), которое приводит к возникновению деструктивных изменений в клетках.

Сосудистая форма отравления кислородом встречается при воздействии высоких парциальных давлений кислорода, хотя отдельные случаи возникают и при его относительно небольшом парциальном давлении.

При действии на организм высокого парциального давления кислорода возникает резкое сужение, а затем расширение кровеносных сосудов головного мозга, почек, сердца, кожных покровов, сетчатки глаз, что сопровождается резким ослаблением сердечной деятельности и развитием клинической картины, напоминающей коллапс, который может закончиться потерей сознания и смертью. Эти реакции можно рассматривать как защитные реакции организма на повышение напряжения кислорода в крови, которые могут парадоксально иметь неблагоприятные последствия.

Такая необычная реакция на гипероксию, по-видимому, отражает повышенную индивидуальную чувствительность организма к высокому содержанию кислорода.

Клиника.

Судорожная форма отравления кислородом протекает в трех последовательных стадиях:

стадия предвестников (предсудорожная);

стадия судорог;

стадия терминального состояния.

Стадия предвестников является наименее стабильным периодом в развитии судорожной формы отравления кислородом. Симптоматология этой стадии у человека обстоятельно описана различными исследователями (Дональд К., 1947; Зальцман Г.Л., 1961; Жиронкин А.Г. и соавт., 1965; Зиновьева И.Д., 1968). Характерным для предсудорожной стадии является понижение чувствительности и онемение кончиков пальцев рук и ног, а иногда верхней губы и других участков тела. Отмечается подергивание мышц губ, век и шеи. По мере усиления токсического действия кислорода появляются звон в ушах, тяжесть в голове. Определяются сужение полей зрения («туннель зрения»), учащение пульса и дыхания, повышение артериального давления. Непосредственно перед судорожным приступом можно заметить бледность лица, наличие холодного пота и непроизвольных сокращений отдельных мышц мимической мускулатуры. Стадия предвестников продолжается от нескольких минут до получаса и более. Длительность этого периода зависит от величины давления кислорода, индивидуальной чувствительности человека к гипероксии и его функционального состояния. Чем больше давление кислорода, тем короче эта стадия.

Судорожная стадия характеризуется потерей сознания и внезапным наступлением судорог по типу классической эпилепсии. Судорожный припадок происходит на фоне синдрома судорожной готовности предыдущей стадии и сопровождается тахикардией, гипервентиляцией и другими признаками расстройств вегетативных систем организма. Судорожные подергивания обычно начинаются с активно функционирующих мышечных групп. Первый приступ судорог носит клонический характер и продолжается 1--2 мин. Затем наступает пауза, после которой появляется новый приступ судорог. При продолжающемся действии кислорода приступы судорог становятся более продолжительными, а промежутки покоя -- более короткими. Клонические судороги переходят в тонические, и наступает опистотонус. Прекращение очередного судорожного припадка происходит так же внезапно, как и его начало. В межсудорожные периоды могут появиться частое и глубокое дыхание, обильное слюноотделение, рвотные движения и рвота, выпячивание глазных яблок, расширение или сужение зрачков, брадикардия, усиленная перистальтика кишечника, непроизвольные дефекация и мочеиспускание. Повторные судорожные припадки могут возникать как во время дыхания кислородом, так и в период декомпрессии, а иногда в течение первых часов или даже суток после перехода на дыхание воздухом под атмосферным давлением. Электрофизиологически судорожная стадия характеризуется глобальной генерализацией судорожной активности (пики, комплексы пик-волны и др.), охватывающей все отделы мозга. В основе этой генерализации лежит явление местной и дистанционной синхронизации биопотенциалов мозга.

Для третьей (терминальной) стадии судорожной формы кислородного отравления характерно ослабление судорожной реакции и появление расстройств дыхания в виде прогрессирующего замедления и удлинения вдоха вследствие спазма мускулатуры бронхов, после чего наступает остановка дыхания. Если в стадии кислородных судорог пострадавшего водолаза переключить на дыхание вместо кислорода воздухом или газовой смесью с низким парциальным давлением кислорода, то у него может быть еще 1 -2 приступа судорог, после чего он погружается в глубокий сон, который продолжается от 40 до 90 мин.

Отдельные исследователи (Гусинский З.С., Юнкин И.П., 1980; Лотовин А.П., Сапов И.А., 1986) выделяют еще одну, начальную (компенсаторную), стадию, которая предшествует стадии предвестников. Для начальной стадии характерно развитие многочисленных, главным образом приспособительных, реакций на кислород на всех уровнях. Вследствие этого в рамках начальной стадии поддерживается гомеостаз основных физиологических функций и сохраняется работоспособность организма. Электрофизиологические исследования в этот период (Селивра А.И., 1974) показали волнообразный характер изменений биоэлектрической активности всех отделов мозга: периодическое уменьшение интенсивности низкочастотных и повышение высокочастотных составляющих, расширение частотного спектра и снижение связи между биопотенциалами различных структур мозга.

Иногда водолаз, поднятый на поверхность вследствие отравления кислородом, находится в состоянии обморока или сильного нервного возбуждения. Он не может спокойно лежать или сидеть, стремится вырваться из рук людей, оказывающих ему помощь, вступает с ними в драку, а затем постепенно успокаивается и засыпает.

Следует заметить, что наличие в дыхательной газовой смеси повышенного содержания углекислого газа, а также тяжелая работа, переохлаждение и перегревание приводят к сокращению сроков наступления судорожной формы отравления кислородом.

При легочной форме отравления кислородом начальные признаки характеризуются ощущением загрудинных болей, усиливающихся при глубоком дыхании, и появлением сухого кашля. Наряду с этим отмечаются спазм периферических сосудов и онемение кончиков пальцев рук и ног, носа. В дальнейшем постепенно развивается воспалительный процесс в легких. Он сопровождается явлениями гипоксии, которые возникают в результате отека легких и выключения их в той или иной степени из участия в нормальном цикле газообмена. Появляются также инфекционные осложнения первичного «асептического» поражения легких. При выраженном отеке легких переход пострадавшего в среду с нормальным парциальным давлением кислорода может привести к развитию острого кислородного голодания.

Основной причиной гибели является развитие острой дыхательной недостаточности, которая обусловлена тяжелым отеком легких, приводящим к существенному снижению в них газообмена.

Острая форма поражения легких характеризуется последовательным развитием экссудативных, пролиферативных и фибринозных изменений. При первично-хронической форме патологический процесс с самого начала носит пролиферативный характер: легочные капилляры переполняются кровью, альвеолы и просвет бронхов заполняет геморрагический экссудат, определяется перерождение альвеолярного эпителия и альвеолярных мембран, отмечаются гипертрофия и гиперплазия легочного эпителия, утолщение и гиалинизация стенок кровеносных сосудов.

При длительном воздействии гипероксии наряду с экссудативными и пролиферативными изменениями могут развиться уплотнение и опеченение легочной ткани, а также инфекционное осложнение первичного асептического поражения участков легочной ткани -- пневмония.

Для сосудистой формы отравления кислородом характерно то, что при парциальном давлении кислорода 1,0--2,5 кгс/см2 симптомы развиваются постепенно и проявляются в основном понижением кожной чувствительности и онемением кончиков пальцев. При давлении более 2,5 кгс/см2 могут появиться мелькание в глазах, снижение остроты зрения и сужение полей зрения, головная боль, головокружение, звон в ушах, мелькание в глазах, затрудненное дыхание, общая слабость и резкое падение артериального давления, в результате чего может наступить потеря сознания. При объективном обследовании можно отметить побледнение или, напротив, гиперемию кожных покровов, кровоизлияния в кожу и слизистые. Возможны кровоизлияния во внутренние органы. При указанных величинах парциального давления кислорода и экспозиции 2,5--3 ч возможно также сочетание легочной и сосудистой форм отравления, проявляющихся в разной степени.

При парциальном давлении 5 кгс/см2 и более развивается молниеносное отравление, при котором без предвестников наступают внезапная потеря сознания и смерть.

Оказание помощи и лечение.

При появлении первых признаков отравления кислородом в период выполнения работы под водой водолазу дается команда немедленно прекратить работу и приступить к подъему на поверхность. Если водолаз не может самостоятельно подняться на поверхность (потеря сознания), то его следует немедленно поднимать за сигнальный конец (в необходимых случаях с участием страхующего водолаза), переключить на дыхание атмосферным воздухом и освободить от снаряжения. Дальнейшие лечебные мероприятия проводятся в зависимости от состояния пострадавшего.

При наличии у пострадавшего судорог его необходимо удерживать, оберегая от ударов голову, и принимать меры по предупреждению прикуса языка. Во время судорог у пострадавшего запрещается проводить декомпрессию, так как снижение окружающего давления при непроизвольной задержке дыхания может привести к появлению баротравмы легких. Декомпрессия возобновляется при появлении у водолаза ритмичного дыхания, которое возникает после прекращения клонических судорог.

Для снятия судорожных приступов назначают внутримышечное введение 1-2 мл 2,5 %-ного раствора аминазина, 2 мл 0,5 %-ного раствора седуксена или 1-2 мл 2 %-ного раствора димедрола. Показано также применение 10--20 мл 25 %-ного раствора сернокислой магнезии внутримышечно и 50 мл 3 %-ного раствора хлоралгидрата в клизмах.

Пострадавшего следует поместить в теплое затемненное место с хорошей звукоизоляцией. В течение суток после отравления он должен находиться под наблюдением врача, который проводит симптоматическое лечение.

При наличии показаний применяют анальгетики (анальгин, аспирин, баралгин и др.), стимуляторы дыхательной системы (3 мл 1,5 %-ного раствора этимизола внутримышечно или медленно внутривенно) и сердечной деятельности (1 мл 10 %-ного раствора коразола или 2 мл кордиамина внутримышечно или медленно внутривенно, 1 мл 0,06 %-ного раствора коргликона в 10 мл 40 %-ного раствора глюкозы внутривенно, 0,5 мл 0,05 %-ного раствора строфантина в 10--20 мл 40 %-ного раствора глюкозы внутривенно). В целях профилактики возникновения у пострадавшего пневмонии следует применять антибиотики 4--6 раз в сутки (оксациллин по 0,25 г, ампициллин по 0,5 г, олететрин по 0,125 г или др.) или сульфаниламиды.

При легочной форме отравления кислородом проводится наложение венозных жгутов на нижние и верхние конечности (на срок до 1,5 ч) в положении пострадавшего полусидя, аспирация пены из верхних дыхательных путей для устранения механической асфиксии. Для борьбы с метаболическим ацидозом внутривенно вводят 300 мл 4 %-ного раствора гидрокарбоната натрия. С целью предупреждения отека легких внутривенно вводят лазикс (1 % -- 2 мл), применяют ингаляцию парами этилового спирта, кровопускание и внутривенное введение 3-4 мл 96 %-ного этилового спирта и 30--40 мг преднизолона с 20 мл 40 %-ного раствора глюкозы (последнее при необходимости повторяется).

В случае появления первых признаков отравления кислородом в барокамере при проведении лечебной рекомпрессии по режимам 1Г, 2В или ЗВ пострадавшему назначают по 3 раза в сутки аскофен по 1 таблетке, аскорбиновую кислоту по 0,3 г, рутин по 0,02 г и витамин Е по 0,1 г.

Профилактика.

При использовании для дыхания водолаза под водой 40 % КАС необходимо исключить возможность перепутывания баллонов и подачи водолазу вместо смеси чистого кислорода. Перед первым спуском водолаза под воду в течение суток и перед заменой секций баллонов с 40 % КАС должен быть сделан анализ смеси на содержание кислорода.

При дыхании кислородом в снаряжении с замкнутой схемой дыхания для предупреждения отравления кислородом необходимо исключить случаи спусков водолазов под воду на глубины более 20 м. Недопустимо проведение спусков под воду в неисправном водолазном снаряжении (особенно при неисправности клапана вдоха и кислородоподающего механизма).

Продолжительность спуска и работы водолаза под водой не должна превышать физиологически допустимого времени работы, приведенного в таблице:

Глубина спуска, м вод. ст.

Допустимое время работы

(парциальное давление кислорода, кгс/см2)

легкой и средней тяжести

тяжелой

5 (1,5)

10 (2,0)

2,5 ч

1 ч

15 (2,5)

30 мин

20 мин

20 (3,0)

20 мин

10 мин

При выполнении тяжелой работы под водой в кислородном снаряжении на глубинах 15-20 м время пребывания и работы водолазов под водой должно определяться с учетом индивидуальной предрасположенности водолазов к токсическому действию кислорода. В барокамерах, где условия более благоприятные по сравнению с водной средой, физиологически допустимое время дыхания кислородом или воздухом при соответствующем парциальном давлении значительно больше.

Физиологически допустимое время непрерывного дыхания воздухом или кислородом в барокамере

Избыточное давление

воздуха, м вод.ст., кгс/см2

Давление чистого

кислорода, кгс/см2

Время дыхания, ч

20(2)

0,6

До 170 - 180

30(3)

0,8

40-80

40(4)

1,0

25-45

50(5)

1,3

15-25

60 (6)

1,5

10-16

70(7)

1,7

8-12

80(8)

1,9

5-9

90(9)

2,1

3-4

100 (10)

2,3

2-3

--

3,0

До 1 - 1,5

При проведении декомпрессии с использованием для дыхания кислорода общее время дыхания чистым кислородом не должно превышать 3--3,5 ч, так как спускавшиеся водолазы уже длительное время дышали газовой смесью с повышенным парциальным давлением кислорода.

При наличии на кислородном этапе декомпрессии воздушных перерывов время дыхания чистым кислородом может быть увеличено до 6 ч. Если в процессе декомпрессии на кислороде у водолаза появляются предвестники отравления кислородом (боль при вдохе за грудиной, онемение кончиков пальцев рук или ног), то его следует переключать на дыхание воздухом и всю последующую декомпрессию проводить на воздухе. При этом время кислородных выдержек на остановках удваивается.

Кислородное голодание

Под кислородным голоданием понимается патологическое состояние организма, наступающее вследствие низкого напряжения кислорода в клетках и тканях организма или отсутствия способности тканей потреблять кислород. Различают кислородное голодание как нозологическую форму и как патогенетическое следствие многих заболеваний, при которых кислородное голодание возникает вторично в отдельных органах или частях тела (местная гипоксия) или во всем организме в целом (общая гипоксия).

В понятие «кислородное голодание» включаются все случаи первичной гипоксии. В зависимости от причин, вызывающих первичную гипоксию в организме, различают следующие ее формы:

гипоксическая гипоксия, которая наступает в результате понижения парциального давления кислорода в дыхательной газовой смеси, затруднения в проникновении кислорода в кровь через альвеолярный эпителий или же в результате расстройства дыхания;

гемическая гипоксия, основной причиной которой является уменьшение в крови количества эритроцитов (анемический тип) или же инактивация гемоглобина чаще всего окисью углерода и окислами азота;

циркуляторная гипоксия, наступающая вследствие декомпенсации сердечно-сосудистой системы (застой крови или ишемия тканей);

гистотоксическая (тканевая) гипоксия, которая наступает в результате понижения способности тканей потреблять находящийся в крови кислород вследствие подавления функциональной активности различных дыхательных ферментов.

Наряду с этим И.Р.Петров выделяет смешанную форму гипоксии.

В водолазной практике основными причинами кислородного голодания у водолазов являются пониженное парциальное давление кислорода во вдыхаемой газовой смеси (гипоксическая гипоксия) и гемическая гипоксия в результате инактивации гемоглобина окисью углерода и окислами азота.

Историческая справка.

Проблема кислородного голодания является одной из важнейших общебиологических и медицинских проблем.

Отдельные наблюдения по влиянию на организм разреженного воздуха появились уже в древности. Древнегреческий философ Аристотель (384-- 322 г. до н.э.) ошибочно полагал, что на горе Олимп (2985 м над уровнем моря) жизнь человека невозможна, так как он «не может дышать воздухом, слишком тонким для дыхания». Древнегреческий историк Плутарх в 336 г. до н.э. писал, что легионеры Александра Македонского при переходах через горные хребты часто жаловались на головную боль и недомогание. После этого многие путешественники (географы, купцы, монахи, естествоиспытатели) описывали в путевых заметках симптомы горной болезни. Испанский иезуит И. Лкоста во время военной экспедиции на хребты Кордильер (высота до 6000 м и более) в Перу в 1590 г. писал: «Я убедился, что воздух здесь настолько нежен и тонок, что является несоразмерным с дыханием человека, нуждающегося в более грубом воздухе, и я полагаю, что именно эта причина так сильно действует на желудок и нарушает все другие функции». Симптомы этого заболевания (общее недомогание, тошнота, рвота и головная боль) были известны аборигенам Южной Америки. В 1666 г. Роберт Бойль установил, что угасание жизни животных в условиях нарастающего разрежения воздуха совпадает с угасанием свечи, однако он не смог дать объяснения этому феномену. Кислород был открыт более чем через 100 лет после этого (Шееле К.В., 1770; Пристли Д., 1774). В 1804 г. французский воздухоплаватель Робертсон, поднявшись в воздушном шаре на высоту около 8000 м, испытывал сильные страдания. Много ценных сведений о симптомах, развитии и течении горной болезни предоставили отечественные путешественники и врачи в экспедициях П.П. Семенова-Тян-Шанского и Н.М. Пржевальского на Тянь-Шань (1870-1880), Н.А. Северцова и Г.Е. Грум-Гржимайло на Ала-Тау и Памир (1870-1880), А.В. Пастухова на Кавказ (1889).

До 60-х годов XIX века механизм действия разрежения объяснялся ошибочным положением о том, что уменьшение давления на поверхность тела, возникающее при снижении окружающего давления, оказывает механическое действие на поверхностно расположенные периферические кровеносные сосуды, и в эти расширенные сосуды устремляется кровь из сосудов внутренних органов и мозга (Галер А., 1758).

В 1861 г. французский врач Дени Журдане высказал предположение, что развитие горной болезни обусловлено обеднением крови кислородом, которое он назвал «аноксемией». В 1870 г. вышла диссертация Жирмунского «О влиянии разреженного воздуха на организм человека».

Честь создания теории кислородного голодания принадлежит П. Беру, который в опытах на животных и на людях, в том числе на себе, показал, что снижение давления в барокамере приводит к появлению патологических симптомов. Однако если барокамера предварительно заполнялась кислородом, то даже более высокое разрежение давления не ухудшало состояния испытуемых. Из этого факта П. Бер сделал вывод о том, что переносимость «подъема на высоту» связана не со снижением давления как таковым, а с уменьшением парциального давления кислорода. Эти работы П. Бера были начаты после создания им в 1868 г. барокамеры и описаны в его классическом труде «Барометрическое давление» (1878), посвященном Д. Журдане.

Большая роль в изучении кислородного голодания принадлежит И.М. Сеченову, его ученикам и последователям (Пашутину В.В., Альбицкому П.М., Карташевскому Е.А. и др.). 15 апреля 1875 г. французские аэронавты Тиссандье, Зивель и Кроче-Спинелли поднялись на аэростате «Зенит» на высоту 8600 м и потеряли сознание, после чего в живых остался только Тисандье, который дышал кислородно-воздушной смесью. И.М. Сеченов с исчерпывающей полнотой объяснил причину смерти аэронавтов. Он объяснил этот факт тем, что в альвеолярном воздухе поддерживается постоянное парциальное давление углекислоты и водяных паров, доля которых при подъеме на высоту возрастает, в результате чего уменьшается не только парциальное давление, но и процентное содержание кислорода в альвеолярном воздухе, причем обмен газов происходит между кровью и альвеолярным воздухом, а не между кровью и окружающей атмосферой.В.В. Пашутин (1881) в своих «Лекциях по общей патологии» описал разнообразные нарушения кислородного снабжения организма, впервые предложил термин «кислородное голодание» и ввел учение о кислородном голодании в раздел курса патологической физиологии. Он создал классификацию кислородного голодания, в основу которой был положен патогенетический принцип. Под его руководством были разработаны принципиально новые методы исследований, которые сыграли большую роль в изучении кислородного голодания. П.М. Альбицкий и Е.А. Карташевский провели исследования обмена веществ и терморегуляции при недостатке кислорода во вдыхаемом воздухе. В 1892 г. Третьяков защитил диссертацию на тему «К вопросу о горной акклиматизации».

В XX столетии в нашей стране много сделали для изучения кислородного голодания В.В. Стрельцов, Н.Н. Сиротин, Г.Е. Владимиров, М.П. Бресткин, И.Р. Петров, П.И. Егоров, А.П. Аполлонов, И.П. Разенков, М.Е. Маршак, Е.М. Крепс, А.Ф. Панин и др. Толчком к проведению исследований влияния на организм повышенного и пониженного давления, в частности кислородного голодания, явилось создание в 1940 г. на кафедре физиологии Военно-медицинской академии баролаборатории, руководителем которой стал М.П. Бресткин.

Из зарубежных исследователей кислородного голодания следует отметить Дж. Баркрофта, Дж. Холдейна, П. Армстронга, А. Моссо, Я. Гендерсона, Э. Ван Лира.

Этиология.

В водолазной практике кислородное голодание наиболее часто возникает в процессе проведения учебных спусков водолазов в снаряжении с замкнутой схемой дыхания (в изолирующих дыхательных аппаратах с подачей на дыхание кислорода).

Гипоксическая гипоксия наступает при нарушении правил использования изолирующих дыхательных аппаратов (несоблюдении правил включения на дыхание в аппарат), при неисправности кислородоподающего механизма (недостаточной подаче кислорода из баллонов в дыхательный мешок), при отсутствии кислорода в баллонах аппарата или при ошибочной подаче на дыхание водолазу чистого индифферентного газа (азота, гелия и др.) вместо воздуха или 40 %-ной кислородно-азотной смеси.

Одной из важных предпосылок, создающей условия для возникновения кислородного голодания при использовании кислородных дыхательных аппаратов, является неправильное выполнение водолазами пятикратной промывки системы «аппарат -- легкие» при включении в аппарат. После однократной промывки системы «аппарат - легкие» в газовой смеси дыхательного мешка аппарата остается 42-45 % азота, после двухкратной -- 22--25 %, после трехкратной -- 12--13 %, а после пятикратной -- 3--4 % азота. Количество азота, оставшееся в дыхательном мешке после промывки в процессе дыхания в аппарате, увеличивается за счет вымывания азота из организма (приблизительно 400-600 мл).

Если водолаз пойдет под воду только с однократной промывкой системы «аппарат--легкие», то после определенного времени количество азота будет продолжать увеличиваться за счет вымывания его из организма, а также за счет незначительного поступления с кислородом. В результате у водолаза может наступить кислородное голодание и на глубине.

Чаще всего кислородное голодание у водолазов встречается на этапе выхода с глубины на поверхность. К примеру, при пребывании водолаза на глубине 20 м содержание кислорода в дыхательном мешке снизилось до 7 %. При данном процентном содержании кислорода парциальное давление его на грунте будет соответствовать парциальному давлению в воздухе при нормальном барометрическом давлении (0,07 * 3,0 кгс/см2 = 0,021 кгс/см2, что соответствует 21 %). При таком содержании кислорода водолаз на глубине 20 м будет иметь нормальное самочувствие, так как окислительно-восстановительные процессы в тканях организма не будут нарушены. Но при подъеме наверх парциальное давление кислорода будет постепенно снижаться и на поверхности будет в 3 раза меньше нормального. Это приведет к мгновенной потере сознания.

При работе водолазов под водой в изолирующем дыхательном аппарате кислородное голодание может осложниться баротравмой легких и утоплением.

При спусках в вентилируемом водолазном снаряжении или в аппарате с открытой схемой дыхания, в которых в качестве дыхательной смеси используется сжатый воздух, кислородное голодание, как правило, исключается. В вентилируемом водолазном снаряжении оно может наступить только на малых глубинах в случае прекращения подачи воздуха в скафандр, например при обрыве водолазного шланга. При этом признаки отравления углекислым газом наступят гораздо раньше, чем кислородное голодание. Еще менее вероятно появление кислородного голодания у водолаза, находящегося на большой глубине, при отсутствии подачи воздуха. Однако при подъеме водолаза на поверхность возможно сочетание кислородного голодания с отравлением углекислым газом.

В снаряжении с открытой схемой дыхания гипоксия также мало вероятна. Она может наступить при полном расходе воздуха или при отсутствии подачи воздуха вследствие неисправной работы дыхательного автомата и редуктора. В этом случае возможно сочетание кислородного голодания с баротравмой легких.

При проведении спусков водолазов в снаряжении с полузамкнутой или открытой схемой дыхания при дыхании 40 %-ной кислородно-азотной смесью возможна молниеносная форма кислородного голодания в случае ошибочной подачи вместо этой смеси чистого индифферентного газа (азота, гелия и др.).

Гипоксическая гипоксия различной степени может проявляться при длительной задержке дыхания во время ныряния на глубину и в длину в комплекте № 1 спортивного подводного снаряжения.

Средняя продолжительность задержки дыхания у взрослых здоровых людей в состоянии покоя после обычного вдоха составляет 54,5 с, а после выдоха -- 40,0 с. Несмотря на значительную разницу в продолжительности задержки дыхания, газовый состав альвеолярного воздуха в обоих случаях практически оказался одинаковым. Так, количество О2 после вдоха было в среднем равно 9,03 %, а после выдоха -- 8,97 %. Содержание же СО2 после вдоха было равно 7,08 %, а после выдоха -7,02 % (Тамбиева А.П., 1964). Таким образом, спортсмен-подводник обычно вынужден вынырнуть, когда содержание СО2 в альвеолярном воздухе составит около 7 %, а кислорода -- около 9 % (Шастин П.Н., 1964). А.П. Тамбиевой удалось установить, что наиболее эффективной является гипервентиляция в течение 1--3 мин перед задержкой дыхания. Более длительная гипервентиляция мало сказывается на времени задержки дыхания. Лабораторные опыты М.Е.Маршака (1961) показали, что глотательные движения в конце задержки дыхания увеличивают длительность апноэ на 10--20 с. По данным В.Пономарева (1975), запас кислорода при задержке дыхания не может быть более 2 л (900 мл -- в легких, 600 -- в крови, 500 -- в мышцах), а из этого запаса ныряльщик может использовать максимум 1,5 л. Гипервентиляция увеличивает в легких количество кислорода на 100--150 мл и уменьшает количество СО2 в крови. Наиболее эффективна гипервентиляция в течение 1 мин, снижающая процентное содержание СО2 в легких с 5,5 до 3,4 %.

Интенсивные плавательные движения при нырянии спортсмена-подводника приводят к потреблению большого количества кислорода, содержащегося в объеме легких. При этом его парциальное давление в альвеолярном воздухе и напряжение в крови и тканях будут постепенно понижаться и в определенный момент могут достигнуть опасной величины. Особенно опасна произвольная длительная задержка ныряльщика под водой после предварительной усиленной гипервентиляции на поверхности. Вымывание углекислоты лишает спортсмена естественного сигнала необходимости вдоха, вследствие чего он может внезапно потерять сознание от кислородного голодания с высокой опасностью последующего утопления. Чаще это наступает при всплытии или после всплытия на поверхность из-за снижения парциального давления кислорода в альвеолярном воздухе и его напряжения в тканях. Для того, чтобы стимуляция дыхательного центра углекислотой происходила до критического падения содержания кислорода, в последнее время рекомендуется перед нырянием делать не более 3-4 глубоких вдохов и выдохов.

Гипоксическая гипоксия может возникнуть также в барокамере при использовании системы очистки газовой среды от СО2 без обогащения газовой среды кислородом и без контроля его содержания.

Гемическая гипоксия при погружениях под воду вызывается инактивацией гемоглобина как основного переносчика кислорода вредными газообразными веществами выхлопных газов, среди которых особое место занимают окись углерода и окислы азота.

Гемоглобин эритроцитов образует стойкие соединения с окисью углерода (карбоксигемоглобин) и с окислами азота (метгемоглобин), что приводит к гипоксии, поскольку гемоглобин фактически не участвует в переносе кислорода от легких к тканям. Этот вид патологии рассмотрен в п. 8.13.

Причиной гемической гипоксии может быть также уменьшение кислородной емкости крови (снижение содержания гемоглобина) при анемиях, вызванных кровотечением и другими причинами.

Циркуляторная гипоксия как самостоятельное заболевание у водолазов не встречается, но может иметь место при развитии декомпрес-сионной болезни или баротравмы легких в связи с газовой эмболией, которая нарушает нормальное кровоснабжение тканей.

Гистотоксическая (тканевая) гипоксия может парадоксально возникнуть при отравлении кислородом (гипероксическая гипоксия), когда блокируются дыхательные ферменты тканей (см. п. 8.10). В данном случае в крови существует повышенное парциальное давление кислорода, но ткани не способны утилизировать этот кислород.

Патогенез.

При рассмотрении патогенеза кислородного голодания необходимо иметь в виду, что газообмен с кровью происходит в альвеолах легких. Состав альвеолярного воздуха отличается от состава вдыхаемого воздуха. В альвеолах легких при температуре тела напряжение водяных паров составляет постоянную величину, равную 47 мм рт.ст., или около 6,2 % в пересчете на атмосферное давление. В связи с этим парциальное давление кислорода в альвеолярном воздухе будет меньше, чем в атмосферном. Так, например, если в атмосферном воздухе содержится 20,93 % кислорода, то его парциальное давление на уровне моря будет составлять

рО2 = 20,93 х 760/100 = 159 мм рт.ст.

Парциальное же давление О2 в альвеолярном воздухе при содержании его, равном 13,5-14,5 % (в среднем 14 %), за вычетом напряжения водяных паров, составляет всего:

рА О2 = 14.(760 - 47) /100 = 99,8 мм рт ст

При гипоксии создаются условия для затруднения деятельности всех физиологических систем организма, в первую очередь нервной, дыхательной и сердечно-сосудистой.

При выраженной, особенно некомпенсируемой гипоксии возникают расстройства непосредственно в тканях: повышается проницаемость капилляров, появляются периваскулярный отек и разволокнение соединительной ткани, кровоизлияния по ходу мелких кровеносных сосудов в мозге и мозговых оболочках. У людей, погибших в результате острой формы кислородного голодания при быстром разрежении воздуха (при взрывной декомпрессии в летательных аппаратах или в барокамерах), наблюдаются сосудистые изменения в виде гиперемии, отека и кровоизлияния в головном мозге и различных внутренних органах. Исследованиями функционального состояния центральной нервной системы у животных и людей установлено, что по мере нарастания гипоксии вначале отмечается некоторое растормаживание дифференцировок и усиление ответов на положительные раздражители. Эти изменения свидетельствуют об ослаблении процессов внутреннего торможения и об относительном преобладании процессов возбуждения. В дальнейшем наблюдается ослабление рефлексов и на положительные раздражители, а дифференцировки становятся еще менее стойкими. Затем наступает уравнительная фаза, во время которой на сильные и слабые раздражители испытуемые дают ответы одинаковой силы. По мере усиления действия гипоксии наступают парадоксальная и ультрапарадоксальная фазы. Для первой фазы характерно наличие более сильных ответов на слабые раздражители и более слабых - на сильные, а для второй -- наличие положительных ответов на тормозные и дифференцированные раздражители и резкое ослабление или отсутствие ответов на положительные раздражители. В дальнейшем гипоксия снижает работоспособность корковых клеток настолько, что наступает запредельное охранительное торможение. Морфологически отмечаются увеличение проницаемости мембран мозга, развитие отека и кровоизлияний. Изменения в деятельности центральной нервной системы создают функциональные сдвиги в организме, характерные для кислородного голодания: начальная эйфория и повышенная возбудимость сменяются общей слабостью, невозможностью выполнения напряженной мышечной работы, затемнением сознания, резким расстройством координации движений и коматозным состоянием.

Изменения кровообращения и дыхания при гипоксии происходят рефлекторно за счет возбуждения кислородных рецепторов, связанного с низким парциальным давлением кислорода, и возбуждения хеморецепторов легочных вен и аортальной системы (участков аортальных, сино-каротидных зон и других областей) вследствие повышенной кислотности крови. Кислородные рецепторы аортальной и синокаротидных зон особенно чувствительны к низкому напряжению кислорода в артериальной крови. Даже в состоянии наркоза падение напряжения кислорода в артериальной крови всего лишь на 1 мм рт.ст. вызывает безусловно рефлекторные реакции сердечно-сосудистой и дыхательной систем, направленные на восстановление нормального напряжения кислорода в артериальной крови, на ликвидацию даже малейшей гипоксии.

Типичными изменениями в деятельности сердечно-сосудистой системы при кислородном голодании у здорового человека являются увеличение минутного и ударного объема крови и рефлекторная перестройка кровообращения, направленная на преимущественное снабжение кровью головного мозга (особенно его коры), резкое сужение сосудов мышц и органов брюшной полости. Указанное перераспределение крови, происходящее на фоне усиленного кровообращения, представляет собой важную приспособительную реакцию, обусловленную деятельностью нервно-рефлекторного механизма. В миокарде 2/3 кислорода расходуется на сократимость и 1/3 -- на остальной метаболизм. При недостатке кислорода снижается энергетика, нарушаются возбудимость и проводимость, возникают некробиозы. Клинически это проявляется тахисистолией, затем брадикардией, экстрасистолией и недостаточностью миокарда.

В легких при гипоксии возникают вазоконстрикция и интерстициальный отек, снижается продукция сурфактанта, падает растяжимость легких, возрастает обструкция из-за экспираторного закрытия дыхательных путей. Гипертензия в малом круге ведет к правожелудочковой недостаточности. Дыхательная система человека реагирует на гипоксемию углублением и учащением дыхания. Экспериментально установлено, что более или менее заметные изменения дыхания возникают при содержании кислорода во вдыхаемом воздухе 14-15 % (НО мм рт.ст.). При содержании кислорода около 10-11 % легочная вентиляция возрастает в большей степени, а при 8-8,5 % может достигать двукратной величины по сравнению с нормальными условиями. При содержании кислорода менее 6 % она возрастает многократно. При дальнейшем прогрессировании гипоксии наблюдается периодическое дыхание, которое постепенно переходит в дыхание типа Чейна -- Стокса.

Кислотно-основное состояние при кислородном голодании претерпевает двухфазные изменения. В первые минуты активная реакция крови отчетливо сдвигается в щелочную сторону вследствие вымывания из организма углекислоты за счет повышения легочной вентиляции. Наступает состояние гипокапнии, ведущее к дыхательному алкалозу. Вторая фаза характеризуется сдвигом активной реакции крови в сторону преобладания кислых эквивалентов. Время возникновения этой фазы зависит от величины уменьшения парциального давления кислорода во вдыхаемой газовой смеси, а также от продолжительности дыхания смесью. Это связано с нарушением обменных процессов в организме, что сопровождается усиленным образованием недоокисленных продуктов (молочной и пировиноградной кислот, ацетоновых тел), обладающих резко выраженными кислыми свойствами. Наступает фаза метаболического ацидоза. При гипоксии значительно уменьшается содержание щелочного резерва плазмы крови, которое снижается параллельно снижению напряжения кислорода в крови.

Для гипоксии характерным является также увеличение количества эритроцитов. При кратковременной гипоксии эритроцитоз и гиперхромемия возникают в результате выхода депонированной крови в общий поток. В случае продолжительной гипоксии или при повторных воздействиях пониженного парциального давления кислорода изменение количества эритроцитов и гемоглобина в них происходит вследствие образования в крови эритропоэтического фактора, оказывающего стимулирующее действие на синтез гемоглобина.

Под влиянием гипоксии претерпевают изменения белковый, углеводный, жировой и водно-солевой обмен (Коростовцева Н.В., 1976). Нарушается дезаминирование белков в печени (происходит увеличение аминного азота в крови), значительно усиливается анаэробная фаза гликолиза при относительном угнетении его аэробной фазы (усиленный распад гликогена), снижается окисление молочной кислоты до СО2 и Н2О, происходит неполное окисление жиров, что приводит к накоплению в организме ацетона, ацетоуксусной и (3-масляной кислот. Основные изменения углеводного обмена выражаются в увеличении содержания в крови сахара, молочной и пировиноградной кислот. Повышение количества свободной глюкозы в крови обусловлено усилением гликогенолиза.

Кислородное голодание приводит к расстройству системы терморегуляции, в результате чего на фоне усиленной выработки тепла понижается температура тела.

Нарушается функция пищеварения, проявляющаяся снижением секреции желез слизистой оболочки желудка и нарушением двигательной функции пищеварительного тракта. В печени развиваются центральные некрозы, выбрасывается ферритин, повышающий сопротивление портальному кровотоку, который из-за этого снижается и еще больше увеличивает гипоксию печени.

В почках при гипоксии нарушаются все функции по типу ишемического некронефроза. Гипоксемия приводит к существенному снижению диуреза за счет понижения фильтрация и усиления реабсорбции жидкости в почках.

Установлена роль гипофиза и надпочечников в формировании защитных функций организма на действие гипоксии, приводящих к развитию общего функционального напряжения (стресса). При кислородном голодании усиливается инкреторная деятельность надпочечников, так как введение в кровь гормонов коркового слоя надпочечников повышает устойчивость к гипоксии. Кислородное голодание вызывает в тканях отчетливое повышение ферментативной активности систем, относящихся к группе оксидаз (цитохромы, цитохромоксидазы и др.), особенно в нервной ткани, печени и почках. Повышение активности окислительных ферментативных систем оценивается как перестройка механизма обменных процессов, направленных на ослабление влияния гипоксемии. В то же время катехолинемия приводит к спазмированию артерий и нарушению кровотока в системе микроциркуляции, следствием чего являются нарушения реологических свойств крови, ведущие к гиповолемии.

Мозг человека, масса которого составляет 2 % массы тела, поглощает 18 % кислорода, потребляемого всем организмом, причем серое вещество усваивает в 5 раз больше кислорода за единицу времени, чем участок белого вещества такой же массы. Через мозг человека протекает 740-- 750 мл крови в минуту. Деятельность мозга нарушается при снижении количества протекающей через него крови более чем на 40 %. Человек теряет сознание через 10 с после полного прекращения циркуляции крови в головном мозге. Через 40-- 100 с угасают собственные рефлексы мозга, а в среднем через 5 мин наступает смерть организма. Смерть происходит при потреблении мозговым веществом кислорода ниже 2,1 мл/мин на 100 г мозгового вещества. В зависимости от степени гипоксии и сроков воздействия на организм низкого парциального давления кислорода, а также степени проявления компенсаторных реакций организма различают три формы кислородного голодания: молниеносную, острую и хроническую.

Молниеносная форма кислородного голодания может наступить при дыхании чистым азотом, гелием, водородом и другими индифферентные газами без примеси кислорода. В этом случае вследствие быстрого вымывания кислорода из организма наступает мгновенная потеря сознания с последующей гибелью в течение 1,5--2 мин. Компенсаторные механизмы организма при этом не успевают развиться.

При острой форме кислородного голодания быстро (в течение нескольких минут) возникают компенсаторные реакции организма, а вслед за ними патологические реакции, которые могут стать ведущими и при продолжительном действии гипоксии привести к гибели пострадавшего.

Хроническая форма кислородного голодания возникает в случае длительного (дни, недели, месяцы) воздействия на организм человека порогового или подпорогового гипоксического раздражителя, когда вместо экстренных компенсаторных реакций дыхательной и сердечно-сосудистой систем происходит существенная перестройка эритропоэза и тканевого обмена.

Клиника.

В водолазной практике при снижении парциального давления кислорода ниже нормы возникает гипоксическая гипоксия, течение которой можно условно разделить на четыре последовательных стадии. При интенсивной физической нагрузке, переохлаждении и других факторах, способствующих повышенному потреблению кислорода, возможен более быстрый переход состояния организма в более тяжелую стадию.

Для первой стадии гипоксии, проявляющейся при парциальном давлении кислорода во вдыхаемой смеси 140-90 мм рт.ст. (18,5--12 об.%), характерны ощущение тяжести в голове и во всем теле, невозможность сосредоточить волевые усилия на выполнении умственной и физической работы, нарушение координации движений, особенно тонких двигательных актов, замедление темпа речи, снижение умственной работоспособности. В коре больших полушарий определяются нарушение всех видов внутреннего торможения, возрастание латентных периодов условнорефлекторных реакций и растормаживание дифференцировок. На этой стадии организм в состоянии покоя достаточно легко справляется с гипоксией за счет ряда компенсаторных реакций. Со стороны сердечнососудистой системы определяются повышение артериального давления, увеличение частоты пульса на 5--30 ударов в минуту. Дыхание несколько учащается, на 20-80 % увеличивается минутный объем дыхания (МОД).

Вторая стадия гипоксии проявляется при парциальном давлении кислорода во вдыхаемой смеси 90--70 мм рт.ст. (12--9,2 %). В этой стадии гипоксемии компенсаторные реакции организма становятся недостаточными, вследствие чего наступают нарушения функции центральной нервной системы и деятельности циркуляторной системы. Сознание у пострадавшего сохраняется, но исчезает способность к реальной оценке текущих событий, появляется стремление к выполнению намеченной цели без учета реальной обстановки и опасности. Походка становится шаткой, резко снижается чувствительность, в силу чего пострадавший не замечает ушибов и травматических повреждений кожных покровов. В центральной нервной системе преобладают процессы торможения, возникают предобморочное состояние, побледнение кожных покровов. МОД увеличивается в 2 раза и более, частота сердечных сокращений может превышать исходную на 40 % (до 120 сокращений в минуту в покое). Мышечные усилия быстро вызывают сердечную декомпенсацию.

Третья стадия гипоксии проявляется при парциальном давлении кислорода во вдыхаемой смеси 70-55 мм рт.ст. (9,2-7,2 %). Происходит резкое нарушение функций центральной нервной системы, появляется спутанность мышления, даже незначительное физическое усилие приводит к потере сознания, при этом наступает церебральная кома с «ригидными стеклянными глазами». Иногда возникают гипоксемические судороги, непроизвольные мочеиспускание и дефекация, периодическое дыхание: 3--6 дыхательных движений, за которыми следует пауза. МОД существенно уменьшается по сравнению с предыдущей степенью гипоксии, но может быть несколько больше, чем при нормальном давлении. Частота сердечных сокращений уменьшается по сравнению с выраженной гипоксией при наступающей декомпенсации. При резком ухудшении общего состояния организма возможна остановка сердца.

...

Подобные документы

  • Разрыв легочной ткани с последующим поступлением альвеолярной газовой смеси в кровеносную систему. Баротравма легких в результате воздействия подводной взрывной волны. Церебральная форма барогипертензии в водолазной практике. Обжатие грудной клетки.

    курсовая работа [73,9 K], добавлен 03.08.2013

  • Этиология, эпидемиология и патогенез трихоцефалеза. Клинические проявления и возможные осложнения заболевания. Применение методов обогащения Фюллеборна, Калантарян и Красильникова при диагностике трихоцефалеза. Лечение и профилактика заболевания.

    презентация [1,4 M], добавлен 11.10.2019

  • Общая характеристика гепатита С. Историческая справка о болезни. Этиология, эпидемиология и патогенез. Патологическая картина. Клинические симптомы острого гепатита С. Мероприятия по предупреждению заболевания. Лечение на разных стадиях болезни.

    лекция [17,8 K], добавлен 23.02.2009

  • Механизм токсического действия металлической ртути и ее соединений: токсикокинетика отравления, патогенез, клиническая картина органных поражений. Острые и хронические ртутные отравления, основные источники, степени интоксикации; лечение и профилактика.

    реферат [30,3 K], добавлен 18.11.2010

  • Общая характеристика заболевания. Жизненный цикл. Патогенез. Симптомы и течение болезни. Трехдневная малярия. Тропическая малярия. Четырехдневная малярия. Овале-малярия. Церебральная форма. Диагноз и лечение. Иммунитет. Контроль. Историческая справка.

    реферат [23,5 K], добавлен 01.11.2003

  • Анемия (малокровие) — клинико-гематологический синдром при снижении концентрации гемоглобина и уменьшении числа эритроцитов; симптом патологических состояний. Классификация анемий, этиология, патогенез, клинические проявления; лечение и профилактика.

    реферат [322,2 K], добавлен 18.01.2012

  • Морфология и культуральные свойства легионелл, их биохимические свойства. Факторы патогенности и патогенез. Клинические проявления заболевания. Факторы выработки иммунитета, лабораторная диагностика. Профилактика и лечение. Распространенность заболевания.

    контрольная работа [250,4 K], добавлен 23.03.2017

  • Сап - болезнь семейства лошадиных. Историческая справка, распространение и степень опасности. Возбудитель сапа, эпизоотология, патогенез, течение и клиническое проявление, патологоанатомические признаки, диагностика, профилактика, лечение и меры борьбы.

    реферат [17,5 K], добавлен 23.09.2009

  • Туберкулез: возбудитель болезни, эпизоотология, патогенез, течение, клиническое проявление, патологоанатомические признаки. Дифференциальная диагностика, профилактика, лечение, меры борьбы с заболеванием. Историческая справка появления псевдотуберкулеза.

    курсовая работа [31,1 K], добавлен 07.02.2014

  • Понятие полиневрита, история его выявления, сущность, причины возникновения, этиологические формы, патогенез, клинические проявления, симптомы, диагностика, лечение и профилактика. Общая характеристика и особенности развития аллергического полиневрита.

    реферат [21,2 K], добавлен 09.05.2010

  • Общая характеристика мочекаменной болезни, ее этиология, патогенез, лечение и профилактика. Клинические проявления заболевания, симптоматика и осложнения. Сестринские вмешательства при МКБ в ПКОБ им. Бурденко, помощь медсестры при отеках, жаре и ознобе.

    дипломная работа [4,1 M], добавлен 16.05.2017

  • Характеристика и классификация инфекций. Источники, причины и пути распространения инфекционных заболеваний. Клинические проявления и синдромы неотложных состояний. Оказание неотложной медицинской помощи на догоспитальном этапе в городе Новокузнецке.

    дипломная работа [188,9 K], добавлен 06.02.2016

  • Определение болезни Ку-лихорадка. Историческая справка, распространение и степень опасности. Возбудитель Ку-лихорадки, эпизоотология, патогенез, клиническое проявление, патологоанатомические признаки, диагностика, профилактика, лечение и меры борьбы.

    реферат [17,0 K], добавлен 23.09.2009

  • Общая характеристика исследуемого заболевания, его этиология и патогенез. Симптомы у женщин, мужчин и детей, осложнения и профилактика. Принципы и подходы к диагностике урогенитального хламидиоза, методика его лечения и прогноз на выздоровление.

    презентация [1,0 M], добавлен 05.12.2014

  • Рассмотрение комы как патологического торможения центральной нервной системы. Этиология и патогенез коматозного состояния. Факторы воздействия, степени и виды данного состояния. Дифференциальное диагностирование комы от обморока, оказание первой помощи.

    презентация [1,9 M], добавлен 24.09.2014

  • Определение дизентерии свиней. Историческая справка, распространение и степень опасности. Возбудитель дизентерии свиней, эпизоотология, патогенез, клиническое проявление, патологоанатомические признаки, диагностика, профилактика, лечение и меры борьбы.

    реферат [19,5 K], добавлен 23.09.2009

  • Гербициды - ядохимикаты, используемые в сельском хозяйстве для уничтожения сорняков: характеристика, классификация. Этиология отравления животных: токсикодинамика, клинические признаки, диагностика, патологоанатомические изменения; лечение, профилактика.

    реферат [20,8 K], добавлен 12.12.2011

  • Токсоплазмоз - врожденное или приобретенное паразитарное заболевание. Этиология, эпидемиология и патогенез данного заболевания. Изучение способов внутриутробного поражение плода. Клинические проявления токсоплазмоза, диагностика, лечение и профилактика.

    реферат [27,5 K], добавлен 21.05.2015

  • Общая характеристика апластической анемии – болезни, при которой нарушается работа кроветворной системы. Клинические проявления и методы диагностики заболевания. Цитогенетические исследования для определения наследственного характера заболевания.

    презентация [305,1 K], добавлен 07.12.2015

  • Историческая справка о болезни. Уровень заболеваемости и ареал распространения. Этиология, патогенез и эпидемиология заболевания. Общая клиническая картина. Симптоматика. Особенности диагностики бешенства. Вакцинация как основная профилактика болезни.

    лекция [25,4 K], добавлен 23.02.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.